5
 123  Vol. 35, No. 2 (2013) 123127 Tribology in Industry www.tribology.fink.rs  Abrasive Wear Resistance of  the Ironand WCbased Hardfaced Coatings Evaluated with Scratch Test  Method A. Vencl  a , B. Gligorijević  b , B. Katavić  b , B. Nedić  c , D. Džunić  c  a University  of  Belgrade,  Faculty  of  Mechanical  Engineering,  Belgrade,  Serbia   , b Institute Goša,  Belgrade,  Serbia   , c Faculty  of  Engineering,  University  of  Kragujevac,  Kragujevac,  Serbia. Keywords:  Abrasive wear  Scratch test  Hhardfacing Ironbased  and  WC based  materials SEM EDS  A B S T R A C T  Abrasive wear  is one of  the most  common types of  wear,  which makes abrasive wear  resistance very  important  in many  industries.  The hardfacing is considered  as useful  and  economical  way  to improve the  performance  of  components submitted  to severe abrasive wear  conditions,  with wide range of  applicable  filler  materials.  The abrasive wear  resistance of  the three different  hardfaced  coatings (two ironbased  and  one WC based), which were intended  to be used   for  reparation of  the impact   plates of  the ventilation mill,  was investigated  and  compared.   Abrasive wear  tests were carried out  by  using the scratch tester  under  the dry  conditions.  Three normal  loads of  10, 50 and  100 N  and  the constant  sliding speed  of  4 mm/s were used. Scratch test  was chosen as a relatively  easy  and  quick  test  method.  Wear  mechanism analysis showed  significant  infl uence of  the hardfaced  coatings structure,  which,  along with hardness,  has determined  coatings abrasive wear  resistance.  © 2013 Published by Faculty of Engineering Corresponding author:  A. Vencl  Tribology  Laboratory,  University  of  Belgrade,  Faculty  of  Mechanical  Engineering,  Kraljice Marije 16, 11120 Belgrade 35, Serbia E mail: [email protected]  1. INTRODUCTION More than 50 % of all wearrelated failures of industrial equipment are caused by abrasive wear [1]. The estimated costs of abrasive wear are between 1 and 4 % of the gross national product of an industrialized nation [2]. For these reasons, the abrasive wear resistance is a subject of great importance in many industries, such as agriculture, mining, mineral processing etc. Hardfacing could be defined as “coating deposition process in which a wear resistant, usually harder, material is deposited on the surface of a component by some of the welding techniques”. In most cases, hardfacing is used for controlling abrasive and erosive wear, like in mining, crushing and grinding, and agriculture industries (buckets, bucket teeth, mill hammers, ball mills, digging tools, conveyer screws, etc. [3,4]). Hardfacing is also used to control combinations of wear and corrosion, as encountered by mud seals, plows, knives in the food processing industry, pumps handling corrosive liquids, or slurries [5]. The hardfacing is considered as economical way to improve the     R     E     S     E     A     R     C     H  

Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

  • Upload
    avencl

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

7/27/2019 Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

http://slidepdf.com/reader/full/abrasive-wear-resistance-of-the-iron-and-wc-based-hardfaced-coatings-evaluated 1/5

  123

Vol.35,No.2(2013)123‐127

TribologyinIndustry

www.tribology.fink.rs

 AbrasiveWearResistanceof theIron‐and

WC‐basedHardfacedCoatingsEvaluatedwith

ScratchTest MethodA.Vencla,B.Gligorijevićb,B.Katavićb,B.Nedićc,D.DžunićcaUniversity of Belgrade,Faculty of Mechanical Engineering,Belgrade,Serbia  ,

bInstituteGoša,Belgrade,Serbia  ,

cFaculty of Engineering,University of Kragujevac,Kragujevac,Serbia.

Keywords:

 Abrasivewear 

Scratchtest 

Hhardfacing

Iron‐based and WC ‐based materials

SEM ‐EDS 

ABSTRACT

 Abrasivewear  is one of  themost  common types of wear,whichmakes

abrasive wear  resistance very  important  in many  industries. Thehardfacing is considered  as useful  and  economical way  to improve the

 performanceof componentssubmitted tosevereabrasivewear conditions,

withwide

range

of 

applicable

 filler 

materials.

The

abrasive

wear 

resistanceof  the threedifferent hardfaced coatings (two iron‐based and 

one WC ‐based), which were intended  to be used   for  reparation of  the

impact   plates of  the ventilation mill, was investigated  and  compared.

 Abrasivewear testswerecarried ‐out by usingthescratchtester under the

dry conditions.Threenormal  loadsof 10,50and 100N and theconstant 

slidingspeed of 4mm/swereused.Scratchtest waschosenasarelatively 

easy and quick test method.Wear mechanismanalysisshowed significant 

infl uenceof thehardfaced coatingsstructure,which,alongwithhardness,hasdetermined coatingsabrasivewear resistance.

©2013PublishedbyFacultyofEngineering

Correspondingauthor:

 A.Vencl 

Tribology Laboratory,University of 

Belgrade,Faculty of Mechanical 

Engineering,KraljiceMarije16,11120Belgrade35,Serbia

E ‐mail:[email protected]

1.  INTRODUCTION

More than 50 % of all wear‐related failures ofindustrial equipment are caused by abrasivewear [1]. The estimated costs of abrasive wearare between 1 and 4 % of the gross nationalproductofanindustrializednation[2].Forthesereasons,theabrasivewearresistanceisasubjectofgreatimportanceinmanyindustries,suchasagriculture,mining,mineralprocessingetc.

Hardfacing could be defined as “coatingdeposition process in which a wear resistant,

usually harder, material is deposited on thesurfaceofa componentbysomeof the weldingtechniques”.Inmostcases,hardfacingisusedforcontrolling abrasive and erosive wear, like inmining, crushing and grinding, and agricultureindustries(buckets,bucketteeth,millhammers,ball mills, digging tools, conveyer screws, etc.[3,4]). Hardfacing is also used to controlcombinations of wear and corrosion, asencounteredbymudseals,plows,knivesinthe

food processing industry, pumps handlingcorrosiveliquids,orslurries[5].Thehardfacingisconsideredaseconomicalwaytoimprovethe

      R

      E      S      E      A      R      C      H

7/27/2019 Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

http://slidepdf.com/reader/full/abrasive-wear-resistance-of-the-iron-and-wc-based-hardfaced-coatings-evaluated 2/5

 A.Vencl at al.,Tribology inIndustry Vol.35,No. 2(2013)123‐127 

 124

performanceofcomponentssubmittedtoseverewear conditions, with wide range of applicablefillermaterials[6,7].Theiron‐basedfillermaterialshavedrawnmuch

attention due to their low cost and goodresistance to abrasion in the hardfacedcondition. However, their use is limited inapplications where high impact loading ispresent,i.e.high‐stressorgougingabrasion[8].Forthisreason,effortsarebeingmadetowardsthe improvement of their impact and otherproperties[9].Theprogressisachievedmostlyby modifying the hardfaced coating’s structure.Taking into account their low price andimprovedproperties,theresistancetoabrasivewear of the iron‐based hardfaced coatings is

normallytestedagainsttheresistanceofproven,butmoreexpensivematerials,suchasWC‐basedhardfacedcoatings.Abrasive wear has been defined as “wear bydisplacement of material from surfaces inrelativemotioncaused bythe presenceof hardparticles either between the surfaces orembeddedinoneofthem,orbythepresenceofhard protuberances on one or both of thesurfaces”[10].Thesecondpartofthisdefinition

corresponds to puretwo‐body abrasion,wheretested material slides against harder androugher counter face material, while the firstpart corresponds to the three‐ and two‐bodyabrasion, respectively. Another interestingexample of two‐body abrasion is the abrasiveerosion, which is the special case of erosivewear. Abrasive erosion has been defined as“erosivewearinwhichthelossofmaterialfromasolidsurfaceisduetorelativemotionofsolidparticleswhichareentrainedinafluid,moving

nearly parallel to a solid surface” [10]. Scratchtest offers a possibility for comparison ofdifferent materials relatively easy and in shortperiodoftime,withgoodreproducibility[11].Insingle‐pass scratch test a stylus (which tip ismade of hard material) slide over the testsampleproducingasinglescratch,whichseemsto be appropriate simulation of the two‐bodyabrasion.Inthisstudy,theabrasivewearresistanceofthethree different hardfaced coatings (two iron‐basedandoneWC‐based)wasinvestigatedandcompared.

2.  EXPERIMENTALDETAILS

2.1 Materials

The filler materials (coating materials) weremanufacturedbyCastolinEutecticCo.Ltd,Vienna.Their nominal chemical composition is shown inTable 1. The iron‐based filler materials (basiccoveredelectrodes) were depositedbyusing theshieldedmetalarcwelding(SMAW)process.TheWC‐basedfillermaterialwasdepositedbyoxy‐fuelgas welding (OFW) process. The substratematerialwasthehot‐rolledS355J2G3steel.Table1.Coatingscomposition,processandhardness.

CoatingNominalchemical

compositionHardfacing

processHardness

HV5

4541 Fe‐Cr‐C‐Si SMAW 7395006 Fe‐Cr‐C‐Si SMAW 781

7888T WC‐Ni‐Cr‐Si‐B OFW 677

All coatings were deposited by hardfacing in asingle pass (one layer). The substratepreparation and hardfacing procedures(deposition parameters) are describedelsewhere [9,12]. The measurements of near‐surface hardness are performed on the cross‐section of hardfaced samples by Vickers

indenter(HV5),andpresentedin(Table1).The samples for structure characterization areobtained by cutting the hardfaced materialsperpendicular to coatings surface. The obtainedcross‐sectionsaregroundwithSiCabrasivepapersdown to P1200 and polished with aluminasuspensions downto1μm.The polishedsurfacesare analyzed by using the scanning electronmicroscope(SEM)equippedwithenergydispersivesystem (EDS). The SEM‐EDS analysis wasperformed at University of Belgrade, Faculty of

MiningandGeologybyusingtheJEOLJSM–6610LVSEM connected with the INCA350 energydispersion X‐ray analysis unit. The electronacceleration voltage of 20 kV and the tungstenfilament were used. Before SEM‐EDSanalysis wasperformed, polished surfaces were 20 nm goldcoated in a vacuum chamber by use of a sputtercoaterdevice.TheFig.1ashowsthenear‐surfacestructureofthe4541 iron‐based hardfaced coating. The primaryaustenite phase occupies more than a half ofvolume (50.7vol.%) andthe restis the lamellareutectic mixture ofausteniteandCr‐carbides [9].

7/27/2019 Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

http://slidepdf.com/reader/full/abrasive-wear-resistance-of-the-iron-and-wc-based-hardfaced-coatings-evaluated 3/5

 A.Vencl at al.,Tribology inIndustry Vol.35,No. 2(2013)123‐127 

  125

Fig.1.Thestructures(SEM)of:(a)4541,(b)5006and(c)7888Thardfacedcoating;back‐scatteredelectronimages.The5006materialduringsolidificationachievesnear‐eutectic structure (Fig. 1b). A smallsphericalprimaryCr‐carbidesareobserved(9.1vol.%)intheeutecticmatrix.Basedonelectronmicroprobeanalysis(EMPA),bothcoatings4541and 5006 contain (Cr,Fe)7C3 primary andeutecticcarbides. The Figure 1cshowsa largerWCgrains(60vol.%),whichareembeddedintheNi‐Crbasedmatrix.2.2 Scratchabrasiontesting

Abrasive wear tests are carried out on thescratch tester under the dry conditions, inambient air at room temperature (≈ 25 °C). AschematicdiagramofscratchtestingispresentedinFigure 2.Stylus (indenter) was pressed with

selectednormalload(10,50and100N)againstsurface of the test sample and moved withconstantspeed(4mm/s),producingthescratchofcertainwidthandlength(10mm)onthetestsample. Indenter had Rockwell shape and theconewasdiamondwithradiusof0.2mm.

Fig.2.Schematicdiagramofscratchtesting.Onsurfaceofeachmaterialunderinvestigationat least three scratches are made with a gapbetweenscratchesof atleast1 mm.Before andafter testing, both the indenter and the testsamples are degreased and cleaned withbenzene.ThewearscarwidthsonthesurfaceofthetestsamplesaremeasuredfromSEMimagesattheendoftesting.Thewearscarwidthsandthe known indenter geometry are used to

calculate the volume loss. After testing, themorphologyofthetestsampleswornsurfacesisexaminedwithSEM.3.  RESULTS ANDDISCUSSION

The results of the wear tests are presented inFigures3,4and5.Takingintoaccountsignificantdifferences in structure homogeneity of thehardfaced coatings (Fig. 1), the repeatability ofthe results, in terms of standard deviations, issatisfactory (within 16 %). Wear rate of thetestedmaterials(volumelossdividedbyscratchlength) increases with normal loading, asexpected.Thehighestwearexhibitscoating7888T. Nevertheless, wear rates for all coatings are

high,evenforabrasivewear.Thereasonforthisisprimarilyduetotheexperimentalconditions.Thetestconditionswerespecific,i.e.thespeedswere very low (4 mm/s) and the contactstressesveryhigh.Attheendoftest,thenormalstresses were between 2 and 5 GPa, whichdependsonthematerial,i.e.scratchwidthandapplied normal load. With these conditions, ahigh‐stress or even gouging abrasion can beexpected. With high‐stress abrasion, the worn

surface may exhibit varying degrees ofscratching with plastic flow of sufficientlyductile phases or fracture of brittle phases. Ingouging abrasion, the stresses are higher thanthose in high‐stress abrasion, and they areaccompaniedbylargeparticlesremovalfromthesurface,leavingdeepgrovesand/orpits[8].The relation between the wear rate and thehardnessoftestedhardfacedcoatingsisshowninFigure6.Thefirstfeatureisthattheabrasivewear rate decreases as the hardness increases,i.e.thehardestmaterial(coating5006)showedthehighestabrasivewearresistance.

7/27/2019 Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

http://slidepdf.com/reader/full/abrasive-wear-resistance-of-the-iron-and-wc-based-hardfaced-coatings-evaluated 4/5

 A.Vencl at al.,Tribology inIndustry Vol.35,No. 2(2013)123‐127 

 126

Coating 4541(v  = 4 mm/s)

0.75

1.88

0.10

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

10 50 100Normal load, N

    W   e

   a   r   r   a    t   e ,   m   m

    3     /   m

Fig. 3. Wear rates of coating 4541 for differentnormalloads.

Coating 5006(v  = 4 mm/s)

1.67

0.68

0.09

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

10 50 100Normal load, N

    W   e   a   r   r   a    t   e ,   m   m

    3     /   m

Fig. 4. Wear rates of coating 5006 for differentnormalloads.

Coating 7888 T(v  = 4 mm/s)

1.24

2.88

0.21

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

10 50 100Normal load, N

    W   e   a   r   r   a    t   e ,   m   m

    3     /   m

Fig. 5. Wear rates of coating 7888 T for differentnormalloads.

0.10 0.09

1.24

0.750.68

1.67

0.21

1.88

2.88

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

670 690 710 730 750 770 790

Hardness HV5

    W

   e   a   r   r   a    t   e ,   m   m

    3     /   m

10 N

50 N

100 N

Fig.6.Wearratevs.hardnessoftestedmaterialsfordifferentnormalloads.

For all applied loads, the relation betweenhardness and wear rate is non‐linear. It is morecurvedforhigherloads(Fig.6).Thisisconnectedwith the coatings structure and exhibited wearmechanism. Coatings 4541 and 5006 exhibitmainly ploughing abrasive wear (Fig. 7a), whilecoating7888Tdominanttypeofabrasivewearisfracture(cracking)abrasivewear(Fig.7b).

Fig.7.Thewearscarappearance(SEM)of:(a)4541and(b)7888Thardfacedcoating;50Nnormalload;

back‐scatteredelectronimages.

7/27/2019 Abrasive wear resistance of the iron- and WC-based hardfaced coatings evaluated with scratch test method

http://slidepdf.com/reader/full/abrasive-wear-resistance-of-the-iron-and-wc-based-hardfaced-coatings-evaluated 5/5

 A.Vencl at al.,Tribology inIndustry Vol.35,No. 2(2013)123‐127 

  127

4.  CONCLUSION

Scratch test offers relatively easy and quickcomparisonofdifferentmaterialsonabrasivewear.Structureoftestedcoatingsshowedinfluenceonthe dominant type of abrasive wear, whichtogether with coatings hardness determinedcoatingsabrasivewearresistance.Coatings with lower hardness showed lowerabrasive wear resistance, but the dependence(hardnessvs.wearrate)wasnon‐linear.In the case of iron‐based coatings, dominanttypeofabrasivewearwasploughingandinthecase of WC‐based coatings, it was fracture

(cracking)abrasivewear. Acknowledgement 

This work has been performed as a part ofactivities within the projects TR 34028, TR35021 and TR 35034. These projects aresupportedbytheRepublicofSerbia,MinistryofEducation, Science and TechnologicalDevelopment,whosefinancialhelpisgratefullyacknowledged.REFERENCES

[1]  A. Rac: Osnovi tribologije, Mašinski fakultetUniverzitetauBeogradu,Beograd,1991.

[2]  R.G. Bayer: Fundamentals of  wear   failures, in: ASM Handbook Volume 11, Failure Analysis and Prevention, ASM International, Metals Park,pp.901‐905,2002.

[3]  V. Lazić, M. Jovanović, D. Milosavljević, M.Mutavdžić, R. Čukić: Choosing of  the most suitabletechnology of hard  facingof mixer bladesused inasphalt bases,TribologyinIndustry,Vol.30,No.1‐2,pp.3‐10,2008.

[4]  V. Lazić, M. Mutavdžić, D. Milosavljević, S.Aleksandrović, B. Nedeljković, P. Marinković, R.Čukić:Selectionof themost appropriatetechnology of  reparatory  hard   facing of  working  parts on

universal  construction machinery , Tribology inIndustry,Vol.33,No.1,pp.18‐27,2011.

[5]  J.R. Davis, Hardfacing,weld 

cladding,

and 

dissimilar  metal   joining, in:  ASM  Handbook Volume6,Welding,Brazing,and Soldering,ASMInternational,MetalsPark,pp.789‐829,1993.

[6]  EN 14700: Welding consumables – Welding

consumables  for  hard ‐ facing, EuropeanCommitteeforStandardization,Brussels,2005.

[7]  M.Šolar,M.Bregant:Dodatnimaterijaliinjihova

upotreba kod  reparaturnog navarivanja,Zavarivanjeizavarenekonstrukcije,Vol.51,No.2,pp.71‐76,2006.

[8]  A. Vencl, N. Manić, V. Popovic, M. Mrdak:Possibility  of  the abrasive wear  resistancedetermination with scratch tester , TribologyLetters,Vol.37,No.3,pp.591‐604,2010.

[9]  B.R. Gligorijevic, A. Vencl, B.T. Katavic:Characterizationand comparisonof thecarbides

morphologies in the near  surface region of  the

single‐ and  double layer  iron‐based  hardfaced 

coatings, Scientific Bulletin of the "Politehnica"University of Timișoara, Transactions onMechanics,Vol.57(71),SpecialIssueS1,pp.15‐20,2012.

[10] OECD,ResearchGrouponWearofEngineeringMaterials, Glossary  of  Terms and  Definitions in

the Field  of  Friction, Wear  and  Lubrication:

Ttribology , Organisation for Economic Co‐operationandDevelopment,Paris,1969.

[11] A. Vencl, A. Rac, B. Ivković: Investigation of abrasive wear  resistance of   ferrous‐based coatings with scratch tester , Tribology inIndustry,Vol.29,No.3‐4,pp.13‐16,2007.

[12] A. Alil, B. Katavić, M. Ristić, D. Jovanović, M.Prokolab, S. Budimir, M. Kočić: Structural  and 

mechanical 

 properties

of 

different 

hard 

welded 

coatings  for  impact   plate  for  ventilation mill ,Welding&MaterialTesting,Vol.20,No.3,pp.7‐11,2011.