ABE Ch09 Hill

Embed Size (px)

Citation preview

  • 8/19/2019 ABE Ch09 Hill

    1/57

    1

    FACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN

    CAMPUS BRUSSEL

    OPLEIDING HANDELSINGENIEUR

    AAddvvaanncceedd BBuussiinneessss EEccoonnoommeettrriiccss 

    CChhaapptteerr 99:: 

    RReeggrreessssiioonn wwiitthh ttiimmee--sseerriieess ddaattaa:: ssttaattiioonnaarryy vvaarriiaabblleess 

    Hill, Griffiths & Lim, Principles of Econometrics, 4th edition, 2012

    (Chapter 9, p. 335 – 399)

  • 8/19/2019 ABE Ch09 Hill

    2/57

    2

    Contents

    1.  Introduction

    2.  Finite distributed lags

    3.  Serial Correlation

    4.  Other tests for serially correlated errors

    5.  Estimation with serially correlated errors

    6.  Autoregressive distributed lag models

    7.  Forecasting

    8.  Multiplier analysis

  • 8/19/2019 ABE Ch09 Hill

    3/57

    3

    9.1 Introduction

    •  When modeling relationships between variables, the nature of the data

    that have been collected has an important bearing on the appropriate

    choice of an econometric model.

    •  For time series data:

    o  Time-series observations on a given economic unit, observed over a number

    of time periods, are likely to be correlated.

    o  Time-series data have a natural ordering according to time.

    •  There is also the possible existence of dynamic relationships between

    variables.

    o  A dynamic relationship is one in which the change in a variable now has an

    impact on that same variable, or other variables, in one or more future time

    periods.

    o  These effects do not occur instantaneously but are spread, or distributed,

    over future time periods.

  • 8/19/2019 ABE Ch09 Hill

    4/57

    4

    9.1.1 Dynamic nature of relationships

     

    How to model the dynamicnature of the relationship?

    How can dynamic models be

    used for forecasting?

    •  Distributed lag model: a dependent variable is a function of current and

    past values of an explanatory variable: !" ! # "$"% $"!#% $"!$% & & & %.

    •  Autoregressive (distributed lag) model: a lagged dependent variable is

    specified as one of the explanatory variables: !" ! # "!"!#% $"%, or, e.g.

    " ! # "!"!#% $"% $"!#% $"!$%.•  Autocorrelated errors: the impact of an unpredictable shock  will be felt

    in period " and in future periods: !" ! # "$"% & '"% '" ! ("'"!#%.

  • 8/19/2019 ABE Ch09 Hill

    5/57

    5

    9.1.2 Least squares assumptions (1)

    •  Dynamic models imply correlation between and or and or

    both.

    o  When a variable is correlated with its past values, we say that it is

    autocorrelated  or serially correlated .

    •  As a consequence, the assumption MR4 is possibly violated:

    •  In a time series context, we use indexes and :

    •  Throughout this chapter, we maintain the assumption of stationarity 

    o  A stationary variable is one that is not explosive, nor trending, and nor

    wandering aimlessly without returning to its mean.

  • 8/19/2019 ABE Ch09 Hill

    6/57

  • 8/19/2019 ABE Ch09 Hill

    7/57

    7

    9.2 Finite distributed lags (1)

    •  Consider a linear model in which, after time periods, changes in no

    longer have an impact on .

    o  Note the notation change: is used to denote the coefficient of and

    is introduced to denote the intercept.

    •  This model has two uses:

    o  Forecasting: given a sample for periods , what can we say

    about period ?

    Problem: How do we use the time series of -values to forecast ?

    o Policy analysis: what is the impact on of a change in ?

  • 8/19/2019 ABE Ch09 Hill

    8/57

    8

    9.2 Finite distributed lags (2)

    Interpretation of the effects

    Assume that is increased by 1 unit and then returns to its original level.•  Impact multiplier:

    o  The immediate effect will be an increase in by units.

    •  Distributed-lag weight or -period delay multiplier:

    o  will increase by units, …, will increase by units.

    o  In period , the value of returns to its original level.

    •  We have a finite distributed lag model:

    o Distributed: the effect of a one-unit change in is distributed over thecurrent and next periods.

    o  Finite: after periods, changes in no longer have an impact on .

  • 8/19/2019 ABE Ch09 Hill

    9/57

  • 8/19/2019 ABE Ch09 Hill

    10/57

    10

    9.2.1 Finite distributed lags: assumptions

    •  In distributed lag models, both and are typically random (we do not

    set   and then observe  , they are observed together).

    •  Because the time series variables are random, we mention alternative

    assumptions to obtain unbiased OLS estimators:

    o  ’s are random and is independent of all ’s (past, current, future).

    o  Normally distributed error terms!  and tests can be used.

    •  Assumptions of the distributed lag model:

    1.  ( ).

    2.  and are stationary random variables, and is independent of all ’s.

    3. 

    4. 5. 

    6. 

  • 8/19/2019 ABE Ch09 Hill

    11/57

    11

    9.2.2 Finite distributed lags: Okun’s law (1)

    •  Okun’s Law: the change in unemployment rate ( ) from one period to

    the next depends on the rate of growth ( ) of output in the economy:

    (we expect )

    where the constant is the “normal” growth rate (rate of output

    growth needed to maintain a constant unemployment rate).

    •  We can rewrite this as:

    where , and .

    •  Changes in output are likely to have a distributed lag effect on

    unemployment:

  • 8/19/2019 ABE Ch09 Hill

    12/57

    12

    9.2.2 Finite distributed lags: Okun’s law (2)

    •  We use quarterly U.S. data on unemployment and percentage change in

    GDP from 1985Q2 to 2009Q3.

    •  Output growth is defined as:

    •  The series appear to be stationary.

  • 8/19/2019 ABE Ch09 Hill

    13/57

  • 8/19/2019 ABE Ch09 Hill

    14/57

    14

    9.2.2 Finite distributed lags: Okun’s law (4)

    Interpretation of the coefficients (holding other factors fixed):

      A 1% increase in growth rate leads to:o  (impact) a fall in unemployment rate of 0.20 in the current quarter

    o  (delay) a fall of 0.16 in the next quarter

    o  (delay) a fall of 0.07 two quarters from now

    •  The effects of a sustained increase in growth rate of 1% are:

    o  (interim) -0.367 for one quarter

    o  (interim) -0.437 for two quarters (this is also the total multiplier)

    •  We estimate that the total effect of a change in output growth is

    •  An estimate of normal growth rate: , so the

    estimated normal growth rate is 1.3% per quarter.

  • 8/19/2019 ABE Ch09 Hill

    15/57

    15

    9.3 Serial correlation

    •  When is assumption TSMR5, for likely to be

    violated, and how do we assess its validity?

    •  When a variable exhibits

    correlation over time, we say it

    is autocorrelated  or serially

    correlated .

    •  Both observable time seriesvariables (like or ) and the

    error can be autocorrelated.

    •  Questions:

    o  How do we measure

    autocorrelation?

    o  How do we test for

    autocorrelation?

  • 8/19/2019 ABE Ch09 Hill

    16/57

    16

    9.3.1 Serial correlation in output growth (1)

    •  Recall that the population correlation between two variables and is

    given by:

    •  For the Okun’s Law problem, we have:

    (Second equality holds because for stationary series)

    •  The notation is used to denote the population correlation between

    observations that are one period apart in time.

    o  This is known also as the population autocorrelation of order one.

  • 8/19/2019 ABE Ch09 Hill

    17/57

    17

    9.3.1 Serial correlation in output growth (2)

    •  The first-order sample autocorrelation for G is obtained using the

    estimates:

    ,

    •  Making the substitutions:

    •  More generally, the -th order sample autocorrelation for a series

    that gives the correlation between observations that are periods apart:

    •  In our example, verify that , , , .

  • 8/19/2019 ABE Ch09 Hill

    18/57

    18

    9.3.1 Serial correlation in output growth (3)

    •  How do we test whether an autocorrelation is significantly different

    from zero?

    •  The null hypothesis is , and )* can be estimated as +*.

    •  The following result holds in large samples when , ' is true:

    -  ! +* ! '

    ! #./ !" 

    / +* # 0 "'% #% 

    •  Example for the series 1 (with 2 ! '&'( and /  ! )*):

    - # !" 

    )* $ '&+)+ ! +&*)  - $ !" 

    )* $ '&+## ! +&', - - !

    " )* $ '(+ ! #&($  - + !

    " )* $ '&$'' ! #&)* 

    o  We reject the hypotheses , !  . )"  ! ' and , !  . )# ! ' and conclude that 1 

    exhibits significant serial correlation at lags one and two.

    •  95% confidence bounds on +* are #&)/." 

    /  and!#&)/." 

    / .

  • 8/19/2019 ABE Ch09 Hill

    19/57

    19

    9.3.1 Serial correlation in output growth (4)

    •  The correlogram or sample autocorrelation function is the sequence

    of autocorrelations +#% +$% +-% & & & 

    •  It shows the correlation between observations that are one period apart,

    two periods apart, three periods apart, and so on.

    •  Bounds: %#&)/." 

    /  ! %'&$'$.•   Ljung-Box test  (in gretl):

    3&4 ! / "/  & $%4"

    *$"

    +#*"/  ! *% # 5

    #4!6

     is the maximal lag in the 3& statistic and 6 is the number ofparameters in the model.

    In case there is no model,6 ! '.

  • 8/19/2019 ABE Ch09 Hill

    20/57

    20

    9.3.1 Serial correlation in output growth (5)

    Partial autocorrelations

    • Partial autocorrelations are used to measure the degree of associationbetween and , when the effects of other time lags

    ( ) – are removed

    •  The partial autocorrelation coefficient of order ( ) can be calculated

    as the estimated coefficient in:

    •  Note: the first partial autocorrelation always equals the first

    autocorrelation

    •  We use the same critical values to assess if the partial

    autocorrelations are significantly different from zero

    •  Partial autocorrelations are plotted in a partial autocorrelation function

    or PACF.

  • 8/19/2019 ABE Ch09 Hill

    21/57

    21

    9.3.2 Serially correlated errors (1)

    •  Consider a model for a Phillips Curve: 708 " ! 7 08 9 

    "   ! : "; " ! ; "!#%  o  708 9 "  are inflationary expectations for period " (assumed constant)o  is an unknown positive parameter

    o  Falling levels of unemployment (; " ! ; "!" <  ') reflect excess demand forlabor! wages ! ! prices ! 

    o  Rising levels of unemployment (; "

    !; "!" =  ') reflect excess supply of

    labor! wages " ! prices " 

    •  We (initially) assume that inflationary expectations (708 9 " ) are constantover time (> # ! 708 

    9 " ), set > $ ! !: , and add an error term:

    708 " ! > # & > $?; " & '" 

    •  To determine if the errors are serially correlated, we compute the leastsquares residuals:

    0'"  ! 70 8 " ! @# ! @$?; " 

  • 8/19/2019 ABE Ch09 Hill

    22/57

    22

    9.3.2 Serially correlated errors (2)

    •  We use quarterly Australian data from 1987Q1 to 2009Q3.

    • We assume the series are stationary.

    Price inflation Change in unemployment rate

  • 8/19/2019 ABE Ch09 Hill

    23/57

    23

    9.3.2 Serially correlated errors (3)

    •  The *-th order autocorrelationfor the residuals can be written

    as (alternative formula):

    +*  !

    / #"!*

    0'"0'"!*

    #"!* 0'$"!

    *

     

    •  The least squares equation is:

     ! 708 "12%

    ! '&,,,/"'&'/(*%

    ! '&($,)"'&$$)+%

    ?;  

    • The autocorrelation values at thefirst lags are:

    +# ! '&(+), +$ ! '&+(/ 

    •  Correlogram:

    !"

    !#$%

     #

     #$%

     "

     # ' ( ) * "# "'

    +,-

    ./0123,+ 456

    7! "$8)9:;#$%

    !"

    !#$%

     #

     #$%

     "

     # ' ( ) * "# "'

    +,-

    ./0123,+

  • 8/19/2019 ABE Ch09 Hill

    24/57

    24

    9.4.1 Other tests for serially correlated errors: LM (1)

    •  Assume a model !" ! > # & > $$" & '" 

    • We want to test whether errors that are one period apart are correlated,that is whether or not 345"'"% '"!#% is equal to zero.

    •  If we assume that '" ! )'"!# & A ", we can write the model as:" ! > # & > $$" & )'"!# & A " and test , ' . ) ! '.

    •  First approach: if '"!

    # would be observable, we could use a "-test or 8 -test for this null hypothesis.

    o  Replace '"!" by the lagged LS residual 0'"!" and perform the test.o  We need a value for 0'! ! (1) delete the first observation or (2) set 0'! ! '.

    •  Phillips example:

    o  Solution (1): " ! /&$#), 8   ! -*&/,, 657892 ! '&''' ! reject , ! . )  ! ' o  Solution (2): " ! /&$'$, 8   ! -*&+,, 657892 ! '&''' ! reject , ! . )  ! ' 

  • 8/19/2019 ABE Ch09 Hill

    25/57

    25

    9.4.1 Other tests for serially correlated errors: LM (2)

    •  Second approach: use the goodness-of-fit statistic from an auxiliary

    regression.

    o  Starting from the equation !" ! > " & > #$" & )0'"!" & A " and noting that!" !  @" & @#$" & 0'", we finally get: 0'" !  : " & : #$" & )0'"!" & A " 

    o  If this regression has explanatory power, it will come from 0'"!".o  If , ! .  )  ! ' is true, then CD  ! /  $E# # 5#%"& o  Again, we need a value for 0'! ! (3) discard or (4) set 0'! ! '.

    •  Phillips example (note that 5"'&)(:#% ! -&*+):

    o  Solution (3): CD  ! "/  ! #% $ E# ! *) $ '&-#'$ ! $,&/# ! reject , ! o  Solution (4): CD  ! /  $E# ! )' $ '&-'// ! $,&() ! reject , ! 

    •  For a four-period lag (note that 5"'&)(:+% ! )&+)):

    o  Solution (5): CD   ! "/  ! +% $ E# ! */ $ '&-**$ ! --&+ ! reject , ! o  Solution (6): CD  ! /  $E# ! )' $ '&+',( ! -/&, ! reject , ! 

  • 8/19/2019 ABE Ch09 Hill

    26/57

    26

    9.4.2 Other tests for serially correlated errors: DW (1)

    •  We want to test , ' . ) ! ' versus , # . ) = ' (positive autocorrelation)in the AR(1) error model , with .

    •  Estimate the regression by OLS and save 0'" !  !" ! 0!".

    •  The DW test statistic is: F !

    / #"$#

    "0'"!0'"!"%#/ #

    "$"0'#"

    ' $ ! $+# 

    • Tables provide critical values FC and F;  o  If F = F; , do not reject , ! (no first-order autocorrelation).

    o  If F < FC, conclude , " (positive first-order autocorrelation).

    o  If FC < F < F; , the test is inconclusive.

    •  Note: small values for F imply that 0'" is close to 0'"!# ! reject , !!

    Values for F close to 2 imply no first-order autocorrelation.•  DW is used less frequently today (because of availability in software

    and problems when equation contains lagged dependent variable).

  • 8/19/2019 ABE Ch09 Hill

    27/57

    27

    9.5 Estimation with serially correlated errors

    •  If the assumption 345"'"% 'G% ! ' is violated, we want to know:

    o  What are the implications for OLS?

    o  How do overcome the negative consequences?

    •  Three estimation procedures are considered:

    o  Least squares estimation

    o  An estimation procedure that is relevant when the errors are assumed to

    follow a first-order autoregressive model '"  !  )'"!" &  A " o  A general estimation strategy for models with serially correlated errors

    •  We will encounter models with a lagged dependent variable, such as:

    " ! H  & I#!"!# & H '$" & H #$"!# & A ", which violate TSMR2.o  We introduce an extra assumption “2” (TSMR2A) for models with a lagged

    dependent variable:In the regression model !" ! > " & > #$"# & ( ( ( & > J $"J  & A ", where some of the$"* may be lagged values of !, A " is uncorrelated with all $"* and their past values.

    o  LS estimator is then no longer unbiased, but remains consistent

  • 8/19/2019 ABE Ch09 Hill

    28/57

  • 8/19/2019 ABE Ch09 Hill

    29/57

    29

    9.5.2 Estimating an AR(1) error model (1)

    •  Assume a model !" ! > # & > $$" & '", with '" ! )'"!# & A "  [KE"#%].

    o Properties of the random errors A " are:9 "A "% ! ', 57="A "% ! L#A  and 345"A "% A G% ! ' for " )! G.

    o  We also assume that!# < )

  • 8/19/2019 ABE Ch09 Hill

    30/57

    30

    9.5.2 Estimating an AR(1) error model (2)

    •  Analogously to the sample correlogram +#% +$% & & & we can define apopulation correlogram as )#% )$% & & & 

    o  For an AR(1) model, the population correlogram is )% )$% )-% & & & 

    o  Since!# < )

  • 8/19/2019 ABE Ch09 Hill

    31/57

    31

    9.5.2 Estimating an AR(1) error model (3)

    •  Assume a model !" ! > # & > $$" & '", with AR(1) error representation'" ! )'"

    !# & A ".

    •  We can write this model as

    " ! > #"# ! )% & > $$" & )!"!# ! )> $$"!# & A " •  Minimizing M A  !

    #/ "!$ A 

    $"  (sum of squares of uncorrelated errors A ")

    yields an estimator that is best and whose standard errors are correct in

    large samples.•  Properties

    o  Nonlinear model in the parameters (parameter for $"!" is!)> #)! requires nonlinear estimation (numerical methods).

    o  The model contains lagged ! and $ as RHS variables, so we drop the firstobservation (sum starts at ).

    o  Generalized least squares estimation can be used (Cochran-Orcutt procedure

    and Prais-Winsten estimator).

  • 8/19/2019 ABE Ch09 Hill

    32/57

    32

    9.5.2 Estimating an AR(1) error model (4)

    •  Phillips curve (NLS estimation)

     ! 70 8 %'( ! '&,/')%!&"#)* ! '&/)++%!)+, ?;   '" ! '&((,%!&!,! '"!" & A " 

  • 8/19/2019 ABE Ch09 Hill

    33/57

    33

    9.5.2 Estimating an AR(1) error model: CO

    •  We can write the model as:

    (1)

    •  First problem: is unknown (and needed to transform the variables)

    •  We know that

    (2)

    •  The Cochrane-Orcutt estimation procedure is then:

    o  In (2), replace and with OLS estimates and and obtain an estimate

    for .

    o  Use this estimate in (1) to transform the variables and obtain newestimates and for and .

    o  On convergence, we obtain the NLS estimator.

  • 8/19/2019 ABE Ch09 Hill

    34/57

  • 8/19/2019 ABE Ch09 Hill

    35/57

    35

    9.5.2 Estimating an AR(1) error model: example

    Cochrane-Orcutt estimation Prais-Winsten estimation

  • 8/19/2019 ABE Ch09 Hill

    36/57

    36

    9.5.3 Estimating a more general model

    •  We wrote the AR(1) error model as:

    (1) " ! > #"# ! )% & > $$" & )!"!# ! )> $$"!# & A " •  Consider the following autoregressive distributed lag model:

    (2) " ! H  & H '$" & H #$"!# & I#!"!# & A " 

    o  We have the same variables, and one extra parameter (4 instead of 3)

    o  If A " have the right properties (zero mean, constant variance, uncorrelated),the model can be estimated by OLS (in large samples)

    •  Model (2) equals model (1) if , ' . H #  ! !I#H ' is true.o  We use a Wald test statistic to test this hypothesis (see gretl).

  • 8/19/2019 ABE Ch09 Hill

    37/57

    37

    9.5.3 Estimating a more general model: example (1)

    •  Estimating the more general model using the data for the Phillips curve

    example yields:

     ! 708 ""12%

    ! '&---/"'&'*))%

    & '&(()-"'&')'*%

    708 "!# ! '&/**$"'&$+))%

    ?; " & '&-$''"'&$(,(%

    ?; "!# 

    •  The equivalent AR(1) estimates are (see NLS solution):

    o  0H  !   0> ""#

    ! 0)% ! '&,/')

    $"#

    !'&((,+% ! '&--/*  (compare with 0.3336)

    o  0I" ! 0) ! '&((,+  (compare with 0.5593)

    o  0H ! !   0> # ! !'&/)++  (compare with -0.6882)o  0H " ! !0) 0> # ! !'&((,+ $ "!'&/)++% ! '&-*,#  (compare with 0.3200)

    •  Test the restriction , ' . H #  ! !I#H ': 5$"#% ! '#$, with  B-value 0.738.We cannot reject , ' and conclude that the AR(1) model is not toorestrictive.

  • 8/19/2019 ABE Ch09 Hill

    38/57

    38

    9.5.3 Estimating a more general model: example (2)

    •  The original economic model for the Phillips Curve was:

    708 " ! 708 

    "  ! : "; " !; "!#% •  In the more general model, we now have:

    o  An estimate of the model for inflationary expectations:

    70 8 9 "   ! '&---/ & '&(()-70 8 "!" 

    o  An estimate of the effect of unemployment:

    !'&/**$"; " !; "!"% & '&-$''"; "!"!; "!#% •  The coefficient of ?; "!# is not significantly different from zero.

     ! 708 ""12%

    ! '&-(+*"'&'*,/%

    & '&($*$"'&'*(#%

    708 "!# ! '&+)')"')$#%

    ?; " 

    o  Inflationary expectations are now 708 9 "   ! '&-(+* & '&($*$708 "!#,o  A 1% rise in unemployment rate leads to an approximate 0.5 fall in inflation

    rate.

  • 8/19/2019 ABE Ch09 Hill

    39/57

    39

    9.6 Autoregressive Distributed Lag Models (1)

    •  An autoregressive distributed lag (ARDL) model is one that contains

    both lagged $"’s and lagged !"’s.

    •  ARDL( , N ) = ARDL with  B lags in ! and N  lags in $:

    •  Two examples:

    o  ARDL(1, 1):  ! 708 " ! '&---/ & '&(()-708 "!" ! '&/**$?; " & '&-$''?; "!" o  ARDL(1, 0):  ! 708 " ! '&-(+* & '&($*$708 "!"! '&+)')?; " 

    •  An ARDL model can be transformed into one with only lagged $’swhich go back into the infinite past (infinite DL model):

  • 8/19/2019 ABE Ch09 Hill

    40/57

    40

    9.6 Autoregressive Distributed Lag Models (2)

    •  OLS is an appropriate estimation technique under the assumption

    TSMR1, TSMR2A, TSMR3-5.

    •  How do we choose  B and N ? There are 4 possible criteria:

    o  Has serial correlation in the errors been eliminated? If not, OLS will be

    biased in small and large samples.

    o  Are the signs and magnitudes of the estimates consistent with our

    expectations from economic theory?

    o  Are the estimates significantly different from zero, particularly those at the

    longest lags?

    o  What values for  B and N  minimize information criteria like AIC and SC?

    K7O  ! 8<

    $MM9 

    /  %&

     $J 

    /   MO  ! 8<

    $MM9 

    /  %&

     J   8

  • 8/19/2019 ABE Ch09 Hill

    41/57

    41

    9.6.1 The Phillips curve (1)

    Example: Phillips curve

    • 

    Consider the previously estimated ARDL(1,0) model (see slide 38): ! 708 "

    "12%! '&-(+*

    "'&'*,/%& '&($*$

    "'&'*(#%708 "!# ! '&+)')

    "')$#%?; ", obs = 90

    -values for LM test for

    autocorrelation

    Correlogram for the residuals from

    ARDL(1,0) model

  • 8/19/2019 ABE Ch09 Hill

    42/57

    42

    9.6.1 The Phillips curve (2)

    •  For an ARDL(4,0) version of the model (obs = 87):

     ! 708 "%'(& ! '''#%!&!,-.& &'&$-(+%!&"!"/&708 "!" & '$#-%!&"!.-&708 "!# & '/,,%!&"!*!&708 "!.

    &'&$*#)%!&"!")&

    708 "!) ! '&,)'$%!&"--*&

    ?; " 

    •  Inflationary expectations are given by:

    708 9 "   ! '''# &'&$-(+708 "!" & '$#-708 "

    !#

    &'/,,708 "!. & '&$*#)708 "!) 

  • 8/19/2019 ABE Ch09 Hill

    43/57

    43

    9.6.2 Okun’s Law

    Example: Okun’ Law

    • 

    Recall the model for Okun’s Law (obs = 96), see slide 13:&?; "%'(&

    ! '&(*-/%!&!)+#&

    ! '&$'$'%!&!.#)&

    1" ! '/(-%!&!..*&

    1"!" ! '&',''%!&!.."&

    1"!# 

    •  Now consider this ARDL(1,1) version:&?; ""12%

    ! '&-,*'"'&'(,*%

    & '&-('#"'&'*+/%

    ?; "!# ! '*+#"'&'-',%

    1" ! '&'))$"'&'-/*%

    1"!# 

  • 8/19/2019 ABE Ch09 Hill

    44/57

    44

    9.6.3 Autoregressive models

    •  An autoregressive model of order  B, denoted AR( B), is given by:

    •  Consider an AR(2) model for growth in real GDP:

    '1"%'(&

    ! '&+/(,%!&")..&

    & '&-,,'%!&"!!!&

    1"!" & '&$+/$%!&"!#,&

    1"!#  (obs = 96)

    •  Question: consider the correlogram of 1". What do you observe?

  • 8/19/2019 ABE Ch09 Hill

    45/57

  • 8/19/2019 ABE Ch09 Hill

    46/57

    46

    9.7.1 Forecasting with an AR model (2)

    •  The forecast error at time /  & #, /  & $ and /  & -:

    Q#   ! 1/  !  01/  ! "H !

    0H % & "I# !

     0I#%1/  & "I$ !

     0I$%1/ !# & A / ! A /   

    Q$   ! I#"1/  !   01/ % & A / &$ ! I#Q# & A / &$! I#A /  & A / &$  

    Q-   ! I#Q$ & I$Q# & A / &-! "I$# & I$%A /  & I#A / &$ & A / &- 

    •  Because the A "’s are uncorrelated with constant variance L$A , we have:

    L$#  ! 57="Q#% ! L$A 

    L$$  ! 57="Q$% ! L$A "# & I

    $#%

    L$-  ! 57="Q-% ! L$A ""I

    $# & I$%

    $ & I$# & #% 

  • 8/19/2019 ABE Ch09 Hill

    47/57

    47

    9.7.2 Forecasting with an ARDL model

    •  Consider forecasting ; " using the Okun’s Law ARDL(1,1):

    ?; " ! H  &  I#?; "!# & H '1" & H #1"!# & A " •  The value of ?;  in the first post-sample quarter is:

    ?; /  ! H  & I#?; /  & H '1/  & H #1/  & A /  

    o  We need a value for 1/ 0" (e.g. independent forecasts, what-if questions)

    • Now consider the change in unemployment

    ; /  ! ; /   ! H  & I#"; /  ! ; / !#% & H '1/  & H #1/  & A /  Rearranging:

    ; /    ! H  & "I# & #%; /  ! I#; / !# & H '1/  & H #1/  & A / ! H  & I

    /  & I

    &$; 

    / !# & H 

    '1

    /  & H 

    #1

    /  & A 

     

    which is an ARDL(2,1) model for the level of unemployment.

  • 8/19/2019 ABE Ch09 Hill

    48/57

    48

    9.7.3 Exponential smoothing (1)

    •  Another popular model used for predicting the future value of a variable

    on the basis of its history is the exponential smoothing (ES) method.

    •  Like forecasting with an AR model, forecasting using ES does notutilize information from any other variable.

    •  One possible forecasting method is to use average past information, e.g.:

    o  This is an example of a simple (equally-weighted) moving average modelwith .

    •  Consider a form in which the weights decline exponentially as the

    observations get older:

    o  We assume that .

    o  Also, it can be shown that the weights sum to one: .

  • 8/19/2019 ABE Ch09 Hill

    49/57

    49

    9.7.3 Exponential smoothing (2)

    •  For forecasting, an infinite sum is not convenient. Recognizing that:

    we can simplify to: .

    o  The next period forecast is a weighted average of the forecast for the current

    period and the actual realized value in the current period.

    •  The value of can reflect one’s judgment about the relative weight of

    current information.

    o  It can be estimated from historical information by obtaining within-sample

    forecasts:

    , for

    o  Next, choose that minimizes the sum of squares of the one-step forecasterrors:

    .

  • 8/19/2019 ABE Ch09 Hill

    50/57

    50

    9.7.3 Exponential smoothing (3)

    •  Example: exponential smoothing forecasts for GDP growth

    •  The forecasts for 2009Q4 from each value of are:

    o  :

    o  :

    9 8 M l i li l i (1)

  • 8/19/2019 ABE Ch09 Hill

    51/57

    51

    9.8 Multiplier analysis (1)

    •  Multiplier analysis refers to the effect, and the timing of the effect, of a

    change in one variable on the outcome of another variable

    •  Let’s find multipliers for an ARDL( ,N ) model of the form:

    •  We can transform this into an infinite distributed lag model:

    •  The multipliers are defined as:

    o  s-period delay multiplier:

    o  s-period interim multiplier:

    o Total multiplier:

    9 8 M l i li l i (2)

  • 8/19/2019 ABE Ch09 Hill

    52/57

    52

    9.8 Multiplier analysis (2)

    •  The lag operator is defined as: or, in general

    •  Now rewrite our model as:

    •  Rearranging terms:

    •  Okun’s Law example: the model

    ?; " ! H  &  I#?; "!# & H '1" & H #1"!# & A " 

    can be rewritten as:

    "# ! I#C%?; "  !  H  & "H ' &  H #C%1" & A " 

    9 8 M lti li l i (3)

  • 8/19/2019 ABE Ch09 Hill

    53/57

    53

    9.8 Multiplier analysis (3)

    •  Define the inverse of as such that:

    •  Then we have:

    ?; " ! "#! I#C%!#H  & "# ! I#C%!#"H ' & H #C%1" & "# ! I#C%!#A " •  Equating this with the infinite distributed lag representation:

    •  For these equations to be identical, it must be true that:

    9 8 M lti li l i (4)

  • 8/19/2019 ABE Ch09 Hill

    54/57

    54

    9.8 Multiplier analysis (4)

    •  Multiply both sides of equation (1) by : .

    •  The lag of a constant is the same constant: .

    •  Now we have and .

    •  Multiply both sides of equation (2) by :

    •  Rewrite equation (2) as:

    •  Equating coefficients of like powers in yields: , ,

    , , and so on.

    9 8 M lti li l i (5)

  • 8/19/2019 ABE Ch09 Hill

    55/57

    55

    9.8 Multiplier analysis (5)

    •  We can now find the ’s using the recursive equations:

    •  You can – more easily – start from the equivalent of equation (4) which,

    in its general form, is:

    o  Given the values and for your ARDL model, you need to multiply out

    the above expression, and then equate coefficients of like powers in the lag

    operator.

    •  Reconsider the Okun’s Law model:

    ?; " ! '&-,*' & '&-('#?; "!# ! '*+#1" ! '&'))$1"!# 

    9 8 M lti li l i (6)

  • 8/19/2019 ABE Ch09 Hill

    56/57

    56

    9.8 Multiplier analysis (6)

    •  The impact and delay multipliers for the first four quarters are:

    9 8 M lti li l i (7)

  • 8/19/2019 ABE Ch09 Hill

    57/57

    9.8 Multiplier analysis (7)

    •  We can estimate the total multiplier given by and the normal

    growth rate that is needed to maintain a constant rate of unemployment

    by .

    •  We can show that:

    •  An estimate for is given by:

    •  Therefore, normal growth rate is: