25

a101 Design Calculation for Foundation of New Vcm Storage Tank

  • Upload
    zatenne

  • View
    387

  • Download
    92

Embed Size (px)

Citation preview

Page 1: a101 Design Calculation for Foundation of New Vcm Storage Tank
Page 2: a101 Design Calculation for Foundation of New Vcm Storage Tank

SHEET NO.: 2 OF 25

DOC. NO.: FA9104D-A-11-001

DATE: 11-Jun-07 REV. NO.: 4

REVISION LIST

REV. NO. DATE DESCRIPTION

A

B

C

D

0

1

2

3

4 11-Jun-07 ALL AS-BUILT

11-Jun-07

7-Sep-06 9,10 ISSUED FOR APPROVAL

20-Jul-06 ALL ISSUED FOR APPROVAL

DESIGN CALCULATION FOR FOUNDATION OF P-FA9104D NEW VCM STORAGE TANK

(I.D. 26,800)

PAGE

ALL ISSUED FOR APPROVAL

8-Nov-06

29-Sep-06 ALL ISSUED FOR COSTRUCTION

25-Oct-06 14,15,16,17 ISSUED FOR COSTRUCTION

18,19 (Insert) ISSUED FOR COSTRUCTION

11-Jun-07 16,17 ISSUED FOR COSTRUCTION

27-Sep-06 6,7,8,9,10,11 ISSUED FOR APPROVAL

Page 3: a101 Design Calculation for Foundation of New Vcm Storage Tank

SHEET NO.: 3 OF 25

DOC. NO.: FA9104D-A-11-001

DATE: 11-Jun-07 REV. NO.: 4

A # 1 Foundation Anaysis and Design Handbook, page 686, 1 PageArticle 12-6.1, Sliding and Overturning Wall Stablity

A # 2 ASCE 7, Article 2.3, Combinding loads Using Strength Design 1 Page

A # 3 ACI-318-95 ON SHEAR CAPACITY OF PILE CAP 1 Page

A # 4 10,000 M3 VCM SPHERE TANK PILE COORDINATE 3 Page

ATTACHMENT :

DESIGN CALCULATION FOR FOUNDATION OF P-FA9104D NEW VCM STORAGE TANK

(I.D. 26,800)

Page 4: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No. J-6101Subject: Date: 11-Jun-07Client: Revision: 3

Design of Sphere Tank Foundation

INPUT DATA:SOIL INVESTIGATION REPORT LOADING DATA FROM TANK DESIGNERENGINEERING SPECIFICATION FOR CIVIL DESIGN CRITERIA ( SP-C-2, SP-C-3 )

CODES & BOOKS USED:ACI - 318-95ASCE-7-02

1.1 DESIGN OF SPHERE TANK FOUNDATIONThis Design Checks for the following:1) Stability Against Sliding & Overturning2) Capacity of Pile 3) Strength of Concrete Foundation Against Punching & Beam Shear4) Steel Requirements

1.2 DESIGN CONDITIONCompressive strength of concrete f'c = 210.00 kg/cm2 20.60 N/mm2

density of Concrete = 2400.00 kg/m3

Wind gust velocity Vw = 38.00 m/sWind Pressure Pw = 155.00 kg/m2

Seismic Requirements Zone 0 =Yield strength of Reinforcement fy = 3900.00 kg/cm2 382.59 N/mm2

Unit Weight of Soil qs = 1800.00 kg/m2

Allowable soil pressure @ EL. 0+000 q(allow .) = 20000.00 kg/m2

Allowable Soil End Bearing Pressure = kg/m2

Shape Factor sphere = 0.60

1.3 DIMENSIONAL ANNOTATION1.3.1 Tank

Column Center Diameter P.C.D = 26.190 mHeight of column hc = 16.000 mNo. of Column Support Nc z 15 nos.Resisting Moment arm a = 13.327 m

TPC VINA

10000 m3 VCM STORAGE TANKDESIGN CALCULATION FOR SPHERE TANK FOUNDATION

Fw or Fe

O.D.

sphere tank elevation

W

hc

4 of 25

Page 5: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No. J-6101Subject: Date: 11-Jun-07Client: Revision: 3TPC VINA

10000 m3 VCM STORAGE TANKDESIGN CALCULATION FOR SPHERE TANK FOUNDATION

1.3.2 Tank Foundation

Height of Pedestal Hp = 0.650 m

Width of pedestal Wp = 1.800 m

Length of Pedestal Lp = 1.800 m

Width of Footing Wf = 4.000 mLength of Footing Lf = 4.000 mDepth of Footing Hf = 1.000 mConcrete clear cover to reinforcement = 0.050 mConcrete clear cover to reinforcement (bottom of footing) = 0.075 mEffective Depth of Footing d (eff) = 0.925 mPile Diameter Dp = 0.500 mSpacing of Piles = 3.0 Dp = 1.500 mSpacing of pile from edge = 1* Dp = 0.500 mWidth of tie beam Wtb 0.60 mBreadth of tie beam Btb 0.80 mLength of tie Beam Ltb 1.53 m

Wf

Lf

A B C

1

2

3

z

x

3.0* Pile dia.

5 of 25

Page 6: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No. J-6101Subject: Date: 11-Jun-07Client: Revision: 3

Design of Sphere Tank Foundation

1.4 LOADINGS1.4.1 Total load (from tank strength calculation)

Weight of Tank1) Empty weight We = 925,607.00 kg2) Operating weight Wo = 8,952,967.00 kg3) Hydrotest weight Wh = 11,003,607.00 kg

1.4.2 Loading Data for each column (from tank strength calculation)1) Vertical wind load Fwv = 54,830.00 kg2) Horizontal wind load Fwh = 53,000.00 kg3) Hydrostatic load P = 733,600.00 kg4) Operating weight Wo/15 = 596,864.47 kg5) Empty weight We/15 = 61,707.13 kgConcrete Foundation1) Weight of Footing Wf = 43,454.40 kg

Tie Beam1) Weight of tie beam Wtb = 1,762.56 kg

Soil Surcharge kg1) Weight of soil surcharge Ws = 8,038.80 kg

Load Factor = 1.00Total Dead Load = 11,802,443.40 kg

1.4.3 Wind LoadLoad Factor = 1.00Wind Force Fw = 53,000.00 kgWind Moment @ bottom of Footing Mw = 919,550.00 kg-m

1.5 STABILITY CHECK1.5.1 Check against overturning = 919,550.00 kg-m

Stability against overturning due to wind moment is checked when the tank is empty.

Description Weight Distance from C.Gtons m

W1 925607.0 kg 13.327W2 (concrete footing) 43454.4 kg 0Total W 969061.4 kg

Factor of safety against overturning M R/M O= 13.41 > 2Hence, ok

1.5.2 Check against slidingSliding force due to wind F W = 53,000.00 kgResisting force µW = 484,530.70 kgwhere, co-efficient of friction µ = 0.5Factor of safety against overturning FR/F W = 9.14 > 1.5

Hence, ok

1.6 PILE BEARING FROM STRUCTURE1.6.1 Loading Check per Footing (Max Weight)

HORIZONTAL FORCE CALCULATION FROM WINDFrom Doc. FA9104D-A-31-001(page 36 of 36)Loadind data for each columnHorizontal wind load; Fwh = = 53,000.00 kg

1.6.2 VERTICAL FORCE CALCULATION FROM WINDFrom Doc. FA9104D-A-31-001(page 36 of 36)Loadind data for each column

Vertical Force from wind = 54,830.00 kg

PILE rxi r2xi

a 1,3 1.5 4.5

b 1,3 1.5 4.5

c 1,3 1.5 4.5

13.5

tons-m

0.012335564.5

Mo = Mw

M R

10000 m3 VCM STORAGE TANK

TPC VINA

DESIGN CALCULATION FOR SPHERE TANK FOUNDATION

12335564.5

6 of 25

Page 7: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No. J-6101Subject: Date: 11-Jun-07Client: Revision: 3

10000 m3 VCM STORAGE TANK

TPC VINA

DESIGN CALCULATION FOR SPHERE TANK FOUNDATION

HOR. LOADSEMPTY OPERATING WIND WIND (kg)

1 61,707.13 596,864.47 54,830.00 53,000.00 2 , 15 61,707.13 596,864.47 54,830.00 53,000.00 3 , 14 61,707.13 596,864.47 54,830.00 53,000.00 4 , 13 61,707.13 596,864.47 54,830.00 53,000.00 5, 12 61,707.13 596,864.47 54,830.00 53,000.00 6 , 11 61,707.13 596,864.47 54,830.00 53,000.00 7, 10 61,707.13 596,864.47 54,830.00 53,000.00 8 , 9 61,707.13 596,864.47 54,830.00 53,000.00

1.6.3 LOADING COMBINATION1) CASE - 1 : OPERATION + WIND AT EACH PIER

= OL + WT. OF FOUNDATION + WLV = 704,950.23 kg

Mw = = 87,450.00 kg-m

Ri max= = 88,044.47 kg 88.0 ton/pile

= 68,611.14 kg

Ri min=

where n = no of piles per footing = 9.00xi = moment arm from center line of load = 1.50

2) CASE - 2 : TEST + 0.25 WIND AT EACH PIER

= TEST + WT. OF FOUNDATION + 0.25 WLV = 800,563.26 kg

Mw = = Fh x ( Hp + Hf ) x 0.25 = 21,862.50 kg-m

Ri max= = 91,380.64 kg 91.4 ton/pile

= 86,522.31 kg

Ri min=

where n = no of piles per footing = 9.00xi = moment arm from center line of load = 1.50

3) CASE - 3 : TEST LOAD = 1.0 DL

U = 1.0 x ( TEST + WEIGHT OF FOUNDATION ) = 786,855.76 kg = n = 9.00 = R

R = U 87,428.42 kg 87.4 ton/pile

n

4) CASE - 4 : TEST LOAD = 1.4 DL

U = 1.4 x ( TEST + WEIGHT OF FOUNDATION ) = 1,101,598.06 kg = n = 9.00 = Ru

Ru = U 122399.78 kg 122.4 ton/pile

nREMARKS:

1) Max Load on Pile for Case Numbers 1 to 3 only = 91,380.64 kg 91.4 ton/pile

2) -Design Safe Load on Pile ( As per Boring Log on N2,N3,N4 ) = 121,000.00 kg 121.0 ton/pile

-Static Load Test on Pile 270,000.00 kg 270.0 ton/pile

( As per Pilot pile report;Doc .no. TREL-6101-PLPR-001 )3) Governing Load for Design of Foundation shall be 1.4 TEST WEIGHT = 122,399.78 kg

Ultimate Loading for Ultimate Strength Design ( Case No. 4 )

733,600.00

Reaction/ pile

Ultimate Reaction/ pileNo. of Piles

No. of Piles

PIER NO.VERTICAL LOADS ( kg )

= Fh x ( Hp + Hf )

733,600.00

733,600.00 733,600.00

733,600.00 733,600.00

733,600.00

733,600.00

REMARKSTEST

ω∑

2^)(

xixi

n ∑Μ

±∑ ωω

2^)(

xixi

n ∑Μ

±∑ ωω

ω∑

2^)(

xixi

n ∑Μ

±∑ ωω

2^)(

xixi

n ∑Μ

±∑ ωω

ω∑

ω∑

ω∑

ω∑

7 of 25

Page 8: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

Design of Sphere Tank Foundation

1.7 FOOTING DESIGN F1

1.7.1 Moment @ Critical Section for flexural shear

a = distance a (spacing of piles) a = 1.500 mCritical section for flexural shear y = 0.600 mReaction per Pile Ru = 122,399.78 kg/pile 1,200,741.89 NFlexural shear @ critical section V =3*R Vu = 367,199.35 kg 3,602,225.67 NMoment M Mu = 220,319.61 kg - m 2,161,335,401.57 N-mm

1.7.2 Allowable Shear of Pile CapACI 318-95 Cl. 11.8.7Computation of Shear Stress for Pile CapsAllowable Shear of Pile Cap (Newton) Vu (allow ) = 463,857.95 kg 4,550,446.49 N

Vu (allow) > V (actual) safe for flexural shear

Vc =

ACI CODE :Strength Reduction factor for Shear & torsion for Ultimate Stength Design = 0.85

where:Mu = Ultimate MomentVu = Flexural Shear Load @ critical sectionbw = Length of the Shear surfaced(eff) = effective depth of the shear surfaceMu/Vud = shall be computed @ a critical section midway between support face & the center line of loadUse ρ min ACI 10.5.4 = 0.0020

11-Jun-07DESIGN CALCULATION FOR SPHERE TANK FOUNDATION

TPC VINA 4

10000 m3 VCM STORAGE TANK

0.85 VcVu (allow) =

J-6101

Hf/2 Wc Hf/2

a

Lf

Wf

y

Hf

xbwdMuVudcfsqrtx

VudMu

⎥⎦⎤

⎢⎣⎡ +⎥⎦

⎤⎢⎣⎡ − ρ237.17)'(158.05.25.3

8 of 25

Page 9: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

11-Jun-07DESIGN CALCULATION FOR SPHERE TANK FOUNDATION

TPC VINA 4

10000 m3 VCM STORAGE TANK J-6101

1.7.3 Punching Shear

Note: Loadings are being distributed unto piles,neglect upward soil pressure on punching area

Strength Reduction factor σ = 0.85

Punching Shear Force Fp = 9,605,935.12 N

Punching Perimeter bo = 11200 mm

Punching Shear Stress (Mpa) Vp = 1.09084 N/mm2

Allowable Punching stress (Mpa) = 1.51294 N/mm2

Vp (allow) > Vp (actual) safe for punching shear

1.8 REBAR REQUIREMENTS

Ultimate Moment Mu Mu = 2,161,335,401.57 N-mmStrenth reduction factor φ = 0.90R = Mu / φ bd^2 R = 0.759 N/m2

ρ = 0.00203

ρ(min) = 0.00200

ρ > ρ(min) use computed steel ratio

Bottom rebar (bothways) As(req) = 8,110.52 mm2

∅ = 25 mmN = 16.52 nos. say 17 nos.

Top rebar (bothways) As(req) = 8000.00 mm2

∅ = 25 mmN = 16.30 nos. say 17 nos.

Main Reinforcement therefore use 17-DB 25 bothwaysSecondary Reinforcement Reinforcement 17 - DB 25 bothways

cfvp '31

=

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−=

cfR

fycf

'85.0211'85.0

ρ

9 of 25

Page 10: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

Design of Sphere Tank Foundation

2 FOOTING DESIGN F2

y = 600.0 mm.y' = ( 600*2+1307*1)/3

= 836.0 mm.main bar = 25.0 mm.Hf = 1100.0 mm.Covering = 75.0 mm.d = 1012.5 mm.b = 4707 mm.

Compressive strength of concrete f'c = 210.00 kg/cm2 20.60 N/mm2

Yield strength of Reinforcement fy = 3900.00 kg/cm2 382.59 N/mm2

2.1 Moment @ Critical Section for flexural shearCritical section for flexural shear y' = 0.836 mReaction per Pile Ru = 122,399.78 kg/pile 1,200,741.89 NFlexural shear @ critical section V =3*R Vu = 367,199.35 kg 3,602,225.67 NMoment M Mu = 306,978.66 kg - m 3,011,460,659.52 N-mm

2.2 Allowable Shear of Pile CapACI 318-95 Cl. 11.8.7Computation of Shear Stress for Pile CapsAllowable Shear of Pile Cap (Newton) Vu (allow ) = 394,138.82 kg 3,866,501.85 N

Vu (allow) > V (actual) safe for flexural shear

Vc =

ACI CODE :Strength Reduction factor for Shear & torsion for Ultimate Stength Design = 0.85

where:Mu = Ultimate MomentVu = Flexural Shear Load @ critical sectionbw = Length of the Shear surfaced(eff) = effective depth of the shear surfaceMu/Vud = shall be computed @ a critical section midway between support face & the center line of loadUse ρ min ACI 10.5.4 = 0.0020

Vu (allow) = 0.85 Vc

TPC VINA 4

DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-0710000 m3 VCM STORAGE TANK J-6101

xbwdMuVud

cfsqrtxVudMu

⎥⎦⎤

⎢⎣⎡ +⎥⎦

⎤⎢⎣⎡ − ρ237.17)'(158.05.25.3

10 of 25

Page 11: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:TPC VINA 4

DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-0710000 m3 VCM STORAGE TANK J-6101

2.3 Punching Shear

Note: Loadings are being distributed unto piles,neglect upward soil pressure on punching areaStrength Reduction factor σ = 0.85Punching Shear Force Fp = 6,929,742.41 NPunching Perimeter bo = 11600 mmPunching Shear Stress (Mpa) Vp = 0.68567 N/mm2

Allowable Punching stress (Mpa) = 1.51294 N/mm2

Vp (allow) > Vp (actual) safe for punching shear

2.4 REBAR REQUIREMENTS

Ultimate Moment Mu Mu = 3,011,460,659.52 N-mmStrenth reduction factor φ = 0.90R = Mu / φ bd^2 R = 0.693 N/mm2

ρ = 0.00185

ρ(min) = 0.00200

ρ(beam) > ρ(min) therefore use min steel ratio

Bottom rebar (bothways) As(req) = 9,531.68 mm2

∅ = 25 mmN = 19.42 nos. say 20 nos.

Top rebar (bothways) As(req) = 9,531.68 mm2

∅ = 25 mmN = 19.42 nos. say 20 nos.

Main Reinforcement therefore use 20-DB 25 bothwaysSecondary Reinforcement Reinforcement 20 - DB 25 bothways

cfvp '31

=

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−=

cfR

fycf

'85.0211'85.0ρ

11 of 25

Page 12: a101 Design Calculation for Foundation of New Vcm Storage Tank

Proj. No.

Revision:1 Design of Tie beam1.1 Design Information

-Compressive strength of concrete f'c = 210.00 kg/cm2

-Yield strength of Reinforcement fy = 3900.00 kg/cm2

-Unit Weight of Soil qs = 1800.00 kg/m2

- Width b = 60 cm- Height h = 80 cm- Beam length l = 1.53 m.- clear cover to reinforcement = 5.0 cm- Main re bar dia = 2 cm- effective depth d = 74 cm- Moment from soil weight M1 = 184.35 kg.m- Moment from wind load M2 = 34,450.00 kg.m- Sum Moment M = 34,634.35 kg.m

1.2 DesignDesign moment at Ultimate limit state

Mu = 1.4*M = 48,488.08 kg-mm = M/bd2 = 14.758q ={f'c-√ (f'c2-4x0.59xf'cxm)} / (2x0.59xf'c) = 0.0735ρ = q*f'c/fy = 0.0040A s required = ρ*100*b = 23.7 cm2

Min. reinforcement As (10.5.1 of ACI-318) = 0.00359Ac = 17.232 cm2

provided reinforcement of 8 - T-20 = 25.12 cm2

Hence, Okay!Top bars provided reinforcement of 6 - T-20 = 18.84 cm2

Hence, Okay!1.3 Shear stress

Max.shear at support Vu = 1.73128 tonsMax. allowable shear stress (Item 11.03) Vc = 0.53 * f'c^

1/2 * b * d = 34.1 tonsVu<Vc

maximum spacing of stirrup S<d/2<60cm.use 12mm @ 350 c/c

Project: 1000 m3 VCM Storage Tank J_6101Subject:

Design Calculation for Tie BeamDate: 11 Jun 07

4

12 of 25

Page 13: a101 Design Calculation for Foundation of New Vcm Storage Tank

Proj. No.

Revision:

DESIGN OF RECTANGULAR TIE COLUMN(Axially Loaded)

1.0 LOADING DATA FOR EACH COLUMN (FROM TANK CALCULATION)Short term load (Hydrostatic load) FFW = 733,600.00 kg.Vertical wind load FFV = 4,000.00 kg.

2.0 DESIGN CHECK

Grade of concrete f cylinder = 210 kg/cm2 20.60 N/mm2

Grade of reinforcement steel SD(39) f y = 3900 kg/cm2 382.59 N/mm2

Reinforcing bar dia. dia = 25 mmno of bars n = 36 pcs.lateral ties dia dia = 10 mmdimension of column a = 1800 mmdimension of column b = 1800 mmArea of steel As = 17,671.46 mm2 176.71 cm2

Area gross of concrete = a x b Ag = 3,240,000.00 mm2 32400.00 cm2

steel ratio = As / Ag ρ = 0.00545 Vertical load for design =(FFW+FFV) PT = 737,600.00 kg

strength reduction factor (tiedcolumn) ϕ = 0.7P (allow) = ϕ∗0.80*[(.85f'c(1-ρg)+fy*ρg)]*Ag P = 3,606,984.3 kg

P(allow.) > PT, okArea of Steel bar Minimum for Pedestal (Asmin) = .005 Ag (cm2) Asmin = 16,200.00 mm2

Area of Steel bar Furnished As = 17,671.46 mm2

Spacing of lateral ties (least of the following)16* reinf. Bar dia = 400 mm48* tie dia = 480 mmleast dimension column = 1800 mm

Spacing of lateral ties = 400 mm

* for lateral ties use spacing of 320 mm

therefore use1800x1800,36DB25Reinforcing Bars,lateral ties dia10mm spaced at400c/c

therefore use1800x1800,36DB25Reinforcing Bars,lateral ties dia10mm spaced at400c/c

Project: 1000 m3 VCM Storage Tank J_6101Subject:

Design Calculation for Sphere Tank FoundationDate: 11 Jun 07

4

13 of 25

Page 14: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

Design of Sphere Tank Foundation

FOOTING DESIGN F3

y = 600.0 mm.

y' = 722.0 mm.main bar = 25.0 mm.Hf = 1000.0 mm.Covering = 75.0 mm.d = 912.5 mm.b = 4000 mm.

Compressive strength of concrete f'c = 210.00 kg/cm2 20.60 N/mm2

Yield strength of Reinforcement fy = 3900.00 kg/cm2 382.59 N/mm2

Moment @ Critical Section for flexural shearCritical section for flexural shear y' = 0.722 mReaction per Pile Ru = 122,399.78 kg/pile 1,200,741.89 NFlexural shear @ critical section V =3*R Vu = 367,199.35 kg 3,602,225.67 NMoment M Mu = 265,117.93 kg - m 2,600,806,933.22 N-mm

Allowable Shear of Pile CapACI 318-95 Cl. 11.8.7Computation of Shear Stress for Pile CapsAllowable Shear of Pile Cap (Newton) Vu (allow ) = 377,973.81 kg 3,707,923.12 N

Vu (allow) > V (actual) safe for flexural shear

Vc =

ACI CODE :Strength Reduction factor for Shear & torsion for Ultimate Stength Design = 0.85

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4

Vu (allow) = 0.85 Vc

xbwdMuVudcfsqrtx

VudMu

⎥⎦⎤

⎢⎣⎡ +⎥⎦

⎤⎢⎣⎡ − ρ237.17)'(158.05.25.3

x y x y45 35922 98184 35873 98164 49 2057 34430 98027 34445 97966 -15 6169 32938 97870 32956 97882 -18 -1241 35765 99676 35749 99719 16 -4353 34273 99519 34322 99540 -49 -2165 32781 99362 32806 99361 -25 137 35608 101167 35625 101175 -17 -849 34116 101011 34147 100988 -31 2361 32625 100854 32649 100832 -24 22

SUM -114 43Max. Deviation =(x^2+y^2)^0.5 = 121.84 mm.

∆ y(mm.)Design ActualPile No. ∆ x(mm.)

y=600

y'=722

REMARKS:1) Max Load on Pile for Case Numbers 1 to 3 only = 91,380.64 kg 91.4 ton/pile

2) -Design Safe Load on Pile ( As per Boring Log on N2,N3,N4 ) = 121,000.00 kg 121.0 ton/pile

-Static Load Test on Pile 270,000.00 kg 270.0 ton/pile

( As per Pilot pile report;Doc .no. TREL-6101-PLPR-001 )3) Governing Load for Design of Foundation shall be 1.4 TEST WEIGHT = 122,399.78 kg

Ultimate Loading for Ultimate Strength Design ( Case No. 4 )

From F1 LOADING COMBINATION

14 of 25

Page 15: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4where:Mu = Ultimate MomentVu = Flexural Shear Load @ critical sectionbw = Length of the Shear surfaced(eff) = effective depth of the shear surfaceMu/Vud = shall be computed @ a critical section midway between support face & the center line of loadUse ρ min ACI 10.5.4 = 0.0020

Punching Shear

Note: Loadings are being distributed unto piles,neglect upward soil pressure on punching areaStrength Reduction factor σ = 0.85Punching Shear Force Fp = 6,896,260.88 NPunching Perimeter bo = 11200 mmPunching Shear Stress (Mpa) Vp = 0.78313 N/mm2

Allowable Punching stress (Mpa) = 1.51294 N/mm2

Vp (allow) > Vp (actual) safe for punching shear

REBAR REQUIREMENTS

Ultimate Moment Mu Mu = 2,600,806,933.22 N-mmStrenth reduction factor φ = 0.90R = Mu / φ bd^2 R = 0.868 N/mm2

ρ = 0.00233

ρ(min) = 0.00200

ρ(beam) > ρ(min) use computed steel ratio

Bottom rebar (bothways) As(req) = 8,493.41 mm2

∅ = 25 mmN = 17.30 nos. say 18 nos.

Top rebar (bothways) As(req) = 8,000.00 mm2

∅ = 25 mmN = 16.30 nos. say 17 nos.

Main Reinforcement therefore use 18-DB 25 bothwaysSecondary Reinforcement Reinforcement 17 - DB 25 bothways

cfvp '31

=

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−=

cfR

fycf

'85.0211'85.0ρ

15 of 25

Page 16: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

Design of Sphere Tank Foundation

FOOTING DESIGN F4

y' < y Use y criticaly = (2500-1800/2)

= 1600.0 mm.main bar = 25.0 mm.Hf = 1600.0 mm.Covering = 75.0 mm.d = 1512.5 mm.b1 = 4707 mm.b2 = 5707 mm.

Compressive strength of concrete f'c = 210.00 kg/cm2 20.60 N/mm2

Yield strength of Reinforcement fy = 3900.00 kg/cm2 382.59 N/mm2

Moment @ Critical Section for flexural shearCritical section for flexural shear y' = 1.600 mReaction per Pile Ru = 125,999.78 kg/pile 1,236,057.89 NFlexural shear @ critical section V =3*R Vu = 377,999.35 kg 3,708,173.67 NMoment M Mu = 604,798.97 kg - m 5,933,077,870.85 N-mm

Allowable Shear of Pile CapACI 318-95 Cl. 11.8.7Computation of Shear Stress for Pile CapsAllowable Shear of Pile Cap (Newton) Vu (allow ) = 397,257.43 kg 3,897,095.40 N

Vu (allow) > V (actual) safe for flexural shear

Vc =

ACI CODE :Strength Reduction factor for Shear & torsion for Ultimate Stength Design = 0.85

where:Mu = Ultimate MomentVu = Flexural Shear Load @ critical sectionbw = Length of the Shear surfaced(eff) = effective depth of the shear surfaceMu/Vud = shall be computed @ a critical section midway between support face & the center line of loadUse ρ min ACI 10.5.4 = 0.0020

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4

0.85 VcVu (allow) =

xbwdMuVudcfsqrtx

VudMu

⎥⎦⎤

⎢⎣⎡ +⎥⎦

⎤⎢⎣⎡ − ρ237.17)'(158.05.25.3

<< L >>

<< W

>>

REMARKS:1) Max Load on Pile for Case Numbers 1 to 3 only = 91,380.64 kg 91.4 ton/pile

2) -Design Safe Load on Pile ( As per Boring Log on N2,N3,N4 ) = 121,000.00 kg 121.0 ton/pile

-Static Load Test on Pile 270,000.00 kg 270.0 ton/pile

( As per Pilot pile report;Doc .no. TREL-6101-PLPR-001 )3) Governing Load for Design of Foundation shall be 1.4 TEST WEIGHT = 122,399.78 kg

Ultimate Loading for Ultimate Strength Design ( Case No. 4 )

From F1 LOADING COMBINATION

16 of 25

Page 17: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4Punching Shear

Note: Loadings are being distributed unto piles,neglect upward soil pressure on punching areaStrength Reduction factor σ = 0.85Punching Shear Force Fp = 7,097,169.68 NPunching Perimeter bo = 13600 mmPunching Shear Stress (Mpa) Vp = 0.40258 N/mm2

Allowable Punching stress (Mpa) = 1.51294 N/mm2

Vp (allow) > Vp (actual) safe for punching shear

REBAR REQUIREMENTS

Ultimate Moment Mu Mu = 5,933,077,870.85 N-mmStrenth reduction factor φ = 0.90R = Mu / φ bd^2 R = 0.612 N/mm2

ρ = 0.00163

ρ(min) = 0.00200

ρ(beam) > ρ(min) therefore use min steel ratio

Bottom rebar ( parallel L) As(req) = 14,238.68 mm2

∅ = 25 mmN = 29.01 nos. say 30 nos.

Top rebar ( parallel L) As(req) = 14,238.68 mm2

∅ = 25 mmN = 29.01 nos. say 30 nos.

Bottom rebar ( parallel W) As(req) = 17,263.68 mm2

∅ = 25 mmN = 35.17 nos. say 36 nos.

Top rebar ( parallel W) As(req) = 17,263.68 mm2

∅ = 25 mmN = 35.17 nos. say 36 nos.

Main Reinforcement therefore use 30-DB 25 ( at top, parallel L)Secondary Reinforcement Reinforcement therefore use 30-DB 25 ( at bottom, parallel L)

therefore use 36-DB 25 ( at top, parallel W)therefore use 36-DB 25 ( at bottom, parallel W)

cfvp '31

=

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−=

cfR

fycf

'85.0211'85.0ρ

17 of 25

Page 18: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

Design of Sphere Tank Foundation

FOOTING DESIGN F7

y = 600.0 mm.y' = (600*2+1600*1)/3

= 933.3 mm.main bar = 25.0 mm.Hf = 1200.0 mm.Covering = 75.0 mm.d = 1112.5 mm.b1 = 4275 mm.b2 = 5707 mm.

Compressive strength of concrete f'c = 210.00 kg/cm2 20.60 N/mm2

Yield strength of Reinforcement fy = 3900.00 kg/cm2 382.59 N/mm2

Moment @ Critical Section for flexural shearCritical section for flexural shear y' = 0.933 mReaction per Pile Ru = 125,999.78 kg/pile 1,236,057.89 NFlexural shear @ critical section V =3*R Vu = 377,999.35 kg 3,708,173.67 NMoment M Mu = 352,786.80 kg - m 3,460,838,485.54 N-mm

Allowable Shear of Pile CapACI 318-95 Cl. 11.8.7Computation of Shear Stress for Pile CapsAllowable Shear of Pile Cap (Newton) Vu (allow ) = 461,864.85 kg 4,530,894.17 N

Vu (allow) > V (actual) safe for flexural shear

Vc =

ACI CODE :Strength Reduction factor for Shear & torsion for Ultimate Stength Design = 0.85

where:Mu = Ultimate MomentVu = Flexural Shear Load @ critical section

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4

0.85 VcVu (allow) =

xbwdMuVudcfsqrtx

VudMu

⎥⎦⎤

⎢⎣⎡ +⎥⎦

⎤⎢⎣⎡ − ρ237.17)'(158.05.25.3

<< L

>>

<< W >>

REMARKS:1) Max Load on Pile for Case Numbers 1 to 3 only = 91,380.64 kg 91.4 ton/pile

2) -Design Safe Load on Pile ( As per Boring Log on N2,N3,N4 ) = 121,000.00 kg 121.0 ton/pile

-Static Load Test on Pile 270,000.00 kg 270.0 ton/pile

( As per Pilot pile report;Doc .no. TREL-6101-PLPR-001 )3) Governing Load for Design of Foundation shall be 1.4 TEST WEIGHT = 122,399.78 kg

Ultimate Loading for Ultimate Strength Design ( Case No. 4 )

From F1 LOADING COMBINATION

18 of 25

Page 19: a101 Design Calculation for Foundation of New Vcm Storage Tank

Project: Project No.Subject: Date:Client: Revision:

10000 m3 VCM STORAGE TANK J-6101DESIGN CALCULATION FOR SPHERE TANK FOUNDATION 11-Jun-07

TPC VINA 4bw = Length of the Shear surfaced(eff) = effective depth of the shear surfaceMu/Vud = shall be computed @ a critical section midway between support face & the center line of loadUse ρ min ACI 10.5.4 = 0.0020

Punching Shear

Note: Loadings are being distributed unto piles,neglect upward soil pressure on punching areaStrength Reduction factor σ = 0.85Punching Shear Force Fp = 6,963,233.75 NPunching Perimeter bo = 12000 mmPunching Shear Stress (Mpa) Vp = 0.60682 N/mm2

Allowable Punching stress (Mpa) = 1.51294 N/mm2

Vp (allow) > Vp (actual) safe for punching shear

REBAR REQUIREMENTS

Ultimate Moment Mu Mu = 3,460,838,485.54 N-mmStrenth reduction factor φ = 0.90R = Mu / φ bd^2 R = 0.727 N/mm2

ρ = 0.00194

ρ(min) = 0.00200

ρ(beam) > ρ(min) therefore use min steel ratio

Bottom rebar ( parallel L) As(req) = 9,511.88 mm2

∅ = 25 mmN = 19.38 nos. say 20 nos.

Top rebar ( parallel L) As(req) = 9,511.88 mm2

∅ = 25 mmN = 19.38 nos. say 20 nos.

Bottom rebar ( parallel W) As(req) = 12,698.08 mm2

∅ = 25 mmN = 25.87 nos. say 26 nos.

Top rebar ( parallel W) As(req) = 12,698.08 mm2

∅ = 25 mmN = 25.87 nos. say 26 nos.

Main Reinforcement therefore use 20-DB 25 ( at top, parallel L)Secondary Reinforcement Reinforcement therefore use 20-DB 25 ( at bottom, parallel L)

therefore use 26-DB 25 ( at top, parallel W)therefore use 26-DB 25 ( at bottom, parallel W)

cfvp '31

=

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−=

cfR

fycf

'85.0211'85.0ρ

19 of 25

Page 20: a101 Design Calculation for Foundation of New Vcm Storage Tank

20 of 25

Page 21: a101 Design Calculation for Foundation of New Vcm Storage Tank

21 of 25

Page 22: a101 Design Calculation for Foundation of New Vcm Storage Tank

A#3

22 of 25

Page 23: a101 Design Calculation for Foundation of New Vcm Storage Tank

E N E N E N1 16748 112114 0 05 18216 112426 18190 112439 -26 139 19683 112738 19638 112786 -45 48

13 17060 110647 17077 110668 17 2117 18533 110997 18533 110997 0 021 19995 111271 19998 111274 3 325 17372 109180 17404 109206 32 2629 18839 109492 18820 109522 -19 3033 20306 109803 20348 109824 42 21

sum/9 0 18Group max. deviation(X^2+Y^2)^0.5 18 mm.< 50

2 22817 112738 22846 112689 29 -496 24284 112426 24268 112413 -16 -13

10 25752 112114 25785 112109 33 -514 22505 111271 22478 111268 -27 -318 23973 110959 23962 111005 -11 4622 25440 110647 25457 110668 17 2126 22194 109803 22188 109787 -6 -1630 23661 109492 23642 109503 -19 1134 25128 109180 25109 109220 -19 40

sum/9 -2 4Group max. deviation(X^2+Y^2)^0.5 4.47 mm.< 50

136 28459 111827 28456 111842 -3 157 29829 109958 29799 109975 -30 17

11 31042 109076 31063 109073 21 -315 27734 109626 27752 109634 18 819 28947 108744 28962 108746 15 223 30161 107862 30211 107851 50 -1127 26852 108412 26846 108417 -6 5

31 28065 107531 28101 107587 36 5635 29279 106649 29284 106621 5 -28

sum/9 12 7Group max. deviation(X^2+Y^2)^0.5 13.89 mm.< 50

4 33140 106747 33159 106755 19 88 33890 105448 33885 105486 -5 38

12 34640 104148 34642 104157 2 916 31841 105997 31865 105967 24 -3020 32591 104698 32633 104694 42 -424 33341 103398 33384 103395 43 -328 30542 105247 30542 105268 0 21

32 31292 103948 31256 104016 -36 6836 32042 102648 32056 102609 14 -39

sum/9 11 8Group max. deviation(X^2+Y^2)^0.5 13.6 mm.< 122

37 35608 101167 35625 101175 17 841 35765 99676 35749 99719 -16 4345 35922 98184 35873 98164 -49 -2049 34116 101011 34147 100988 31 -2353 34273 99519 34312 99540 39 21

57 34430 98027 34445 97966 15 -6161 32625 100854 32649 100832 24 -2265 32781 99362 32806 99361 25 -169 32938 97870 32956 97882 18 12

sum/9 12 -5Group max. deviation(X^2+Y^2)^0.5 13 mm.< 122

38 35594 95066 35592 95062 -2 -442 35131 93640 35101 93644 -30 446 34667 92213 34638 92240 -29 2750 34168 95530 34203 95512 35 -1854 33704 94103 33733 94117 29 1458 33241 92677 33251 92670 10 -762 32741 95994 32720 96004 -21 1066 32278 94567 32297 94563 19 -470 31814 93140 31841 93133 27 -7

sum/9 4 2Group max. deviation(X^2+Y^2)^0.5 4.47 mm.< 50

10,000 M3 VCM SPHERE TANK PILE COORDINATE

Foundation Pile NoLocation design location actual Diffirence

TPC VINA Fdn.type

1 F-1

2 F-1

3 F-2

4 F-3

5 F-3

6 F-1

10,000 M3 VCM Thai Rotary Engineering and Lilama 18

23 of 25

Page 24: a101 Design Calculation for Foundation of New Vcm Storage Tank

E N E N E N

10,000 M3 VCM SPHERE TANK PILE COORDINATE

Foundation Pile NoLocation design location actual Diffirence

TPC VINA Fdn.type

10,000 M3 VCM Thai Rotary Engineering and Lilama 18

39 33100 89499 33104 89460 4 -3943 32096 88384 32088 88345 -8 -3947 31093 87269 31125 87285 32 1651 31985 90502 32004 90513 19 1155 30981 89388 30971 89402 -10 1459 29978 88273 29981 88249 3 -2463 30870 91506 30868 91494 -2 -1267 29867 90391 29883 90380 16 -1171 28863 89277 28837 89268 -26 -9

sum/9 3 -10Group max. deviation(X^2+Y^2)^0.5 10.44 mm.< 50

40 28557 85427 28582 85383 25 -4444 27186 84817 27193 84816 7 -148 25816 84207 25851 84251 35 4452 27947 86797 27928 86795 -19 -2

56 26576 86187 26513 86119 -63 -6860 25206 85577 25226 85537 20 -4064 27336 88168 27350 88168 14 068 25966 87557 25984 87546 18 -1172 24596 86947 24613 86976 17 29

sum/9 6 -10Group max. deviation(X^2+Y^2)^0.5 11.66 mm.< 122

112 21250 86555 21214 86516 -36 -39114 22750 86555 22779 86591 29 36

116 19750 85055 19766 84980 16 -75118 21250 85055 21268 85050 18 -5

120 22750 85055 22779 84950 29 -105122' 19043 82848 19115 82838 72 -10

124 21250 83555 21278 83520 28 -35126 22750 83555 22775 83525 25 -30

sum/9 20 -29Group max. deviation(X^2+Y^2)^0.5 35.23 mm.< 50

127 15164 88168 15174 88193 10 25128 16534 87557 16542 87528 8 -29129 17904 86947 17937 86960 33 13130 14553 86797 14589 86830 36 33131 15924 86187 15938 86177 14 -10

132 17294 85577 17345 85539 51 -38133 13943 85427 13979 85392 36 -35

134 15314 84817 15250 84741 -64 -76135 16684 84207 16684 84188 0 -19

sum/9 14 -15Group max. deviation(X^2+Y^2)^0.5 20.52 mm.< 122

109 11630 91506 11585 91521 -45 15111 12633 90391 12636 90442 3 51

113 13637 89277 13698 89311 61 34115 10515 90502 10497 90611 -18 109

117 11519 89388 11563 89421 44 33119 12522 88273 12554 88296 32 23121 9400 89499 9399 89522 -1 23123 10404 88384 10424 88427 20 43

125 11407 87269 11442 87347 35 78sum/9 15 45

Group max. deviation(X^2+Y^2)^0.5 47.43 mm.< 12276' 6014 95520 6086 95585 72 65

80 7369 93640 7246 93731 -123 9184 7833 92213 7840 92226 7 1388 8332 95530 8329 95495 -3 -35

92 8796 94103 8741 94130 -55 2796 9259 92677 9219 92672 -40 -5

100 9759 95994 9808 95966 49 -28104 10222 94567 10254 94547 32 -20108 10686 93140 10712 93170 26 30

sum/9 -4 15Group max. deviation(X^2+Y^2)^0.5 15.52 mm.< 122

7 F-1

8 F-3

9 F-7

10 F-3

11 F-3

12 F-3

24 of 25

Page 25: a101 Design Calculation for Foundation of New Vcm Storage Tank

E N E N E N

10,000 M3 VCM SPHERE TANK PILE COORDINATE

Foundation Pile NoLocation design location actual Diffirence

TPC VINA Fdn.type

10,000 M3 VCM Thai Rotary Engineering and Lilama 18

75' 6364 101921 6313 101933 -51 1279 6735 99676 6732 99688 -3 1283 6578 98184 6571 98206 -7 2287 8384 101011 8375 101031 -9 20

91 8227 99519 8172 99503 -55 -1695 8070 98027 8020 97990 -50 -37

99' 10870 100749 10749 100758 -121 9103' 10713 99257 10614 99280 -99 23

107' 10556 97766 10520 97723 -36 -43sum/9 -48 0

Group max. deviation(X^2+Y^2)^0.5 48 mm.< 5074 9360 106747 9349 106782 -11 3578 8610 105448 8610 105440 0 -882 7860 104148 7873 104185 13 3786 10659 105997 10647 105976 -12 -2190 9909 104698 9916 104736 7 3894 9159 103398 9115 103425 -44 27

98 11958 105247 11925 105305 -33 58102 11208 103948 11199 103968 -9 20106 10458 102648 10440 102710 -18 62

sum/9 -12 28Group max. deviation(X^2+Y^2)^0.5 30.46 mm.< 122

73 13885 110839 13913 110890 28 5177 12671 109958 12715 109960 44 281 11458 109076 11433 109102 -25 2685 14766 109626 14745 109623 -21 -389 13553 108744 13578 108789 25 4593 12339 107862 12289 107890 -50 2897 15648 108412 15698 108455 50 43

101 14435 107531 14454 107547 19 16105 13221 106649 13270 106724 49 75

sum/9 13 31Group max. deviation(X^2+Y^2)^0.5 33.62 mm.< 122

15 F-3

13 F-4

14 F-3

25 of 25