18
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge

Ab initio study of the diffusion of Mn through GaN

  • Upload
    seth

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

Ab initio study of the diffusion of Mn through GaN. Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge. Dilute Magnetic Semiconductors (DMS). Host semiconductor + magnetic dopant Ferromagnetic coupling Spin and Charge D o F (Spintronics) - PowerPoint PPT Presentation

Citation preview

Page 1: Ab initio study of the diffusion of Mn through GaN

Ab initio study of the diffusion of Mn through GaN

Johann von PezoldAtomistic Simulation Group

Department of Materials ScienceUniversity of Cambridge

Page 2: Ab initio study of the diffusion of Mn through GaN

Dilute Magnetic Semiconductors (DMS)

Host semiconductor + magnetic dopant

Ferromagnetic coupling

Spin and Charge D o F (Spintronics)

Novel devices (e.g. spin FET, spin LED, magnetic recording ..)

Johann von Pezold
Basic idea: combine spin and charge spin FET: application of small gate voltage induces effective magnetic field that interacts with spin precession of carrier electrons, which results in the modulation of the net spin polarisation. Sufficient to render carrier polarisation out of alignment wrt drain contact to shut off the current. Shut off can occur at much lower bias than needed for charge controlled FETspin LED: spin polarised holes recombine with non-spin polarised electrons. Polarised light is emittednon-volatile memories
Johann von Pezold
typically d/f block element with partially filled valence band
Page 3: Ab initio study of the diffusion of Mn through GaN

GaN – based DMS

• III-Vs well established – (opto)-electronic devices

• (Ga,Mn)As, but TC ~ 110 K • Dietl et al.: RT ferromagnetism of (Ga,Mn)N

predicted [Science 287 (2000) 1019]

• huge research effort, both theoretical and experimental

• TC ≥ RT confirmed

• TC 10 – 940 K reported

Page 4: Ab initio study of the diffusion of Mn through GaN

Mechanism of Ferromagnetism in DMSMean field approach (Dietl et al.) • FM due to Zener p/d exchange interaction

• Large carrier density essential (~ 1020 cm-3).

Mn d-states

DOS (Mn0.0156Ga0.9844)As

Mn d-states

DOS (Mn0.0156Ga0.9844)N

Kulatov et al., Phys Rev B 66, 045203 (2002)

• Strong p-d hybridisation for (Mn,Ga)As, not for (Mn,Ga)N

Johann von Pezold
d bands of magnetic ions hybridise with p-valence bands of host material; holes in VB mediate the exchange interaction between the magnetic ions. long range effect
Johann von Pezold
wavefunction of impurity state in GaN well localised due to exponential decay of the impurity wavefunction in the band gap
Page 5: Ab initio study of the diffusion of Mn through GaN

FM coupling in (Mn,Ga)N (Sato et al.)

• localisation of d states strong, short- ranged (NN) exchange interaction (double exchange mechanism)

• Mn atoms need to form (nano) clusters for FM coupling

• Significant driving force for clustering observed by LDA/ASA calculations

[van Schilfgaarde et al. Phys. Rev. B 63, 233205 (2001)]

and by MC simulations [Sato et al. Jap J Appl Phys 44(30), L948 (2005)]

• Kinetics not considered so-far

Johann von Pezold
explains wide range of Tc's as the formation of nano clusters dependent on exact growth conditions.
Page 6: Ab initio study of the diffusion of Mn through GaN

Diffusion through GaN

2 obvious diffusion channels

along calong a/b

Page 7: Ab initio study of the diffusion of Mn through GaN

Method• 2x2x2 supercell of GaN (32 atoms)

• Mn constrained along c/a to sample PES, 32 configurations

• Four host atoms furthest away from Mn fully constrained – avoid relaxation to GS

• Full geometry optimisation for every configuration

• CASTEP, ultrasoft PSPs, nlcc for Ga

Johann von Pezold
d electrons treated as core - test calculations suggested that geometry not severlely affected
Page 8: Ab initio study of the diffusion of Mn through GaN

Charge State of Mni

• +4, +3, +2,+1, 0, -1 and -2 charge states were considered

• Only +1 charge state was found to be more stable than neutral Mni (under extremely electron deficient conditions)

Relative formation energy of interstitial Mn in different charge states vs EF

-0.2

0.3

0.8

1.3

1.8

0 0.5 1 1.5 2

EF [eV]

Fo

rmat

ion

en

erg

y [

eV]

1

0

0.137 eV

GaN tends to be intrinsically n-type and hence the +1 charge state is unlikely to be realised

Diffusion study for Mn0

Page 9: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along aDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

ergy

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

relaxed

relaxed

relaxed

0.81 eV

Johann von Pezold
local minima and global minimum/maximum
Page 10: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along a – global maximumDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

erg

y

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

• Off Tetrahedral site, steric hindrance

Page 11: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along a –local minimum IDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

erg

y

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

• Just below N plane, slightly off centre of hexagonal channel

Page 12: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along a –local maximumDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

erg

y

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

ΔE global min – local max: 120 meV

Page 13: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along a – Global minimumDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

erg

y

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

-10

0

10

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Density of States (electrons/eV)

Energy (eV)

CASTEP Partial Density of States

s alpha s beta p alpha p beta d alpha d beta Sum alpha Sum beta

s

pdα

Σ

DO

S a

rb u

nits

strong N-Mn interaction; Mn off centre of hexagonal channel

DOS similar to that observed for subst Mn (impurity states in gap), broadening due to smaller supercell.

Page 14: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along a – local minimum IIDiffussion barrier along a

-12653.80

-12653.70

-12653.60

-12653.50

-12653.40

-12653.30

-12653.20

-12653.10

-12653.00

-12652.90

-12652.80

0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.83

position along a

tota

l en

erg

y

-1.5

-1

-0.5

0

0.5

1

1.5

forc

e o

n M

n [

ev/A

]

Etot

force [Mn(a)]

Page 15: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along c

Diffusion barrier for Mn along c in GaN

-12654.0

-12653.8

-12653.6

-12653.4

-12653.2

-12653.0

-12652.8

-12652.6

-12652.4

-12652.2

-12652.0

-12651.8

-12651.6

-12651.4

-12651.2

-12651.0

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

position along c [2c]

tota

l en

erg

y [

eV]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

forc

e o

n M

n [

eV/A

]

1.94 eV

Page 16: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along c – global minimum

Diffusion barrier for Mn along c in GaN

-12654.0

-12653.8

-12653.6

-12653.4

-12653.2

-12653.0

-12652.8

-12652.6

-12652.4

-12652.2

-12652.0

-12651.8

-12651.6

-12651.4

-12651.2

-12651.0

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

position along c [2c]

tota

l ene

rgy

[eV

]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

forc

e on

Mn

[eV

/A]

• Very similar to global min along a

Page 17: Ab initio study of the diffusion of Mn through GaN

Diffusion of Mn0 along c – global maximum

Diffusion barrier for Mn along c in GaN

-12654.0

-12653.8

-12653.6

-12653.4

-12653.2

-12653.0

-12652.8

-12652.6

-12652.4

-12652.2

-12652.0

-12651.8

-12651.6

-12651.4

-12651.2

-12651.0

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

position along c [2c]

tota

l ene

rgy

[eV

]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

forc

e on

Mn

[eV

/A]

• Mn-Ga interaction clearly very unfavourable• very significant lattice relaxation• again Mn relaxes away from the centre of the hexagonal channel

Page 18: Ab initio study of the diffusion of Mn through GaN

Conclusion

• Anisotropic diffusion constants for the diffusion of Mn along a (0.81 eV) and c (1.94 eV) directions of GaN have been found.

• Diffusion driven by favourable Mn-N interaction and unfavourable Ga-Mn interaction

• The calculated diffusion barriers may explain the scatter in experimentally observed Tc’s

• The groundstate interstitial site of Mn in GaN has been identified. Under exptl. conditions only stable in neutral charge state. Exhibits spin polarisation.

Johann von Pezold
dependence of the diffusion on growth conditions