36
Silicon Thin Film Solar Silicon Thin Film Solar Cells: Potential & Cells: Potential & Challenges" Challenges" Abdelilah SLAOUI Abdelilah SLAOUI Institut d’Electronique du Solide et des Systèmes InESS CNRS – Univ. Strasbourg Strasbourg, France ECOLE POL YTECHNIQUE L P I C M UMR 7647 Pere Roca i Caboroccas

Abdelilah SLAOUI

Embed Size (px)

DESCRIPTION

renewable energy

Citation preview

Page 1: Abdelilah SLAOUI

Silicon Thin Film Solar Silicon Thin Film Solar Cells: Potential & Cells: Potential &

Challenges"Challenges"

Abdelilah SLAOUIAbdelilah SLAOUIInstitut d’Electronique du Solide et des Systèmes InESS

CNRS – Univ. StrasbourgStrasbourg, France

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647Pere Roca i Caboroccas

Page 2: Abdelilah SLAOUI

… more than 300 publications

Since 1975 …

InESS (PHASE) active in PVInESS (PHASE) active in PV

Page 3: Abdelilah SLAOUI

PVInESS

1) High efficiency cells on mc-Si & ribbons (< 100µm)

2) TF-Si cells on foreign substrates

4) Polymer based organic cells (+LIPHT)

3) Advanced concepts(QDs,

plasmonics, RE-TCOs)

contactemetteur

basecontact

substrat

Bulk Si : Eg=1.1 eV

QD cell 1 : Eg=1.5 eV

QD cell 2 : Eg=2 eV

Photovoltaic research at Photovoltaic research at InESSInESS

Page 4: Abdelilah SLAOUI

OutlineOutline

Thin Film Solar Cells Market

Silicon thin film technologies: Polymorphous Si/µc-Si

Polycrystalline Si * Direct deposition approach* Seed layer approach

Si nanostructures (Si-NWs, Si-nps)

Future of TF-Si based technologies

Page 5: Abdelilah SLAOUI

Photovoltaic Techn.in 2009: Market sharesPhotovoltaic Techn.in 2009: Market shares

Source: Paula Mints, Navigant Consulting

• Progress in PV modules production• Si wafer based PV modules still dominant: 84% in 2009• Schipments of TFs ~14% in 2008 & 16% in 2009

Page 6: Abdelilah SLAOUI

Learning Curve for PV modulesLearning Curve for PV modulesHistorical and Projected Experience Curve for PV Modules

Source: GreenTech/Prometheus

Page 7: Abdelilah SLAOUI

a-Si, a-Si, µc-Si, µc-Si, TF c-Si TF c-Siamorphous, microcrystalline, amorphous, microcrystalline, CrystallineCrystalline

TF Silicon basedTF Silicon based ModulesModules

polymorphous polycrystalline

Page 8: Abdelilah SLAOUI

e-

4

Pumping

RF electrode

Plasma

Substrate

SiH4

PH3

GeH4

H2

TMB

Hydrogenated amorphous Silicon (a-Si:H) at Ts < 250°C

Layers deposited from SiHx radicals

- Most widely-used deposition method – PECVD- Strong degradation of efficiency unstable Si-H bonding

Low Ts ~ 200 °CScale up demonstrated

From Amorphous to Polymorphous SiFrom Amorphous to Polymorphous Si

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 9: Abdelilah SLAOUI

Plasma-formed nanocrystals/clusters contribute to deposition polymorphous silicon(pm-Si:H)

4 nm

Nanostructured material Silicon nanocrystals

in an amorphous matrix

Medium Range OrderImproved transport properties

and stability

From Amorphous to Polymorphous SiFrom Amorphous to Polymorphous Si

100 cm2

mini-module

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 10: Abdelilah SLAOUI

400 500 600 700 800 900 10000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Rép

onse

Spe

ctra

le

Longueur d'onde (nm)

LitD4_C

µc-Si:H PIN solar cells

Jsc = 24.5 mA/cm2

FF Voc Jsc (%)67.3 0.520 V 24.5 mA/cm2 8.6%

Towards Micromorph Si solar cellsTowards Micromorph Si solar cells

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

pm-Si:H

Potential micromorph =15%

µc-Si

Page 11: Abdelilah SLAOUI

-Growth from nanocrystals leading to unusually large crystalline domains- Manifests as epitaxy or very-large grain fraction

Si

Si

Towards high efficiency solar cells through Low Pressure Plasma Processes

E.V. Johnson et.al. Appl. Phys. Lett. 92 (2008) 103108

From polymorphous to Crystalline-SiFrom polymorphous to Crystalline-Si

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 12: Abdelilah SLAOUI

~1 µm thick c-Si film at

LT

c-Si transferred onto a PI film (or on a metal foil)

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 13: Abdelilah SLAOUI

OutlineOutline

Thin Film Solar Cells Market

Silicon thin film technologies: Polymorphous Si

Polycrystalline Si * Direct deposition approach* Seed layer approach

Si nanostructures (Si-NWs, Si-QDs)

Future of TF-Si based technologies

Page 14: Abdelilah SLAOUI

TF-TF- Crystalline Crystalline SSii solar cells solar cells ??Potential: 2-3 µm Si to reach reasonable efficiency Similar technology than bulk Si No hazardous nor rare elements

ChallengesFast deposition/formation High quality material (Leff >> W)

Good surface passivationEfficient light confinment

F. Llopis, I. Tobıas, SOLMAT 87, (2005), pp.481-492.

Page 15: Abdelilah SLAOUI

• HT-CVD at T>900°C• HT substrates : Alumina, SiSiC, SiN, mullite• High Dep. Rate ~1-5µm/min

5s 120s

10µm

15s

30 sec 60 sec 180 sec

Polycrystalline Si by Direct CVDPolycrystalline Si by Direct CVD

Page 16: Abdelilah SLAOUI

1

3

2

4

pppp++-Si//-Si//FoxFox/ADS09/ADS09

A. Slaoui, et al., SOLMAT, 71/2, 245 (2001)

• small grains large density of GBs many defects• large distribution depletion of grains• Preferentiel grains orientation (110)

Enlarging grains CVD-OVL, seed layer approachNeutralizing defects TREBLE, hydrogenation

CVD @1200°C

Polycrystalline Si by Diect CVD Polycrystalline Si by Diect CVD

Page 17: Abdelilah SLAOUI

A.Focsa, A. Slaoui et al., Renewable Energy 33 (2008) 267–272

Bare mullite

Mullite + PSG

Mullite + BSG

CVD-OLL CVD-OLL Si deposition on Si deposition on Flowable oxidesFlowable oxides (DC) (DC) increased adatom mobility reduce nucleation density

EU-LATECS project: IMEC, Dow-Corning, FhgISE, InESS

Polycrystalline Si by CVD-OLLPolycrystalline Si by CVD-OLL

Page 18: Abdelilah SLAOUI

substrate

Si Seed layer

Si Absorbing layerAluminium induced Crys. Zone (lamps) melting induced RxLaser induced Crys.

VPE / SPE

contact

emetteur

basecontact

substrat

Si < 2µm

BS Glass, Ceramics Glass, HT GlassAlumina, Mullite, SiSiC, Metal foils

Polycrystalline Si: Seed Layer ApproachPolycrystalline Si: Seed Layer Approach

Page 19: Abdelilah SLAOUI

before anneal anneal 5min / 500°C

anneal 10min / 500°C anneal 60min / 500°C

Source: Nast et al.

Polycrystalline Si by AICPolycrystalline Si by AIC

E. Pihan , A. Slaoui, Thin Solid Films 511 – 512 (2006) 15 – 20

Aluminum Induced Crystalization of a-SiAluminum Induced Crystalization of a-Si

Page 20: Abdelilah SLAOUI

Glass

50 µm

Fox/Silicon

Fox/Mullite

Fox/Alumina

th-SiO2

Poly-Si by AIC vs substrate

E. Pihan et A. Slaoui., J. Crystal Growth 305, 2007, pp. 88-98

0

20

40

60

80

100

0 50 100 150 200 250 300 350cr

ysta

llize

d fr

actio

n (%

)

annealing time (min)

500°C 475°C

450°C

AIC poly-Si layer on glass-ceramic substrate

Growth Kinetics

Page 21: Abdelilah SLAOUI

EBSD analysis: grains size &

grains orientation

Defect analysis using EBSD Technique

475°C/3h

black lines→high anglered lines → Σ3 twingreen lines → Σ9 twin

Polycrystalline Si by AIC on Glass CeramicsPolycrystalline Si by AIC on Glass Ceramics

ANR project - Polysiverre: InESS, Corning, TOTAL, AET, LPICM, INL, EMSE

Page 22: Abdelilah SLAOUI

P. Pathi/A. Slaoui., Applied Physics A, 97 (2009) 45.A. Pathi/A. Slaoui, 24th European PVSEC 2009, 2533.

• Metal (FeNi) as a back contact• development of a conducting barrier layer against metallic imp.

ANR project - CRISILAL: CEA, InESS, ArcelorMital, AnealSys

CSL boundaries

Polycrystalline Si by AIC on Metal FoilsPolycrystalline Si by AIC on Metal Foils

Page 23: Abdelilah SLAOUI

Homojunction - Mesa

Emitter n+

Lcol

Ln

• large charge collection high Isc• large SCR low Voc

ITO

substrate AIC layer (p+ / n+)

Absorber layer (p / n)

Base contactsEmitter contacts

a-Si

Heterojunction - IDC

• Higher Voc• Lower series resistance

AIC + epi-CVD (2.1µm)Voc ~ 450-530 mV

Efficiency ~ 8 – 10%Limited by intragrains defects

O. Tuzun , A. Slaoui et al. , 23 EUPVSECSOLMAT 2010, in press

substrate

AIC layer (p+)

BSF layer (p+)

Absorber layer (p)

Base contactEmitter contacts

Emitter (n+)SiNx

Polycrystalline Si solar cells by AICPolycrystalline Si solar cells by AIC

Page 24: Abdelilah SLAOUI

110nm Si layer experiments

Seed layer by LICEpi-layer

Glass substrate

EU project -HIGH-Ef: IPJ, Horiba, CSG, Bookam, EMPA, InESSANR project -SiLaSol: InESS, ArcelorMital, CEA, Excico, IREPA-laser

anneal

Polycrystalline Si by LICPolycrystalline Si by LICLaser Induced Crystalization of a-SiLaser Induced Crystalization of a-Si

445nm Si layer

Page 25: Abdelilah SLAOUI

Sample

Ar, O2

Ellipsoidal reflector

Linear halogen lamp

CCD-camera

Array of halogen lamps

Si by CVD + Zone Melting recrystallization

Elongated grainsSize: 1-20 mm 11,5% with 10 µm

Si 15,4% with 20 µm Si

0,0 0,1 0,2 0,3 0,4 0,5 0,60

10

20

30pc-Si on mullite substrate

after ZMR

Curre

nt d

ensit

y [m

A/cm

²]

Voltage (V)

S. Bourdais, S. Reber, A. Slaoui, 16th EU-PVSEC, (Glasgow, Ecosse, 2000) p. 1492

no ZMR

Polycrystalline Si by ZMRPolycrystalline Si by ZMR

EU project -COMPOSIT: ISE, IMEC, InESS, RWEEU project-POLYSIMODE: IMEC, InESS, CSG, Helmoltz, ISE

Page 26: Abdelilah SLAOUI

SnO2Glass or flexible sub

Step 4: complete i-n layers on topp-type SiNW

p-t

ype

i-layer n-layer

Strong light trappingRadial junction

Silicon based nanostructures solar cells Silicon based nanostructures solar cells

Vertical SiNWs Si nanostructure tandem cell

Eg=1,5eV

Eg=1,1eVEg3

Eg2

Eg1

Eg1> Eg2> Eg3

Si-nps

Si-nps

c-Si

Eg=2eV

A. Slaoui, R.T. Collins, MRS Bulletin V32 (2007) N°3

Nanostructured Silicon:* SiNWs: light trapping

* Si-nps: photon energy shifter (DC ?)

* Si-nps: New wide BG absorbing Si (tandem)

Page 27: Abdelilah SLAOUI

One pump down “all-in-situ” fabrication of SiNWs on TCO substratesNano-scaled In or Sn drops produced on ITO or SnO2 by H2 plasma superficial reduction at 200oC~350oC.

SnO2 or ITO

H+ H+

Cg

Cg

SiHx (or SiHx +H+)

Cg

SiHx (or SiHx +H+)SiHx

Deposition interface

Diffusion of Si in catalyst drops

Dissolve & absorption

(a)

Sn or In drops

Cg (b)

(c)

(a) (c)

(b)

<110

> (d)

a-Si

2~2.5nm sheathof a-Si

2~2.5nm amorphous layer

(d)

(a) (c)

(b)

<110

> (d)

a-Si

2~2.5nm sheathof a-Si

2~2.5nm amorphous layer

(d)

P.-J. Alet, P. Roca i- Cabaroccas et. al. Journal of Materials Chemistry 18 (2008) 5187

Vertical Si–NWs based solar cells Vertical Si–NWs based solar cells

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 28: Abdelilah SLAOUI

Challenges- Control catalyst size- Density, position- Transport, doping,…

World record efficiency for a bottom up Silicon Wire Radial Junction Solar cell

Vertical Si–NWs based solar cells Vertical Si–NWs based solar cells

[email protected]

ECOLEPOLYTECHNIQUE

LPICMUMR 7647

Page 29: Abdelilah SLAOUI

Silicon nanostructure wide Eg material Silicon nanostructure wide Eg material • Engineer a wider band gap material using Si nanostructures• Si QDs-relaxed size constraint cf QW, for given a quantum confinement

Ener

gy P

L (

eV)

Si Nanoparticules size (nm)

Page 30: Abdelilah SLAOUI

MW-PECVD : NH3 + SiH4 Si rich SiNx:H (Si-RSN)

* Single layer

* Multilayers

Si nanostructure tandem cells Si nanostructure tandem cells

anneal

anneal

20 nm20 nm

Delachat, Carrada, Slaoui; Nanotechnology 20 (2009) 415608_1-5Keita, Delachat, Slaoui, J. Appl. Phys. 107 (2010) 093516

Page 31: Abdelilah SLAOUI

BG 29% 33% 37% 44% 50%1 nm - - - ? ?3 nm - - - 1,85 2,05

4 nm - 2,05 x x x5 nm ? x x x 1,37

Si-nps

Si-nps

c-Si

Si nanostructure tandem cells Si nanostructure tandem cells Bandgap value depends on SiNx thickness and on Si excess in SiNx

• Potential : Efficiency ~35%• Chalenges: * Tunneling distance between layers & QDs * Doping * Extraction of carriers

* Cost

Page 32: Abdelilah SLAOUI

The Future of TF-Si based PV Technologies The Future of TF-Si based PV Technologies • Better Control and rational use of materials - Better plasma control - Gas recycling - Faster high-quality TCO’s - Higher deposition/crystallization rates

• New materials - Si-nanowires / Si-nanops - p-type TCO’s - Printable TCO’s - Nanocrystalline diamond, SiC

• Better light management - Improved TCO’s ( Lower IR absorption = lower N; Textured) - Random texture (texture glass; back reflector) - Periodic Structures (Grating, photonic crystals, plasmonics) - Conversion spectrum

Long Term Objectives:-Concepts for stable cells with >17%

Costs<0.4 Euros/Wp at 500 MW, = 15% (rigid)< 0.3 Euros/Wp at 500MW, = 13% (flexible)

Page 33: Abdelilah SLAOUI

Acknowledgements

From InESS/Strasbourg: C. Chatterjee; A. Chowdhury; F. Delachat; A. Focsa; P. Prathap; S. Roques, O. Tuzun; …

ANR–HABISOL projects: CRISILAL, POLYSIVERRE, SILASOLEU Projects: LATECS, CRYSTALCLEAR; HIGH EF, POLYSIMODE

From LPICM/Ecole Polytechnique/Palaiseau:P. Roca i-Cabarocas

Page 34: Abdelilah SLAOUI

Bilateral Conference on Energy

9 – 13 May 2011; Nice / France

http://www.emrs-strasbourg.com/

Page 35: Abdelilah SLAOUI

Bilateral Conference on EnergySymposia:

Page 36: Abdelilah SLAOUI