ABG5oct2010 Final

Embed Size (px)

Citation preview

  • 8/2/2019 ABG5oct2010 Final

    1/54

    Arterial Blood Gases

    Interpretation

    Amit Kocheta

    DNB Trainee

    Moderator : Dr Ausim

    Anesthesia & Critical Care DepartmentBMHRC

  • 8/2/2019 ABG5oct2010 Final

    2/54

    What is an ABG

    Arterial Blood Gas

    Drawn from artery- radial, brachial, femoral

    It is an invasive procedure.

    Caution must be taken with patient on anticoagulants.

    Arterial blood gas analysis is an essential part ofdiagnosing and managing the patients oxygenationstatus, ventilation failure and acid base balance.

  • 8/2/2019 ABG5oct2010 Final

    3/54

    When to do ABG

    1. Assess the adequacy of ventilation &oxygenation (whether the patient is on aventilator or not)

    2. Establish the diagnosis & severity ofrespiratory failure.

    3. Guide therapy O2 administration,

    mechanical ventilation, weaning4. Assess changes in acid-base homeostasis

    5. Guide treatment for acid-base abnormalities

  • 8/2/2019 ABG5oct2010 Final

    4/54

    When to do ABG..

    6. Manage patients in ICUs for :-1. Respiratory dysfunction or failure

    2. Cardiac failure

    3. Renal failure

    4. Hepatic failure

    5. Polytrauma

    6. Multiorgan failure

    7. Diabetic ketoacidosis

    8. Sepsis

    9. Burns

    10. Various type of poisoning etc.

  • 8/2/2019 ABG5oct2010 Final

    5/54

    When to do ABG..

    7. Monitor patient during :-

    Cardiopulmonary surgery

    Cardiopulmonary exercise testing

    Sleep studies

    8. Determine prognosis in critically ill patients

  • 8/2/2019 ABG5oct2010 Final

    6/54

    Explanation of Terms Hb, HCT, FiO2, PaO2, PaCO2, pH, Na+, K+,

    Ca++, Sat(%)RQ CO2 produced : O2 consumed, Set value (0.85), Can be fed

    HCO3A

    (Actual)

    Parameter for non respiratory component of acid base balance.

    HCO3S

    (Standard)

    Parameter for non respiratory component of acid base balance but

    reported after standarising at PCO2 at 40 mmHg, temp. 37degree C,

    SaO2 100%

    Base Excess(BE)

    HCO3 amount above or below normal content (0) of buffer base, (+)or (-) depends upon entered Hb value & measured pH & PCO2

    values

    Standard

    Base Excess

    HCO3 amount above (+) or below (-) normal content (0) of buffer

    base. Calculated from a standard Hb value of 6gm % & measured pH

    & PCO2 values

  • 8/2/2019 ABG5oct2010 Final

    7/54

    Explanation of TermsBB (buffer

    bases)

    Sum of all buffer anions in blood, metabolic index (Hb, HCO3,

    protein, phosphate)

    TCO2 Content HCO3 concentration + Dissolved CO2 in plasma

    O2 CT, CaO2,

    O2 Content

    Hb bound O2 + plasma dissolved O2

    A-a DO2 Difference between PO2 Alveolar & PO2 Arterial

    P50 Semi saturation pressure = Partial pressure of O2 at which Hb is 50%

    saturated

    Ca 7.4 Calcium ion conc. Computed for pH 7.4

    Li Lithium ion conc.

    LAC Lactate conc.

    GLU Glucose conc.

  • 8/2/2019 ABG5oct2010 Final

    8/54

    Known Normal & Reference Values for Calculations

    Hb (gm%) Measured/Fed/Calcul

    ated (HCT/3)HCT (%) Measured/Calculated

    (3xHb)

    FiO2 Fed

    RQ 0.85

    PaO2 (mmHg) 80 to 100

    PaCO2 (mmHg) 35 to 45

    pH 7.35 to 7.45

    HCO3 A (mEq/L) 22 to 26

    Na+ 135 to 145

    K+ 3.5 to 5.1

    Ca++ 1.12 to 1.32

    Cl- 97 to 100

    Base Excess (mEq/L) 0 +/- 2

    TCO2 content (mEq/L) ~ 27

    BB (mEq/L) 48

    O2 Sat (%) >95

    O2 CT (ml/dl) 16 to 22

    P50 (mmHg) 27

    A a DO2 (mmHg) 5 to 25

  • 8/2/2019 ABG5oct2010 Final

    9/54

  • 8/2/2019 ABG5oct2010 Final

    10/54

  • 8/2/2019 ABG5oct2010 Final

    11/54

    TerminologyCompensation

    -when the acid base imbalance exists over a period of timeSecondary changes in HCO

    3

    -or PaCO2

    Occurring in response to the primary event

    To normalize pH

    Done by the organ system which is not primarily affected respiratory compensation for metabolic disorders

    metabolic compensation for respiratory disorders

    Resultant Blood Gas States

    Uncompensated Partially Compensated Fully Compensated

    Abnormal pH Abnormal pH Normal pH

    Other values may remain abnormal

  • 8/2/2019 ABG5oct2010 Final

    12/54

    ..Compensations

    Respiratory Compensation Renal Compensation

    Characteristics Rapid, in 1-3 min, Complete Slow, in hours to days,

    Incomplete

    Mechanism in Acidosis Wash off excessive CO2 by

    increasing ventilation (as in

    metabolic acidosis)

    Secrete H+ ions out

    Reabsorb filtered HCO3 ions

    Produce of new HCO3 ions (as

    in respiratory acidosis)

    Mechanism in Alkalosis Retain CO2 by decreasing

    ventilation (as metabolic

    alkalosis)

    Excess HCO3 filtered into renal

    tubules, eliminated in urine (as

    in respiratory alkalosis)

  • 8/2/2019 ABG5oct2010 Final

    13/54

    Reading the Report Step-by-Step

  • 8/2/2019 ABG5oct2010 Final

    14/54

    Arterial, Venous or MixedSometimes, there is no way to know if the sample is arterial or venous !

    Arterial Venous

    Ask the person who

    aspirated the sample

    Blood pulsates

    Syringe plunger may rise

    on its own

    Blood does not pulsate

    Syringe plunger never rises

    on its own

    PO2 > 40 mmHg < 40 mmHg (often < 30

    mmHg)

    O2 Saturation values Sao2 > 75% SvO2 < 75%

    No. of attempts Single or

    Multiple punctures

    Single puncture, Rapid

    filling

    Multiple, Lower PO2 due to

    venous admixture

    pH Abnormal or normal,

    Not diagnostic

    Abnormal or normal,

    Not diagnostic

    PCO2 Abnormal or normal,

    Not diagnostic

    Abnormal or normal,

    Not diagnostic

    Venous admixture (CHD) Lower PaO2 values ~ Venous admixture

  • 8/2/2019 ABG5oct2010 Final

    15/54

    Reading the Report Step-by-Step

    Step 1Check if the required parameters have been correctly fed ?

    Barometric pressure

    Patients temperature Hemoglobin

    (if machine does not measure, does not calculate)

    FiO2

    Results in the report are bound to

    change, get incorrect and misleading

    if the above values are not correctly filled

  • 8/2/2019 ABG5oct2010 Final

    16/54

    Barometric pressure (PB)(Weight of Atmosphere)

    Air = O2 21%, N2 78%, Other gases 1%Composition does not change with altitude, PB

    decreases with height

    PB = sum of Pressures of all constituent gases

    P = p1 + p2 + p3 + p4

    Each gas exerts its own Partial Pressure

    p = % gas x PBp of a gas (O2 & CO2 ) will change according to

    Concentration & PB

    All machines calculate & adjust readings according to PB

  • 8/2/2019 ABG5oct2010 Final

    17/54

    Alveolar gas equation :

    PAO2 = PiO2 1.2(PaCO2)

    PiO2 = FiO2 (PB 47)

    All machines calculate PAO2 from PiO2

    (affected by FiO2 and PB )

    A-aDO2 will be affected if PB & FiO2 is not fed

    properly

    Feed PB if the machine does not measure PB on

    its own

  • 8/2/2019 ABG5oct2010 Final

    18/54

    Except in a temporary unsteady state, alveolar PO2(PAO2) is always higher than arterial PO2 (PaO2). As a

    result, whenever PAO2 decreases, PaO2 does as well.Thus, from the AG equation:

    If FIO2 and PB are constant, then as PaCO2 increases both PAO2

    and PaO2 will decrease (hypercapnia causes hypoxemia).

    If FIO2 decreases and PB and PaCO2 are constant, both PAO2and PaO2 will decrease (suffocation causes hypoxemia).

    If PB decreases (e.g., with altitude), and PaCO2 and FIO2 areconstant, both PAO2 and PaO2 will decrease (mountainclimbing causes hypoxemia).

  • 8/2/2019 ABG5oct2010 Final

    19/54

    Temperature Effect on PaCO2 & PaO2

    Machine always analyses blood at 37 C

    Hyperthermic Patient = > 37 C (Sample)

    Measured PaO2 and PaCO2 will be less than actual

    (Pressure Temperaturep decreases when subjected

    to lower relative temperature of machine and falselylower pressures get measured)

    Hypothermic Patient = < 37 C (Sample)

    Measured PaO2 and PaCO2 will be more than actual

    (Pressure Temperaturep increases when subjectedto higher relative temperature of machine and falselyhigher pressures get measured)

  • 8/2/2019 ABG5oct2010 Final

    20/54

    For each C above or below 37

    degree C

    Example = Febrile patient, 39

    degree C

    Change in PaO2 5 mmHg Measured PaO2 = 80 mmHg

    True in vivo PaO2 = 90 mmHg

    Change in PaCO2 2 mmHg Measured PaCO2 = 40 mmHg

    True PaCO2 = 44 mmHg

    Feeding correct Temperature value allows some machines to

    correct accordingly, (or Apply formulae manually)

  • 8/2/2019 ABG5oct2010 Final

    21/54

  • 8/2/2019 ABG5oct2010 Final

    22/54

    Hemoglobin

    Derived (From Hematocrit)

    Measured (Co oximeters)

    Not entered ! (Default value Wrong)

    Manually entered

    True assessment of adequacy of O2 in arterial

    blood can only be made if Hb value are entered

    SaO2 & PaO2 do not incorporate Hb content in their calculations.

    Hb affects Buffer Base values

  • 8/2/2019 ABG5oct2010 Final

    23/54

    Total Oxygen Content (CaO2 ) ml o2/dl

    Total O2 attachedto Hb Content

    Total Dissolved O2carried by Plasma

    Hb content (gm%)

    O2 carried by 1 gm Hb(ml)

    Saturation Hb

    PaO2Solubility Coefficient

    15 x 1.34 x 100 (say) = 20.10 + 100 x 0.003 = 0.30= 20.40 ml / dL

    Normal = 16 to 22 ml/dl

  • 8/2/2019 ABG5oct2010 Final

    24/54

    FiO2 Entering FiO2 is very important

    Most common mistake FiO2 not entered while the sample is fed in the

    machine

    % FiO2 written on the report later on manually

    Hb also not entered at the time of feeding samplebut told later on

    If FiO2 not fed properly

    Interpretation of PO2 affected adversely A-aDO2 values are wrongly calculated

    Interpretation of adequacy of Oxygenationaffected if Hb not fed properly

  • 8/2/2019 ABG5oct2010 Final

    25/54

    Step - 2

    Analyse the Adequacy of Oxygenation(i) Look at PaO2 and SaO2 first

    Healthy Adult Sea Level, Room Air, A-a O2 = 4 mmHg, PAO2 = 101

    PaO2 Important Low PaO2 = Surely something wrong in terms of Oxygenation

    Low PaO2 = degree of hypoxemia

    Saturation of Hb (SaO2) is dependent upon PaO2

    Never rely totally on PaO2 & SaO2 Look at other parameters

    also (CaO2)

    PaO2 (mmHg) Sao2 (%)

    Normal values (on air) >80 >95

    Mild Hypoxemia 60-79 90-94

    Moderate hypoxemia 40-59 75-89

    Severe Hypoxemia

  • 8/2/2019 ABG5oct2010 Final

    26/54

    Acceptable PaO2 Values on Room Air

    Age Group Accepable PaO2

    (mm Hg)

    Adults upto 60 yrs

    & Children

    > 80

    Newborn 40-7070 yrs > 70

    80 yrs > 60

    90 yrs > 50

    60 yrs 80 mm Hg 1mm Hg/yr

    Estimate formula of age:

    PaO2=100mmHg - (age0.33) 5mmHg

  • 8/2/2019 ABG5oct2010 Final

    27/54

    (ii) Relate PaO2 with FiO2 Classify Hypoxemia

    Inspired O2 % PaO2 mmHg

    30 >150

    40 >200

    50 >250

    80 >400

    100 >500

    FiO2 x 5 = PaO2

  • 8/2/2019 ABG5oct2010 Final

    28/54

    Hypoxemia on O2 therapy

    Uncorrected: PaO2 < 80 mm Hg

    (< expected on RA & FIO2)

    Corrected: PaO2 = 80-100 mm Hg

    (= expected on RA but < expected for FIO2)

    Excessively Corrected: PaO2 > 100 mm Hg(> expected on RA but < expected for FIO2)

    PaO2 > expected for FIO2:

    1. Error in sample/analyzer

    2. Pts O2 consumption reduced3. Pt does not req O2 therapy (if 1 & 2 NA)

  • 8/2/2019 ABG5oct2010 Final

    29/54

    (iii) Find if Oxygenation is adequate or not CaO2

    PaO2 & SaO2 may not give true estimate

    Low PaO2 but still adequate oxygen content (V/Q

    imbalance)

    Normal PaO2, Still profound hypoxemia (Anemia,

    Altered affinity of Hb for O2) Calculated SaO2 may mislead & show false normal

    results (CO, MHb)

    If no co-oximeter in the machine, SaO2 is calculated

    from PaO2

    Total Oxygen Content

    CaO2 measured directly or calculated by O2 content equation.

    CaO2 = Hb(gm%) x 1.34 x SaO2 + 0.003 x PaO2(mmHg).

    S 3 A id B di b

  • 8/2/2019 ABG5oct2010 Final

    30/54

    Step 3 : Acid Base disturbances

    Analyze pH

    pH Analysis7.35 7.45 (7.4) Normal No acid-base disorder

    Or, Compensated disorder

    < 7.35 Acidemia Uncompensated Acidosis

    (or partially compensated)

    > 7.45 Alkalemia Uncompensated Alkalosis

    (or partially compensated)

    Acidemia (pH < 7.35) Alkalemia (pH >7.45)

    Mild 7.30 7.34 7.46 7.50

    Moderate 7.20 7.29 7.51 7.54

    Severe < 7.2 > 7.55

    Incompatible to life < 6.8 > 7.8

  • 8/2/2019 ABG5oct2010 Final

    31/54

    Step 4 Analyze the Primary disorder

    Respiratory or Metabolic ?

  • 8/2/2019 ABG5oct2010 Final

    32/54

    Change Disorder Change pH Primary Disorder

    PaCO2 Respiratory

    >45 Respiratory Acidosis

    < 35 Respiratory Alkalosis

    For every 20 mmHg rises in PaCO2 = pH should fall by 0.10For every 10 mmHg fall in PaCO2 = pH should rise by 0.10

    PaCO2 = 65 (20 mm rise from 45)

    pH = 7.25 (0.10 fall from 7.35)

    PaCO2 = 25 (10 mm fall from 35)

    pH = 7.55 (0.10 rise from 7.45)

    If pH & PaCO2 move in opposite directionsPrimary defect is Respiratory.

    If pH is not moving in opposite direction as PaCO2

    Primary defect is Not Respiratory (Metabolic).

    Respiratory

  • 8/2/2019 ABG5oct2010 Final

    33/54

    Metabolic

    Change Disorder Change pH Primary

    disorder

    HCO3(base)

    Metabolic

    > 26 Metabolic

    alkalosis< 22 Metabolic

    acidosis

    If pH moves in same direction as HCO3Primary defect is Metabolic

    If pH moves in opposite direction as HCO3

    Primary defect is not Metabolic (Respiratory)

    l d l

  • 8/2/2019 ABG5oct2010 Final

    34/54

    Step 5 : Analyse and Correlate

    Compensation

    Body tries to bring pH towards normal, with time Lungs and kidneys are primary buffer response

    systems

    pH outside normal range Uncompensated orPartially compensated

    pH normal range Fully compensated (or no acid

    base disturbance)

    pH = 7.4 No acid base disturbance or mixed

    disorder

    Analyze and Correlate pH, PaCO2 and HCO3

  • 8/2/2019 ABG5oct2010 Final

    35/54

    Step-6 : Calculate the Expected

    Compensation Match it with actualFor every 10 mmHg change in PaCO2

    Disorder Change in PaCO2 Compensation (Kidney)

    Respiratory acidosis 10 mmHg Acute rise 1 mEq/L rise in HCO3

    10 mmHg Chronic rise 4 mEq/L rise in HCO3

    Respiratory alkalosis 10 mmHg Acute fall 2 mEq/L fall in HCO3

    10 mmHg Chronic fall 4 mEq/L fall in HCO3

    For every 1 mEq/L change in HCO3

    Disorder Change in HCO3 Compensation (Lungs)

    Metabolic acidosis 1 mEq/L fall 1.25 mmHg fall in PaCO2

    Metabolic alkalosis 1 mEq/L rise 0.75 mmHg rise in PaCO2

    Match the Calculated Compensation with the Actual (Report)

  • 8/2/2019 ABG5oct2010 Final

    36/54

  • 8/2/2019 ABG5oct2010 Final

    37/54

    Step 7 :

    Find out if the Disorder is Mixed ?

    (1) Check relative movement of pH PaCO2 and

    pH HCO3

    If both pairs moving & in correct directions

    Mixed disorder

    (2) Analyze compensation by Presuming Primary

    disorder as Respiratory or Metabolic

    If analysis supports no compensation Mixed

    disorder

  • 8/2/2019 ABG5oct2010 Final

    38/54

  • 8/2/2019 ABG5oct2010 Final

    39/54

  • 8/2/2019 ABG5oct2010 Final

    40/54

    Venous CO2 and its change from

    normal

    Index of Plasma HCO3

    Total CO2 = Plasma HCO3 + Dissolved CO2 in

    Plasma

    Normal = 24 30 mEq/L (27 mEq/L)

    Change in Venous CO2 from normal

    ( CO2) = 27 measured CO2

  • 8/2/2019 ABG5oct2010 Final

    41/54

    Bicarbonate GapUnmasks the co-existence of 2 metabolic disorders

    BG = AG - CO2

    BG = (Measured AG 12) (27 Measured CO2)

    Positive (+) or Elevated BG = > + 6 mEq/L

    Metabolic Alkalosis

    Bicarbonate retention as compensation for

    Respiratory Acidosis

    Negative (-) or Low BG =

  • 8/2/2019 ABG5oct2010 Final

    42/54

  • 8/2/2019 ABG5oct2010 Final

    43/54

    Conditions Invalidating or

    Modifying ABG Results

    DELAYED ANALYSIS

    Consumption of O2 & Production of CO2continues after blood drawn into syringe

    Iced Sample maintains values for 1-2 hoursUniced sample quickly becomes invalid

    PaCO2 3-10 mmHg/hour

    PaO2 at a rate related to initial value &dependant on Hb Sat

  • 8/2/2019 ABG5oct2010 Final

    44/54

    EXCESSIVE HEPARIN

    Dilutional effect on results HCO3-& PaCO2

    Syringe be emptied of heparin after flushingRisk of alteration of results with:

    1. size of syringe/needle

    2.

    vol of sample25% lower values if 1ml sample taken in 10 ml syringe(0.25 ml heparin in needle)

    Syringes must be > 50% full with blood sample

    HYPERVENTILATION OR BREATH HOLDING May lead toerroneous lab results

  • 8/2/2019 ABG5oct2010 Final

    45/54

  • 8/2/2019 ABG5oct2010 Final

    46/54

  • 8/2/2019 ABG5oct2010 Final

    47/54

    7. ? Use Nomogram to convert values at 37C topts temp

    8. Some analysers calculate values at both 37C andpts temp automatically if entered

    9. Pts temp should be mentioned while sendingsample & lab should mention whether values

    being given in report at 37 C/pts actual temp

    WBC COUNT

    0.1 ml of O2 consumed/dL of blood in 10 min inpts with N TLC

    Marked increase in pts with very high TLC/pltcounts hence imm chilling/analysis essential

  • 8/2/2019 ABG5oct2010 Final

    48/54

    TYPE OF SYRINGE

    1. pH & PCO2 values unaffected

    2. PO2 values drop more rapidly in plastic syringes(ONLY if PO2 > 400 mm Hg)

    3. Other adv of glass syringes:

    Min friction of barrel with syringe wall

    Usually no need to pull back barrel lesschance of air bubbles entering syringe

    Small air bubbles adhere to sides of plasticsyringes difficult to expel

    Though glass syringes preferred, differencesusually not of clinical significance plasticsyringes can be and continue to be used

  • 8/2/2019 ABG5oct2010 Final

    49/54

    SERIAL ABGs

    CLINICAL PROFILE SUPPORTING LAB DATA/

    INVESTIGATIONAL TOOLS

    CLINICIANS JUDGEMENT

    CORRECT INTERPRETATION

    SIMPLE DISORDER

    (DEG OF COMPENSATION)

    MIXED DISORDER

    (ORDER OF PRIMARY &

    SUBSEQUENT DISORDERS)

    SUMMARY

    OXYGENATION /VENTILATORY STATUS

  • 8/2/2019 ABG5oct2010 Final

    50/54

    pH

    N

    AcidemiaResp and/orMet Acidosis

    Alkalemia Resp and/orMet Alkalosis

    No acidemia

    /alkalemia

    Resp Acidosisand

    Met Alkalosis

    Met Acidosisand

    Resp Alkalosis

    No A-B Dis

  • 8/2/2019 ABG5oct2010 Final

    51/54

    pH

    pCO2 , HCO3

    pCO2 , HCO3 N

    Resp + Met Alkalosis

    Uncomp Resp Alkalosis

    pCO2 N, HCO3 Uncomp Met Alkalosis

    pCO2 , HCO3 Comp(F/P) Met Alkalosis

    pCO2 , HCO3 Comp(F/P) Resp Alkalosis

  • 8/2/2019 ABG5oct2010 Final

    52/54

    pH

    pCO2 , HCO3

    pCO2 , HCO3 N

    Resp + Met Acidosis

    Uncomp Resp Acidosis

    pCO2 N, HCO3 Uncomp Met Acidosis

    pCO2 , HCO3 Comp(F/P) Resp Acidosis

    pCO2 , HCO3 Comp(F/P) Met Acidosis

    Comp(F) Resp Acidosis

  • 8/2/2019 ABG5oct2010 Final

    53/54

    pH

    NorN

    pCO2 , HCO3 Comp(F) Met Alkalosis

    pCO2 N, HCO3 N N Acid Base Homeostasis

    pCO2 , HCO3 Met acidosis

    +Resp alkalosis

    Comp(F) Met Acidosis

    Comp(F) Resp Alkalosis

    Comp(F) Resp Acidosis

    Resp Acidosis+

    Met Alkalosis

  • 8/2/2019 ABG5oct2010 Final

    54/54

    Thank You