114
Ab Initio Molecular Dynamic Paul Fleurat-Lessard AtoSim Master / RFCT Ab Initio Molecular Dynamic – p.1/67

Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

  • Upload
    dinhthu

  • View
    250

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Ab Initio Molecular DynamicPaul Fleurat-Lessard

AtoSim Master / RFCT

Ab Initio Molecular Dynamic – p.1/67

Page 2: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Summary

I. Introduction

II. Classical Molecular Dynamic

III. Ab Initio Molecular Dynamic (AIMD)

1 - Which one ?

2 - Car-Parinello !

IV. Application : Free Energy Calculations

V. Conclusions

Ab Initio Molecular Dynamic – p.2/67

Page 3: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Introduction

Goal :Compute statistical averages, as in Monte Carlo.Sample phase space⇒ Macroscopic properties

Tool :Time evolution of the system.

Ab Initio Molecular Dynamic – p.3/67

Page 4: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Microscopic becomes Macroscopic

Trajectories sampling phase space

Amacro = 〈A〉 =

∫ ∫A exp(−βE)d−→ri d

−→pi∫ ∫

exp(−βE)d−→ri d−→pi

Ab Initio Molecular Dynamic – p.4/67

Page 5: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Microscopic becomes Macroscopic

Trajectories sampling phase space

Ergodic hypothesis verified :

Amacro = 〈A〉 = limT→∞

AT = limT→∞

1

T

∫ T

0

A(t)dt

Ab Initio Molecular Dynamic – p.4/67

Page 6: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Microscopic becomes Macroscopic

Trajectories sampling phase spaceErgodic hypothesis verified :

Amacro = 〈A〉 = limT→∞

AT = limT→∞

1

T

∫ T

0

A(t)dt

True only if :System at equilibriumSimulation time T much larger than caracteristictimes of the system.

Ab Initio Molecular Dynamic – p.4/67

Page 7: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Short History of MD

Simulations using balls (hard and soft)Computer Simulations

Super-computer MANIAC (Los Alamos in 1952)Monte Carlo : Metropolis, Rosenbluth, Rosenbluth,Teller, and Teller (1953)MD Hard Sphere : Alder and Wainwright (1957)MD with actual movement equations : Rahman(Argonne 1964)

Ab Initio Molecular DynamicEhrenfest 1927 : First approach.C. Leforestier 1978 : Born-OppenheimerCar and Parrinello (Sissa 1985)

Ab Initio Molecular Dynamic – p.5/67

Page 8: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Computer simulations

Four steps :InitializationPropagationEquilibrationAnalysis

Propagation : All schemes based on numerical solution

miri = −∇iV ({−→ri })

Which V ?Empirical : classical force fieldsQuantum : semi-empirical, ab initio and DFT

How to obtain V ?

Ab Initio Molecular Dynamic – p.6/67

Page 9: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Computer simulations

Four steps :InitializationPropagationEquilibrationAnalysis

Propagation : All schemes based on numerical solution

miri = −∇iV ({−→ri })

Which V ?How to obtain V ?

V pre-calculated and tabulated : limited to fewdegrees of freedom, allows quantum nuclei ;V calculated “on the fly” : mostly classical nuclei

Ab Initio Molecular Dynamic – p.6/67

Page 10: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Time scale

V Simulation duration (ps) AtomsForce Fields 100 000 100 000

Semi-empirical 100 1000DFT, HF 10 100post-HF 1 ≈ 10

Ab Initio Molecular Dynamic – p.7/67

Page 11: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Classical Molecular Dynamic

Ab Initio Molecular Dynamic – p.8/67

Page 12: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :Newton

miri = −∇iV ({−→ri })

LagrangeHamilton

Ab Initio Molecular Dynamic – p.9/67

Page 13: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrange

Lagrangian for a system withn degrees of freedom

L({−→ri } ,{−→

ri

}

) = K({−→ri } ,{−→

ri

}

) − V ({−→ri })

Equation of motion : Euler-Lagrange

d

dt

∂L

∂−→ri

−∂L

∂−→ri

= 0

Impulsion−→pi = ∂L

∂−→ri

, Force−→Fi = ∂L

∂−→ri

Newton is found again :−→pi =

−→Fi

HamiltonAb Initio Molecular Dynamic – p.9/67

Page 14: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrangeHamilton

Impulsion−→pi used instead of velocity−→ri

Hamiltonian

H({−→ri } , {−→pi }) =3n∑

i=1

qipi − L

= K({−→ri } , {−→pi }) + V ({−→ri })

Ab Initio Molecular Dynamic – p.9/67

Page 15: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrangeHamilton

Hamiltonian

H({−→ri } , {−→pi }) = K({−→ri } , {−→pi }) + V ({−→ri })

Equations of motion

ri =∂H

∂pipi = −

∂H

∂ri

Ab Initio Molecular Dynamic – p.9/67

Page 16: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrangeHamilton

Equations of motion

qi =∂H

∂pipi = −

∂H

∂qi

H is constant along the trajectory, interpreted as thetotal energy

dH

dt=∑

i

[∂H

∂riri +

∂H

∂pipi

]

Ab Initio Molecular Dynamic – p.9/67

Page 17: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrangeHamilton

Equations of motion

qi =∂H

∂pipi = −

∂H

∂qi

H is constant along the trajectory, interpreted as thetotal energy

dH

dt=∑

i

[∂H

∂ri

∂H

∂pi−

∂H

∂pi

∂H

∂qi

]

= 0

Ab Initio Molecular Dynamic – p.9/67

Page 18: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equations of motion

Many formalism :NewtonLagrangeHamiltonConclusion : all equivalent !

Ab Initio Molecular Dynamic – p.9/67

Page 19: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Working ingredients

Initialization :{−→ri } , {−→pi } at t = 0{−→

r0i

}

: from cristallographic structure, PDB or by

similarity to avoid very repulsive part of thepotential.{−→

p0i

}

: most of the time 0, random or taken from

Maxwell-Bolztman distribution.How to compute V ?Time is discrete, how to choose time step∆t ?

As large as possibleSmaller than characteristic time of the system

Ab Initio Molecular Dynamic – p.10/67

Page 20: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Empirical potentials

Force fields≈ VSEPR extension :Geometries close to a reference :dCC ≈ 1, 54 Å, dCH ≈ 1, 09 Å, α ≈ 109◦4 . . .

Ethane :dCC = 1, 536 Å,

Propane :dCC = 1, 526 Å, α = 112, 4◦,

Butane :d(e)CC = 1, 533 Å, d

(i)CC = 1, 533 Å, α = 112, 8◦.

Energy close the reference energy !

E = E0 + corrections...

Ab Initio Molecular Dynamic – p.11/67

Page 21: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Ab Initio Molecular Dynamic – p.12/67

Page 22: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vbonding Bonding energy

Vbonding =1

2

i∈bondings

kr,i(ri − r0i )

2

Ab Initio Molecular Dynamic – p.12/67

Page 23: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vangle Valence angle (bending) modification

Vangle =1

2

i,j∈bondings

kθ,ij(θij − θ0ij)

2

Ab Initio Molecular Dynamic – p.12/67

Page 24: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vtorsion Torsion energy (rocking)

Vtorsion =1

2

i

[V1(1 + cos ϕi)+

V2(1 − cos 2ϕi) + V3(1 + cos 3ϕi)]

Ab Initio Molecular Dynamic – p.12/67

Page 25: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vtorsion Torsion energy

0

0.5

1

1.5

2

2.5

3

-120 0 120

Ene

rgie

ψ (angle HCCH)

Eclipsee

Decalee

E(ψ)

0

1

2

3

4

5

-120 0 120

Ene

rgie

ψ (angle CCCC)

Gauche

Syn

Anti

Butane : V1=1., V2=0., V3=1.

Ab Initio Molecular Dynamic – p.12/67

Page 26: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vnb Non Bonded interactionsVan Der Waals :

VV dW (d) = ǫ∑

i,j∈atomes

(

d0ij

dij

)12

− 2

(

d0ij

dij

)6

Ab Initio Molecular Dynamic – p.12/67

Page 27: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

General form of a Force Field

Main contributions :

EMM = Vbonding + Vangle + Vtorsion + Vnb + . . .

Vnb Non Bonded interactionselectrostatic type :

Vel =∑

i,j∈atomes

qiqj

Ddij

H-bonds

Ab Initio Molecular Dynamic – p.12/67

Page 28: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Popular force fields

MM2, MM3 Mainly for organic chemistry.MMFF94 Only for organic chemistre !AMBER, CHARMm Good for biological systemsUFF Universal Force Field. Universaly avoided !ESFF Extensible and Systematic Force Field

Small benchmark :Ab initio MMFF94 MM3 CHARMm AMBER

∆E 0,4 0,4 0,7 0,8 1,1

∆dXH - 0,09 0,5 0,1 0,2

Ab Initio Molecular Dynamic – p.13/67

Page 29: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Propagator

A good propagator must :Be quick and allow for large∆tTime reversibleConserve mechanical energyCompute forces not too frequentlyConserve phase-space volume

Basic idea : Taylor expansion

−→ri (t + ∆t) = −→ri (t) + −→vi (t)∆t +−→ai (t)

2∆t2 + . . .

−→vi (t + ∆t) = −→vi (t) + −→ai (t)∆t +

−→vi (t)

2∆t2 + . . .

Ab Initio Molecular Dynamic – p.14/67

Page 30: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Verlet

General expression :

−→ri (t + ∆t) = −→ri (t) + −→vi (t)∆t +−→ai (t)

2∆t2 + . . .

−→ri (t − ∆t) = −→ri (t) −−→vi (t)∆t +

−→ai (t)

2∆t2 + . . .

thus−→ri (t + ∆t) = 2−→ri (t) −−→ri (t − ∆t) +

−→fi (t)

Mi

∆t2 + O(∆t3)

Store position and forces only

Accuracy in∆t3

Time reversible by construction

Velocities indirectly computed (finite differences) : lessaccurate−→vi = (−→ri (t + ∆t) −−→ri (t − ∆t)) /(2∆t) + O(∆t2)

Higer order term in the propagation formula⇒ numerical noiseAb Initio Molecular Dynamic – p.15/67

Page 31: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Leap-Frog variant

Designed to improve numerical accuracy

−→ri (t + ∆t) = −→ri (t) + −→vi (t +∆t

2)∆t

−→vi (t +∆t

2) = −→vi (t −

∆t

2) + −→ai (t)∆t

−→vi (t) =(−→vi (t + ∆t

2 ) −−→vi (t −∆t2 ))/2 + O(∆t2)

More stable

Ab Initio Molecular Dynamic – p.16/67

Page 32: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Velocity Verlet

Improve velocity accuracy

−→ri (t + ∆t) = −→ri (t) + −→vi (t)∆t +−→ai (t)

2∆t2

−→vi (t + ∆t) = −→vi (t) +−→ai (t) + −→ai (t + ∆t)

2∆t

Velocity accuracy inO(∆t3)Can be seen as a predictor-corrector

Ab Initio Molecular Dynamic – p.17/67

Page 33: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Verlet : Summary

Graphical form :

Velocity verlet often used because :

Simple and efficient, little force computation

Accurate in∆t3

Time reversible, Symplectic (conserve phase space volume)

For realistic time step, Velocity Verlet as good as Gear

predictor-corrector Ab Initio Molecular Dynamic – p.18/67

Page 34: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Constrained Dynamic

Why using constraints : to get larger∆t (frozend(CH)), prevent or force some evolutionPrincipal : Lagrange multiplierConstraint defined byσ ({−→ri }) = 0 , For example :

Distance :σ ({−→ri }) = |−→ri −−→rj | − d0

Difference of two distances :σ ({−→ri }) = |−→ri −

−→rj | − |−→rk −−→rl | − d0

Coordination number :σ ({−→ri }) = ni ({−→ri }) − n0

with ni ({−→ri }) =

j 6=i S(|−→ri −−→rj |) et

S(r) = (1 + exp(κ(r − rc)))−1.

Ab Initio Molecular Dynamic – p.19/67

Page 35: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Constrained Dynamic

Constraint defined byσ ({−→ri }) = 0Extended Lagrangian :

L′({−→ri } , {−→pi }) = L({−→ri } , {−→pi }) −∑

α

λασα ({−→ri })

Equations of motion :

miri = −∂V

∂ri−∑

α

λα∂σα

∂ri

SHAKE : λα tq σα ({−→ri (t + ∆t)}) = 0RATTLE : λα tq σα ({−→ri (t + ∆t)}) = 0

Ab Initio Molecular Dynamic – p.19/67

Page 36: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Which ensembles ?

By default, isolated system⇒ E conserved, i.e. NVEInitialize {−→pi } so thatEtot = Etarget then propagateHow can we obtain other ensembles ?

NVT : E fluctuates

Q(N, V, T ) =1

N !h3N

Z

Πid−→ri d−→pi exp(−βH) = exp (−βF (N, V, T ))

NPT : E and V fluctuate

∆(N, P, T )1

V0N !h3N

Z

Πid−→ri d−→pi exp (−β(H + PV )) = exp (−βG(N, P, T ))

Ab Initio Molecular Dynamic – p.20/67

Page 37: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Canonical ensemble

We know tha⟨∑

kp2

k

2mk

= 32NkBT leading to

T (t) = 23NkB

kpk(t)2

2mk

At equilibrium, Maxwell-Boltzmann distributionInitialize

Velocities from MB distributionOr

−→p0

i =−→0 , then heating using "inversed

annealing" :−→vi (t) → α−→vi (t), α > 1.Equilibrate : homogenizeT, to obtain〈T (t)〉 = T

Ab Initio Molecular Dynamic – p.21/67

Page 38: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Canonical ensemble

We know tha⟨∑

kp2

k

2mk

= 32NkBT leading to

T (t) = 23NkB

kpk(t)2

2mk

At equilibrium, Maxwell-Boltzmann distributionInitializeEquilibrate : homogenizeT, to obtain〈T (t)〉 = T

Rescaling : when|T (t) − T | > ∆T , then−→vi (t) →

−→vi (t)√

TT (t) ⇒ Brutal !

Thermostat : coupling with a thermal bath

Ab Initio Molecular Dynamic – p.21/67

Page 39: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Nosé-Hoover

Extended System : a supplementary variable thatmimics the thermal bathEquations

Ab Initio Molecular Dynamic – p.22/67

Page 40: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Nosé-Hoover

Extended SystemEquations

−→ri =

−→pi

mi

−→pi =

−→Fi − ξ−→pi

ξ =1

Q

(∑

k

p2k

2mk

− gkBT

)

=gkB

Q(T − T )

with g number of degrees of freedom,Q mass of thethermostat

Ab Initio Molecular Dynamic – p.22/67

Page 41: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Nosé-Hoover

EquationsQ regulates the speed of exchanges between the bathand the system

Q too small : large not wanted oscillations, slowconvergenceQ too large : slow exchanges.Q → ∞,microcanonical ensemble !Optimum when resonating with the system, ieQ ≈ gkBT

ω2

Ab Initio Molecular Dynamic – p.22/67

Page 42: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Nosé-Hoover Chains

Nosé-Hoover not always ergodic, response time tooslow

Chain of M thermostats :

−→ri =

−→pi

mi

−→pi =

−→Fi − ξ1

−→pi

ξ1 =1

Q1

(∑

k

p2k

2mk

− gkBT

)

− ξ1ξ2

ξn =1

Qn

(Qn−1ξ

2n−1 − kBT

)− ξnξn+1

˙ξM =1

QM

(QM−1ξ

2n−1 − kBT

)

Ab Initio Molecular Dynamic – p.23/67

Page 43: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Test 1D oscillator

H = p2

2m+ mω2x2

2, f(p) =

√β

2πme−βp2/2m, f(x) =

√βmω2

2πe−βω2x2/2

1 thermostat 3 thermostats 4 thermostats

Ab Initio Molecular Dynamic – p.24/67

Page 44: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Andersen or Hybrid Monte Carlo

Mix DM and Monte Carlo to simulate chocs with thethermal bathAndersen

The velocity of a random particle is withdrawn fromthe MD distribution ;Ergodic by construction, converges to the NVTassociated to the MB distribution ;Many particles can be chosen at onceRe-attribution period not so importantRe-attribution does not kick wafefunction too farfrom BO surface

Hybrid Monte Carlo : all velocities are changed atonce

Ab Initio Molecular Dynamic – p.25/67

Page 45: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Langevin

Still stochastic, but white noise added directly in theequation of motion for all particles

q =pt

m

p = −∇V (q) −ξ

mp +

βdW (t)/dt

with W (t) a gaussian white noisePhysically (mathematically ?) : the most efficient tothermalize, the fastest to convergebut very rare in chemistry, and badly behave in CPMD

Ab Initio Molecular Dynamic – p.26/67

Page 46: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

False thermostat : Berendsen

Can be seen as a rescaling, with

α(t + ∆t) =

[

1 +∆t

τ

(T

T (t + ∆t)− 1

)]1/2

=

[

1 +∆t

τT (t + ∆t)(T − T (t + ∆t))

]1/2

T − T (t + ∆t) affectsα and notαVery used in biochemistrybutdo not sample the canonical ensemble !⇒ Use only for equilibration.

Ab Initio Molecular Dynamic – p.27/67

Page 47: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Isobaric-Isotherm ensemble

This is the closest to chemist experimentsVolumebecomes a dynamical variableNo stochastic approachesTwo families :

Isotropic : V change, but not the box shapeHoover, AnderssenAnisotropic :all parameters of the box can changeParrinello-Rahman, Martyna-Tobias-Klein

Ab Initio Molecular Dynamic – p.28/67

Page 48: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Isotropic NPT : Andersen

First approach (1980)Mimic the action of a piston on the box :

Mass QKinetic energyKV = 1

2QV 2

Potential energyVV = PV

Reduced variables :−→s = V −1/3−→r ,−→s = V −1/3−→v

Hamiltonian :HV = K + KV + V + VV

Ab Initio Molecular Dynamic – p.29/67

Page 49: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Isotropic NPT : Andersen

First approach (1980)Mimic the action of a piston on the box

Reduced variables :−→s = V −1/3−→r ,−→s = V −1/3−→v

Hamiltonian :HV = K + KV + V + VV

Equations of motion :

−→s =

−→f

mV 1/3−

2

3

−→s−→V

V

V = (P − P )/Q

with P instantaneous pressureP = 23V (K −W) et

W = −12

i

j>i−→rij

−→fij Internal Virial.

Ab Initio Molecular Dynamic – p.29/67

Page 50: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Isotropic NPT : Andersen

First approach (1980)Mimic the action of a piston on the box

Reduced variables :−→s = V −1/3−→r ,−→s = V −1/3−→v

Hamiltonian :HV = K + KV + V + VV

Equations of motion :

−→s =

−→f

mV 1/3−

2

3

−→s−→V

V

V = (P − P )/Q

In fact, sampling the isobaric-iso-enthalpic ensemble,not so common.

Ab Initio Molecular Dynamic – p.29/67

Page 51: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Isotropic NPT : Hoover

Extended system, similar to the Nosé-Hooverthermostat

−→r = V 1/3−→s

−→si =

−→pi

miV −1/3 −→

pi =−→Fi − (ξ + χ)−→pi

ξ =gkB

Q(T − T )

χ =V

3Vχ =

P(t) − P

τ 2PkBT

with g number of degrees of freedom,Q mass of thethermostat,τP relaxation time of the pressurefluctuations.

Ab Initio Molecular Dynamic – p.30/67

Page 52: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Anisotropic NPT

Parrinello-RahmanIdea : reduced variable−→ri = h

−→si , with

h = [−→a ,−→b ,−→c ] and−→a ,

−→b et−→c cell parameters

We introduceG = hth

P pressure tensor :

Pαβ =1

V

(∑

i

mi ˙riα ˙riβ +∑

i

j

rijαfijβ

)

Hamiltonian

H = K +1

2Q∑

α

β

h2αβ + V + PV

Ab Initio Molecular Dynamic – p.31/67

Page 53: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Anisotropic NPT

Parrinello-RahmanIdea : reduced variable−→ri = h

−→si

We introduceG = hth

Hamiltonian

H = K +1

2Q∑

α

β

h2αβ + V + PV

Equations of motion

m−→s = h−1−→f − mG

−1G−→s

QH = (P − 1P )V(h−1)t

with Q mass of the box Ab Initio Molecular Dynamic – p.31/67

Page 54: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Equilibration

Listening phaseWe check that variables that should be conserved arestable, no drift :

TERMSD : Root Mean square displacementg(r) : pair distribution function

One simple criterion : averages should not depend onthe initial time.

Ab Initio Molecular Dynamic – p.32/67

Page 55: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Analysis

Production phaseCompute the interesting properties :

RMSDStructural parametersg(r)Fluctuations⇒ Cv

Vibrational spectraKinetic constant

Average on a given window, larger than fluctuationtime (see Practical session !)Thermostat, Barostat are perturbing the averages

Ab Initio Molecular Dynamic – p.33/67

Page 56: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Shall we go beyond classical MD

Pros of classical MD :FastGood geometries, vibrations, transport propertiesThermodynamical properties accurate forparameterized systems

ConsParameters!One need to know how atoms are linked :• Chemical reactions cannot be studied by standard

FF• ⇒ ReaxFF, ReBO, LOTF . . .No excited statesNo electronic properties : charge, density, . . .

Ab Initio Molecular Dynamic – p.34/67

Page 57: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Ab Initio Molecular Dynamics

Ab Initio Molecular Dynamic – p.35/67

Page 58: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Which ab initio MD ?

Electron explicitly taken into accountLet us denote by :

Mk, Zk,−→Rk the mass, the charge and the position of

a nucleus−→Rk ou−→vk the velocity of a nucleus−→pk = Mk

−→vk the impulsion of a nucleusme, ri the mass and the position of an electron

Ab Initio Molecular Dynamic – p.36/67

Page 59: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Which ab initio MD ?

Electron explicitly taken into accountWe would like to solve

i~∂φ({−→

Rk

}

, {−→ri } ; t)

∂t= H

({−→Rk

}

, {−→ri })

φ({−→

Rk

}

, {−→ri } ; t)

with

H = −

electrons∑

i

∆i

2︸ ︷︷ ︸

Te

elec.∑

i

nuclei∑

k

Zk

rik

+elec.∑

i

elec.∑

j>i

1

rij

+∑

k

l>k

ZkZl

Rkl

︸ ︷︷ ︸

Vne

noy.∑

k

∆k

2Mk︸ ︷︷ ︸

TNAb Initio Molecular Dynamic – p.36/67

Page 60: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

TDSCF approach

Hypothesis :

φ({−→

Rk

}

, {−→ri } ; t)

≈ Ψ ({−→ri } ; t) χ({−→

Rk

}

; t)

exp

[i

~

∫ t

t0

dt′Ee(t′)

]

with the convenient phase factor

Ee(t′) =

∫∏

i

d−→ri

k

d−→Rk

Ψ∗ ({−→ri } ; t) χ∗

({−→Rk

}

; t)

HeΨ ({−→ri } ; t) χ({−→

Rk

}

; t)

Let us writed−→r =

i d−→ri andd

−→R =

k d−→Rk

Ab Initio Molecular Dynamic – p.37/67

Page 61: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

TDSCF approach

Hypothesis :

φ({−→

Rk

}

, {−→ri } ; t)

≈ Ψ ({−→ri } ; t) χ({−→

Rk

}

; t)

exp

[i

~

∫ t

t0

dt′Ee(t′)

]

with

Ee(t′) =

d−→r d−→R

Ψ∗ ({−→ri } ; t) χ∗

({−→Rk

}

; t)

HeΨ ({−→ri } ; t) χ({−→

Rk

}

; t)

Ab Initio Molecular Dynamic – p.37/67

Page 62: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

TDSCF approach

Hypothesis :

φ({−→

Rk

}

, {−→ri } ; t)

≈ Ψ ({−→ri } ; t) χ({−→

Rk

}

; t)

exp

[i

~

∫ t

t0

dt′Ee(t′)

]

we get(project on< Ψ|, < χ|, used < H > /dt = 0) :

i~∂Ψ

∂t= −

i

1

2∇2

i Ψ +

{∫

d−→Rχ∗

({−→Rk

}

; t)

Vneχ({−→

Rk

}

; t)}

Ψ

i~∂χ

∂t= −

k

1

2Mk

∇2kχ +

{∫

d−→r Ψ∗ ({−→ri } ; t)HeΨ ({−→ri } ; t)

}

χ

Ab Initio Molecular Dynamic – p.37/67

Page 63: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

TDSCF approach

Let us write (A,S : real)χ({−→

Rk

}

; t)

= A({−→

Rk

}

; t)

exp[

iS({−→

Rk

}

; t)

/~

]

we get, after separating real and imaginary part :

i~∂Ψ

∂t= −

i

1

2∇2

i Ψ +

{∫

d−→Rχ∗

({−→Rk

}

; t)

Vneχ({−→

Rk

}

; t)}

Ψ

∂S

∂t= −

k

1

2Mk

(∇kS)2 −

d−→r Ψ∗HeΨ +∑

k

1

2Mk

∇2kA

A

∂A

∂t= −

k

1

Mk

(∇kS) (∇kA) −∑

k

1

2Mk

A(∇2

kS)

Ab Initio Molecular Dynamic – p.37/67

Page 64: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Ehrenfest approach

Classical nuclei :~ = 0

∂S

∂t+∑

k

1

2Mk(∇kS)2 +

d−→r Ψ∗HeΨ = 0

Hamilton-Jacobi equation analogy :

∂S

∂t+∑

k

1

2Mk(pk)

2 + Ve = 0

Using−→pk ≡ ∇kS

MkRk(t) = −∇k

d−→r Ψ∗HeΨAb Initio Molecular Dynamic – p.38/67

Page 65: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Ehrenfest approach

Classical nuclei :

|χ({−→

Rk

}

; t)

|2 =∏

k

δ(−→Rk −

−→Rk(t)

)

lim~→0

d−→Rχ∗

({−→Rk

}

; t)−→Rkχ

({−→Rk

}

; t)

=−→Rk(t)

That is

i~∂Ψ

∂t= −

i

∇2i Ψ + VneΨ = HeΨ

Ab Initio Molecular Dynamic – p.39/67

Page 66: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Ehrenfest summary

Wavefunction explicitly propagated, coupled to thenuclei

MkRk(t) = −∇k

d−→r Ψ∗HeΨ

i~∂Ψ

∂t= HeΨ

No electronic minimization, except fort = 0Transitions between electronic states are explicitlydescribed

∆t imposed by electrons dynamicsVery very smallEhrenfest seldom used

Ab Initio Molecular Dynamic – p.40/67

Page 67: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Born-Oppenheimer

Wavefunction is not propagatedTime independent Schrödinger equation is solved for

each{−→

Rk

}

:

MkRk(t) = −∇k minΨ0

〈Ψ0 |He|Ψ0〉

E0Ψ0 = HeΨ0

Electronic minimization at each stepNo more transitions between electronic states

∆t imposed by the nuclei⇒ relatively large

Ab Initio Molecular Dynamic – p.41/67

Page 68: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Born-Oppenheimer : HF, DFT

Simplifications using independent electron methods :HF ou DFT-KSMolecular Orbitals denoted by{ϕi}Energy minimization with orthogonal MO : :

Le = −〈Ψ0 |He|Ψ0〉 +∑

i,j

Λij (〈ϕi |ϕj〉 − δij)

leads to :Heffϕi =

j

Λijϕj

Ab Initio Molecular Dynamic – p.42/67

Page 69: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Born-Oppenheimer : HF, DFT

Simplifications using independent electron methods :HF ou DFT-KSMolecular Orbitals denoted by{ϕi}Energy minimization with orthogonal MO :leads to :

Heffϕi =∑

j

Λijϕj

Diagonal form :Heffϕi = ǫiϕi

Ab Initio Molecular Dynamic – p.42/67

Page 70: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Born-Oppenheimer : HF, DFT

Simplifications using independent electron methods :HF ou DFT-KSMolecular Orbitals denoted by{ϕi}Energy minimization with orthogonal MO :leads to :

Heffϕi =∑

j

Λijϕj

So that :

MkRk(t) = −∇k minΨ0

〈Ψ0 |He|Ψ0〉

0 = −Heffϕi +∑

j

Λijϕj

Ab Initio Molecular Dynamic – p.42/67

Page 71: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello (1/2)

Goal : benefit from all advantagesEhrenfest : No electronic minimizationBO : Large time step

Tool : Adiabatic separation between fast electrons andslow nucleiHow : MO described as classical variables

Ab Initio Molecular Dynamic – p.43/67

Page 72: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello (1/2)

Goal : benefit from all advantagesTool : Adiabatic separation between fast electrons andslow nucleiHow : MO described as classical variables, butdecoupled from the nucleiUsing an extended Lagrangian formulation

Ab Initio Molecular Dynamic – p.43/67

Page 73: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello (2/2)

Goal : benefit from all advantagesTool : Adiabatic separation between fast electrons andslow nucleiHow : MO described as classical variables, butdecoupled from the nuclei

LCP =∑

k

1

2Mk

−→Rk

2 +∑

i

1

2µi 〈ϕi | ϕi〉

︸ ︷︷ ︸

Kinetic energy

−〈Ψ0 |He|Ψ0〉︸ ︷︷ ︸

Potential energy

+ constraints︸ ︷︷ ︸

orthogonality, geometric...

µ "Fictitious" mass of the electronsAb Initio Molecular Dynamic – p.44/67

Page 74: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello (2/2)

Goal : benefit from all advantagesTool : Adiabatic separation between fast electrons andslow nucleiConstant of motion

HCP =∑

k

1

2Mk

−→Rk

2 +∑

i

1

2µi 〈ϕi | ϕi〉 + Eel

(

{ϕi} ,{−→

Rk

})

Ab Initio Molecular Dynamic – p.44/67

Page 75: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello (2/2)

Goal : benefit from all advantagesTool : Adiabatic separation between fast electrons andslow nucleiEquations of motion

MkRk(t) = −∇k 〈Ψ0 |He|Ψ0〉 + ∇k {constraints}

µϕi(t) =δ

δϕ∗i

〈Ψ0 |He|Ψ0〉 +δ

δϕ∗i

{constraints}

∆t approximately 5 to 10 times smaller than BO

Ab Initio Molecular Dynamic – p.44/67

Page 76: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello : HF,DFT-KS

We use HF or DFT-KS methods

LCP =∑

k

1

2Mk

−→Rk

2 +∑

i

1

2µi 〈ϕi | ϕi〉 −

⟨Ψ0

∣∣Heff |Ψ0

+∑

i,j

Λij (〈ϕi |ϕj〉 − δij)

Ab Initio Molecular Dynamic – p.45/67

Page 77: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Car-Parrinello : HF,DFT-KS

We use HF or DFT-KS methodsEquations of motion become

MkRk(t) = −∇k

⟨Ψ0

∣∣Heff |Ψ0

µϕi(t) = −Heffϕi +∑

j

Λijϕj

Very similar to BO :µϕi(t) = 0

Ab Initio Molecular Dynamic – p.45/67

Page 78: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Fast electrons, slow nucleiElectronic frequencies forSi8 :

f e(ω) =

∫ ∞

t=0

cos(ωt)∑

i

Ψ(t)∣∣∣ Ψ(0)

dt

Triangle : latest nuclear frequencyAb Initio Molecular Dynamic – p.46/67

Page 79: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Electronic Oscillations close to the BO surface

Econs =∑

k

1

2Mk

−→Rk

2 +∑

i

1

2µi 〈ϕi | ϕi〉 + 〈Ψ |He|Ψ〉

Ephys =∑

k

1

2Mk

−→Rk

2 + 〈Ψ |He|Ψ〉 = Econs − Te

Model System : Si FCC, 2 atoms/cell

Ab Initio Molecular Dynamic – p.47/67

Page 80: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Electronic Oscillations close to the BO surfaceModel System : Si FCC, 2 atoms/cell

Small oscillations, stable in time

Ab Initio Molecular Dynamic – p.47/67

Page 81: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Electronic Oscillations close to the BO surfaceModel System : Si FCC, 2 atoms/cell

Small oscillations, stable in time

Ab Initio Molecular Dynamic – p.47/67

Page 82: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Forces oscillations very smallModel System : Si FCC, 2 atoms/cell

Small oscillations, stable in timeOscillations averaged to 0

Ab Initio Molecular Dynamic – p.48/67

Page 83: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why does it work ?

Forces oscillations very smallModel System : Si FCC, 2 atoms/cell

Small oscillations, stable in timeOscillations averaged to 0

Ab Initio Molecular Dynamic – p.48/67

Page 84: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Working Condition CP : adiabaticity

Fast electrons, small nuclei :µ ≪ Mk

ϕi ≈ 0 : wavefunction close to BO, always slightlyabove.Compromise forµ :

∆t large, but we want electron/nuclei separationElectronic frequencyϕi occ. andϕa virtual :ωe

ia =√

2(ǫa − ǫi)/µ

Smallest :ωemin ∝

EGAP/µ

Highest :ωemax ∝

Ecut/µ

so that∆tmax ∝√

µ/Ecut

Usually :µ = 400-500,∆t = 5-10 au = 0.12-0.24 fs.

Ab Initio Molecular Dynamic – p.49/67

Page 85: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Loosing adiabaticity

If EGAP ≈ 0, thenωemin too close toωnucl

For example for an elongated bond, exSn2

Ab Initio Molecular Dynamic – p.50/67

Page 86: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Loosing adiabaticity

If EGAP ≈ 0, thenωemin too close toωnucl

For example for an elongated bond, exSn2

For metallic systems !Two solutions :

Back to BOElectronic Thermostat

Ab Initio Molecular Dynamic – p.50/67

Page 87: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Comparison BO/CP

BOMD CPMDAlways on BO surface Always slightly above∆t ∼ τnucl ∆t ≪ τnucl

∆tBO ≈ 5 − 10∆tCP

Minimization at each step Only OrthogonalizationProblem when deviatingfrom the BO surface

Stable with respect to devi-ations

Works forEGAP = 0 Electronic thermostatUsed for solid systems Used for liquids

Ab Initio Molecular Dynamic – p.51/67

Page 88: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Comparison BO/CP

Ab Initio Molecular Dynamic – p.52/67

Page 89: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Comparison Ehrenfest/CP

Ehrenfest MD CPMDReal separation (quantum)Fictitious separation (clas-

sical)∆t ∼ τelec ∆t ≫ τelec

∆tCP ≈ 5 − 10∆tEhrenfest

Rigorous Orthonormality Imposed by constraintsDeviations from BO add upStable

Ab Initio Molecular Dynamic – p.53/67

Page 90: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Conclusion and perspectives

AIMD : includes electronic effects, allows forchemical reactions, catalytic processes . . .CPMD : Very used, very fashion !but . . .

Number of atoms still limitedDFT not always sufficient

PerspectivesHybrid methods : QM/MM, QM/QM’Post-HF and TD approachs : excited states, highlycorrelated materials . . .BO ? New algorithms faster, more efficient,becomes competitive with CPMD.

Ab Initio Molecular Dynamic – p.54/67

Page 91: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Application : Free energycalculations

Ab Initio Molecular Dynamic – p.55/67

Page 92: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Free energy profile

Reaction coordinateq =

q({−→

Rk

})

Probability density

P(z) =1

QNV T

d−→Rd

−→P exp(−βH)δ

(

q({−→

Rk

})

− z)

Free energy profile

F (z) = −kBT lnP(z)

Reaction rate :

k =kBT

he−

∆rG‡

RT

Ab Initio Molecular Dynamic – p.56/67

Page 93: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Rare event ?

System position forEa = 2 × kBT

⇒ Diffusive system.

Ab Initio Molecular Dynamic – p.57/67

Page 94: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Rare event ?

System position forEa = 5 × kBT

⇒ Nothing at the TS !

Ab Initio Molecular Dynamic – p.57/67

Page 95: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Rare event ?

System position forEa ≫ kBT

Alternating between the two states.Long residence time, short transition time.kTST ≈ 1s−1

⇒ Slow reaction≡ rare event.

Ab Initio Molecular Dynamic – p.57/67

Page 96: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why is it so difficult ?

Standard MD is a "real time" method,∆t ≈ 0.1-1 fsChemical reaction time : fast around ns, typical aroundµs-ms, biology can be seconds⇒ Two incompatible time scalesMore, phase space dimension is 6N, impossible tofully sample

Ab Initio Molecular Dynamic – p.58/67

Page 97: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Why is it so difficult ?

⇒ Two incompatible time scalesSolutions

Work at higher T : faster sampling but might be notthe same phenomenaForce the reaction to occur :• Biais potential• Constrained dynamic• Adiabatic dynamic• Metadynamic

In all cases, we calculate∆F , notF

Ab Initio Molecular Dynamic – p.58/67

Page 98: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Bias potential

Many approaches : Umbrella sampling, adaptive biaispotential, accelerated dynamics, flooding potential...Main Idea : we add a potential to "erase" the barrier

V ′

({−→Rk

})

= V({−→

Rk

})

+ ∆V(−→q({−→

Rk

}))

Then get the non-biaised energy :

O({−→

Rk

})⟩

=

O({−→

Rk

})

exp (β∆V)⟩′

〈exp (β∆V)〉′

Problem : we do not know the barrier position, heightand shape !In practice : many simulations with a moving modelpotential Ab Initio Molecular Dynamic – p.59/67

Page 99: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Umbrella Sampling

Usual bias :∆V(

q({−→

Rk

}))

∝[

q({−→

Rk

})

− z]2

Simulations for different−→z

Ab Initio Molecular Dynamic – p.60/67

Page 100: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Constrained dynamics

Two families :q evolves continuously fromz0 to zf during thesimulation• Slow growth method : slow evolution, quasi-static• Fast growth method,Jarzinsky: fast evolution,

average taken on many trajectories

〈exp (−βW )〉 = exp (−βF )

Many simulation withq set to different values ofz.

Ab Initio Molecular Dynamic – p.61/67

Page 101: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Thermodynamic integration

Change in free energy calculated by integrating freeenergy derivative :

∆F (z = z0 → z = zf ) =

∫ zf

z0

∂F

∂qdq

Numerical evaluation using discrete valuesA constrained simulation is launched for each value ofq(z).How to obtain∂F

∂q (z) ?

Ab Initio Molecular Dynamic – p.62/67

Page 102: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Free energy derivatives

Two problems :q = z ⇒ q = 0 : no sampling for the impulsionpq.Blue-Moon :

〈O(z)〉 =

⟨Z−1/2O

cont

〈Z−1/2〉cont

with Z the reduce mass associated toq :

Z =∑

k

1

Mk

∂q

∂Rk

∂q

∂Rk

q is non linear with respect to{−→

Rk

}

, Jacobian matrix

J non unityAb Initio Molecular Dynamic – p.63/67

Page 103: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Free energy derivatives

Two problems :q = z ⇒ q = 0 : no sampling for the impulsionpq.

q is non linear with respect to{−→

Rk

}

, Jacobian matrix

J non unity

∂F

∂q(z) =

⟨∂V

∂q+ kBT

∂ ln |J|

∂q

q=z

Ab Initio Molecular Dynamic – p.63/67

Page 104: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Free energy derivatives

Two problems :q = z ⇒ q = 0 : no sampling for the impulsionpq.

q is non linear with respect to{−→

Rk

}

, Jacobian matrix

J non unity

∂F

∂q(z) =

⟨Z−1/2 [−λ + kBTG]

q=z⟨Z−1/2

q=z

with G = 1Z2

k,l1

MkMl

∂q∂Rk

∂2q∂RkRl

∂q∂Rl

,λ Lagrange multiplier associated to the constraint

σ({−→

Rk

})

= q − z = 0 (SHAKE)

Ab Initio Molecular Dynamic – p.63/67

Page 105: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Adiabatic dynamics

Idea : Decoupling motions alongq from other motionsUse different temperatures

One (chain) thermostat associated toqOne (chain) thermostat associated to the N-1 otherdegrees of freedomTq ≫ Tnuc

Change the mass of atoms concerned byq

Ab Initio Molecular Dynamic – p.64/67

Page 106: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

L = L0 +∑

α

1

2Mαsα

2 −∑

α

1

2kα [Sα(r) − sα]2

Mα large enough⇒ natural adiabatic separation

Ab Initio Molecular Dynamic – p.65/67

Page 107: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CVon top of this, potential wells are filled with gaussians

∆V (t) =∑

i

W exp

(

−|s − si(t)|

2

2δσ2

)

Important choices for W,σ, time interval betweenadding two gaussians

Ab Initio Molecular Dynamic – p.65/67

Page 108: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

Ab Initio Molecular Dynamic – p.65/67

Page 109: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

Ab Initio Molecular Dynamic – p.65/67

Page 110: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

Ab Initio Molecular Dynamic – p.65/67

Page 111: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

Ab Initio Molecular Dynamic – p.65/67

Page 112: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Metadynamic

Idea : Similar to the adiabatic dynamics, usingextended Lagrangian !Reaction coordinates are included as collectivevariables (CV)sα

� Coarse� MD for CV

Ab Initio Molecular Dynamic – p.65/67

Page 113: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

How to choose a good RC ?

In practice, difficult to sam-

ple a coordinate space larger

than 3D

Chemist intuition might

fail ! !

Ab Initio Molecular Dynamic – p.66/67

Page 114: Ab Initio Molecular Dynamicperso.ens-lyon.fr/paul.fleurat-lessard/Tuto_CPMD/Atosim_RFCT... · Summary I. Introduction II. Classical Molecular Dynamic III. Ab Initio Molecular Dynamic

Conclusion

Already many toolsbut choosing RC is still a hot topic for large systemsClassical nuclei : what about quantum effects ?

Correctionsa posteriori : tunneling, isotopic effectsPath IntegralZPE correction

Ab Initio Molecular Dynamic – p.67/67