26
HEAT AND MASS TRANSFER TO PARTICLES IN FLUIDIZED BED Bo Leckner Avdelningen för Energiteknik Chalmers University of Technology Göteborg, Sweden IEA Technical Meeting, Skive, Denmark, October 2017 1

A1 - Bo LECKNER - HEAT AND MASS TRANSFER TO PARTICLES … LECKNER.pdf · Transfer to a large, fixed, and rounded object in a fluidized bed, Baskakov (1973), 0.19 0.5 0.33 Nu Ar Ar

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • HEAT AND MASS TRANSFER TO PARTICLES IN FLUIDIZED BED

    Bo LecknerAvdelningen för Energiteknik

    Chalmers University of TechnologyGöteborg, Sweden

    IEA Technical Meeting, Skive, Denmark, October 2017

    1

  • 2

    CORRELATIONS: SINGLE‐PHASE FLOW

    Relationships for single spherical particles in single‐phase flow have been determined by Frössling (1938), Ranz‐Marshall (1952) , Rowe (1965)

    Nua=2+0.69Rea0.5Pr0.33   

    Sha=2+0.69Rea0.5Sc0.33

    Gas conduction and gas convection terms, related to the particle diameter da, are analogous for heat and mass transfer in this case.

    Contribution from radiation has to be added in the heat transfer case. 

    Heat transfer Nua=hda/k Pr=cp/kMass transfer Sha=da/D Sc=/D

  • 3

    HEAT AND MASS TRANSFER BETWEEN THE GAS AND ACTIVE PARTICLES IN THE BED

    Two large active particles surrounded by smaller inert particles in a bed with fluidization velocity u.

    Gas passes through the space between the particles with velocity umf/ε

    di

    da

  • APPLICATIONS Various chemical engineering processes in fluidized bed, e.g. in fuel conversion 

    Drying and pyrolysis of fuel particles

    Combustion of char

    4

  • CORRELATIONS: FLUIDIZED BEDThere are many correlations giving different results having a similar structure (Shown for heat transfer (Nu) but analogous for mass transfer (Sh))

    3 2where / and ( ) /

    ( / )

    i c i g i g s g

    n mi a i

    Nu h d k Ar d g

    Nu const Ar d d

    or

    0.33,

    ,where

    (Re / ) Pr

    / Re /a c a g a mf m

    na a mf mf

    f a g

    Nu const c

    Nu h d k u d

    onst

    Transformations, ,

    /Re /

    i a i a

    i mf a mf i a

    Nu Nu d dRe d d

    5

    0.5,Re /(1400 5.22 )i mf Ar Ar

  • Baskakov‐Palchonok’s approach: HEAT AND MASS TRANSFER INTERPOLATED BETWEEN da=di and da>>di

    The interpolation formulae:

    100 102

    104

    106

    10810

    -2

    10 -1

    100

    101

    102

    Archimedes number, Ar

    Nus

    selt

    or S

    herw

    ood

    num

    ber,

    Nu,

    Sh

    Nu, da=di

    Nu, da>>di

    Sh, da=di

    Sh, da>>di

    • Sh1 or Nu1  is the low limit da=di• Shi,∞ or Nui,∞  is the large limit da>>di• Shi or Nui are in between the limits

    10 -2 100 102 104 10 6 10 810-3

    10-2

    10-1

    100

    101

    102

    10 3

    Archimedes number Ar

    Mas

    s an

    d he

    at tr

    ansf

    er c

    oeffi

    cien

    tsre

    late

    d to

    bed

    par

    ticle

    s S

    hi o

    r Nui

    Thin lines da/di= 1 2 5 10 50 100Thick full lines --- ShThick dashed lines---Nu

    6

    ,

    1 ,

    ,

    1 ,

    ( / )

    ( / )

    i ni a

    i

    i mi a

    i

    i

    i

    Nu

    S

    Nud d

    Nu NuSh

    d dSh Shh

  • THE  di=da LIMIT

    7

    fit to data in the limit da=di (Palchonok et al., 1992)

    Nu1 = 6 + 0.117Ari0.39 Pr0.33 Sh1 =2εmf + 0.117Ari0.39 Sc0.33

    100

    102

    104

    106

    10810

    -1

    100

    101

    102

    Ar

    Sh1

    ----- da=di, Palchonok's correlation* Baskakov et al.+ Hsiung and Thodos Palchonok and Tamarin

    100

    102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu 1

    da=di ----Palchonok's correlation+ Turton and Levenspiel* Baskakov et al. (10-->6)o Palchonok and Tamarin Scott et al.(2-->6)

  • THE LARGE ACTIVE PARTICLE LIMIT  da>>di

    8

    Transfer to a large, fixed, and rounded object in a fluidized bed, Baskakov (1973),

    0.19 0.5 0.33, 0.85 0.006 PriNu Ar Ar

    0.5 0.33, 0.009iSh Ar Sc

    The mass (and heat) transfer coefficient goes to asymptotic values as da∞

    (data from Prins 1987)

    0 0.5 1 1.5 2x 10

    4

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    Ar

    Lim

    iting

    mas

    s tra

    nsfe

    r coe

    ffici

    ent m

    /s

    Large particle asymptoteaccording to Baskakov

    0.5 tmes the above

    Lines according to Baskakov.o asymptotic value: Prins diagramx limiting value of da-->infinity: Prins correlation

    0 0.5 1 1.5 2 2.5x 10

    4

    250

    300

    350

    400

    450

    500

    550

    600

    650

    Ar

    h a a

    sym

    ptot

    , W/m

    2 K

    o Prins heat transfer data, da--> infinity----Large-particle limit, Baskakov

  • AVAILABLE HEAT TRANSFER CORRELATIONS

    9

    Scott et al. 2004

    Tsukada and Horio, 1992

    Prins, 1987

    Babosa 1985

    Shah, 1983

    Palchonok and Tamarin, 1983

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Scott's data (modified)Lines for da/di=1, 2 and 2.75(thick--within range, thin--extrapolated)

    0.6 0.26,2 1.0 Re ( )aa mf a

    i

    dNud

    HT: Scott et al. 2004;

    10

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Barbosa et al. dataLines for da=0.002-0.010 (thick--within range, thin--extrapolated)o(upper) extapolated for da=dio(lower) extrapolated for da=0.08 m

    0.09 0.25,max 5.33 ( )ii

    a

    dNu Ard

    HT: Barbosa et al., 1995;

    11

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Tsukada and Horio's dataLines for da=0.002-0.020 (thick--within range, thin--extrapolated)o(upper) extrapolated for da=dio(lower) extrapolated for da=0.08 m

    0.8 0.2,max ,max( / ) ; (7.5 0.1Pr Re )( / )a a i i mf i aNu d d Nu d d

    HT: Tsukada and Horio, 1992:

    12

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Prins'dataLines for da=0.004-0.020 (thick--within range, thin--extrapolated)o(upper) extapolated for da=dio(lower) extrapolated for da=0.08 m

    0.257 0.062,max 3.539 ( ) 0.105( )

    n i ii

    a a

    d dNu Ar where nd d

    HT: Prins, 1987;

    13

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Palchonok and Tamarin's dataLines for da=0.005-0.015, thick lines within range, thin--extrapolated

    0.3 0.2 0.07 0.66,max 0.41 ( ) ( )i ii

    a a

    dNu Ard

    HT:Palchonok and Tamarin, 1983;

    14

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Shah's dataLines for da=0.004-0.020 within rangeo (upper) da=dio (lower) da=0.08 m

    0.158 0.195 0.18,max

    0.695 0.195,max

    7.6 Re ( ) ( ) 40000

    0.463Re ( ) 40000

    paii opt

    a pi

    ii opt

    a

    cdNu for Ard c

    dNu for Ard

    HT: Shah, 1983;

    15

  • 102

    104

    106

    10810

    0

    101

    102

    Ar

    Nu i

    Scott's data (modified)Lines for da/di=1, 2 and 2.75(thick--within range, thin--extrapolated)

    OVERVIEW OF THE PUBLISHED HEAT TRANSFER DATA 

    16

  • Fit of heat transfer data0.66

    , 1 ,( )( / )i i i i aNu Nu Nu Nu d d

    17

  • SELECTED MASS TRANSFER CORRELATIONS

    18

    Scala 2007

    Hayhurst and Parmar 2002

    Prins 1987

  • 102

    104

    106

    10810

    -2

    10-1

    100

    101

    102

    Ar

    Sh i

    Prins' correlationLines for da=2, 4, 8, 10, 14, 20 mmT=273+65 K, eps=0.4

    da=di0.5 Sh (da large)

    1

    , 0.33 1.05

    0.5,

    1 Re(0.105 1.505( / ) )

    0.35 0.29( / ) Re /

    m m

    mf mf ii i a

    mf mf

    i a mf i mf i

    Sh Sc d d

    m d d and u d

    MT: Prins 1987;

    19

  • 102

    104

    106

    10810

    -2

    10-1

    100

    101

    102

    Ar

    Shi

    Scala's datared * measured da=4.6 mmgreen * measured di=0.55 mmo correlation da=0.2; 1; 4.6; 8.2 mm within range+ correlation da=20 mm, Ar>2 10

    4 outside range da=di (extrapolated)

    Data:T=450+273 Kdensity 2500 kg/m3

    D=5.13 10 -6* (T/273) 1.75 m2/s (Sc=2.5)eps=0.44

    0.5*Sh (large da)

    2.0 0.7 ,.

    .MT: Scala, 2007; 

    20

  • OVERVIEW OF THE MASS TRANSFER CORRELATIONS

    21

  • COMPARISON PRINS‐SCALA

    22

    100

    101

    102

    103

    104

    10510

    -2

    10-1

    100

    101

    Ar

    Sh i

    - - - - Prins da=2; 4; 10 mm------- Scala da=2.5; 4; 10 mmScala's conditions

    101

    102

    103

    104

    10510

    -2

    10-1

    100

    101

    Ar

    Sh i

    - - - - Prins da=2; 4; 10 mm------- Scala da=2.5; 4; 10 mmPrins' conditions

    Quantity Scala Prins

    Temperature, K 723 338

    Bed particle density, kg/m3 2500 2750

    Voidage, - 0.44 0.40

    Diffusivity, m2/s 9.4·10-10T1.75 2.8·10-10T1.75

    Sc 0.7 2.6

    Scala’s   conditions in bothcorrelations

    Prins’ conditions in bothcorrelations

  • Fit of mass transfer data1.0

    , 1 ,( )( / )i i i i aSh Sh Sh Sh d d

    23

    10-1

    100

    101

    10210

    -3

    10-2

    10-1

    100

    101

    102

    Active particle size da mm

    Shi

    Scala

    Prins

    Scala

    Prins

    a

    f

    cbe

    d

    T= 723 KDensity 2650 kg/m3

    Diffusivity for oxygen in air

    di=0.1 mm

    di=1.0 mm

  • CONCLUSIONS

    0.66, 1 ,

    1.0, 1 ,

    ( )( / )

    ( )( / )i i i i a

    i i i i a

    Nu Nu Nu Nu d d

    Sh Sh Sh Sh d d

    The agreement between available correlations on heat and mass transfer to active particles in fluidized beds is not extremely high.

    However, the data in the measured ranges are at least within the limits of the Baskakov‐Palchonok approach. 

    Therefore, an estimate of coefficients is obtained by        

    A seemingly more accurate estimation would be given by the  correlation of choice, applied within its measured range. 

    It was shown that most correlations (exception Prins’ for mass transfer) give erroneous values when extrapolated to large active particles.

    Also, despite the dimensionless representation, the correlations depend on the properties of the media, e.g. the Schmidt number in the case of mass transfer.

    24

  • Appendix: HEAT TRANSFER TO AN ACTIVE PARTICLE (a) IN A BED OF INERT PARTICLES (i): Model‐free correlations 

    Some available correlations:

    Tamarin et al. (1982) 

    Tamarin et al. (1985)

    Shah (1983) 

    Cobbinah et al. (1984)

    Prins (1985)

    Barbosa et al. (1993) 

    Scott et al. (2004), Collier et al. (2004)(Cambridge)                                   

    0.207 0.655 ( )aii

    dNu Ard

    0.3 0.2 0.07 0.66,max 0.41 ( ) ( )a ai

    i i

    dNu Ard

    0.158 0.18 0.805max

    0.695 0.805max

    7.6Re ( ) ( ) Re 170

    0.463Re ( ) Re 170

    pa aopt opt

    pi i

    aopt opt

    i

    c dNu forc d

    dNu ford

    0.104 0.464,max 3.254 ( )aa

    i

    dNu Ard

    0.257 0.062,max 3.539 ( ) 0.105( )

    n a ai

    i i

    d dNu Ar where nd d

    .0.14 0.15 0.17max

    ,

    0.61 ( ) ( )p i iai p g g

    cdNu Ard c

    0.6 0.26,2 1.0 Re ( )aa mf a

    i

    dNud

    25

  • 26

    References

    Aerov ME, Todes OM, Hydraulic and Thermal Fundamentals on the Operation of Apparatus with Static and Fluidized Particle Bed (In Russian), Chimia, Leningrad, (1968).

    Avedesian MM, Davidson JF, Combustion of carbon particles in a fluidized bed, Trans. Inst. Chem. Eng., 51, 121–131, 1973.

    Barbosa AL, Steinmetz D., Angelino H, Heat transfer around spherical probes at high temperatures in a fluidized bed, pp 177‐186, Fluidization VIII, Eds J‐F Large and  C Laguérie, Engineering Foundation 1995.

    Baskakov AP, Berg BV, Vitt OK, Filippovsky NF, Kirakosyan VA, Goldobin JM, Maskaev VK, Heat transfer to objects immersed in fluidized beds, Powder Technology 8 (1973) 273‐282.

    Baskakov AP, Filippovskii NF, Munts VA, Ashikhmin AA, Temperature of particles heated in a fluidized bed of inert material, Journal of Engineering Physics 52, 574‐578, 1987. 

    Frössling, N. (1938) The evaporation of falling drops [in German], Gerlands Beiträge zur Geophysik, 52, 170–216.Hsiung TH, Thodos G, Mass transfer in gas‐fluidized beds: measurements of actual driving forces, Chem Engn Sci 32, 581‐592 (1977). 

    Palchonok GI, Tamarin AI, Study of heat exchange between a model particle and a fluidized bed (Translated), pp. 1017‐1022, J. Eng Phys 45 1983.

    Palchonok GI, Dolidovich AF, Andersson S, Leckner B, Calculation of true heat and mass transfer coefficients between particles and a fluidized bed, Fluidization VII, Engineering Foundation, 1992.

    Prins W, Fluidized bed combustion of a single carbon particle, Thesis, Twente University, 1987.

    Ranz, WE., Marshall Jr., WR., Evaporation from drops, Chem. Engn. Progress, 48, (part I) 141‐146 and (part II) 173‐180, (1952) .

    Scala F, Mass transfer around freely moving active particles in the dense phase of a gas fluidized bed of inert particles, Chem. Eng. Sci., 62, 4159, 2007.

    Shah M, Generalized prediction of maximum heat transfer to single cylinders and spheres in gas‐fluidized bed, Heat Transfer Engn. 4, 107‐122, 1983. 

    Tsukada M, Horio M, Maximum heat transfer coefficient for an immersed body in a bubbling fluidized bed, Ind Eng Chen Res 31, 1147‐1156, 1992.

    Turton R, Colakyan M, Levenspiel O, Heat transfer from fluidized beds to immersed fine wires, Powder Technology 53, 195 1987.