A04 Introduction to FEM

Embed Size (px)

Citation preview

  • 8/12/2019 A04 Introduction to FEM

    1/75

    A04 - Introduction to the Finite Element Method 1

    Introduction to the Finite Element Method

    Background Material AERO 306 notes andIntroduction to Aerospace Structural Analysis,Allen and Haisler

    http!!ceaspu"#eas#asu#edu!structures!FiniteElementAnal$sis#htm http!!%%%#m$"&o#net!m$"&ous!Anal$sis!Features!10'4(#htm

    http!!%%%#m$"&o#net!m$"&ous!Anal$sis!)ools!*rocess!1040(#htm http!!larcpu"s#larc#nasa#+o!randt!13!Rand)!.ection/!/11#htmlAssumptionsIt is assumedthat $ou are amiliar %ith "asic FEM theor$ AERO 3062

    and %ith applications to truss or "eam elements and structures, and

    no% FEM theor$ "ased on an ener+$ or ariational ormulation, no% %hat a stiness matri is, no% ho% to assem"le element stiness and orce matrices into

    +lo"al structural2 stiness and orce matrices,

    no% ho% to sole the resultin+ e5uili"rium e5uations 78 9 8 9K q Q= or displacements, and

  • 8/12/2019 A04 Introduction to FEM

    2/75

    A04 - Introduction to the Finite Element Method &

    no% ho% to determine resultin+ strains and stresses#

  • 8/12/2019 A04 Introduction to FEM

    3/75

    A04 - Introduction to the Finite Element Method 3

    .tructures are oten anal$:ed usin+ comple inite element anal$sis

    methods# )hese tools hae eoled oer the past decades since

    earl$ 160;s2 to "e the "asis o most structural desi+n tass# Acandidate structure is anal$:ed su"

  • 8/12/2019 A04 Introduction to FEM

    4/75

    A04 - Introduction to the Finite Element Method 4

    Moral of the story as presented by the chart above= >on;t "eliee that

  • 8/12/2019 A04 Introduction to FEM

    5/75

    A04 - Introduction to the Finite Element Method '

    Aircrat hae man$ main structural components in the %in+s, usela+e,

    tail section, landin+ +ear, etc# as sho%n "elo%

  • 8/12/2019 A04 Introduction to FEM

    6/75

    A04 - Introduction to the Finite Element Method 6

    .tructural mem"ers sho%n a"oe ma$ "e ariousl$ modeled as

    "eams, thin plates, mem"ranes, shells, etc# In some cases, it ma$

    "e necessar$ to perorm a ull 3-> stress anal$sis an elasticit$

    t$pe anal$sis as opposed to an approimate one lie plate theor$2#

  • 8/12/2019 A04 Introduction to FEM

    7/75

    A04 - Introduction to the Finite Element Method (

    )he websin %in+ ri"s and loor "eams, and %in+ and usela+e

    skinsare t$picall$ thin mem"ers that mi+ht "e considered as "ein+

    in a state oplane stress#

    *lane stress descri"es a three-dimensional +eometr$ %herein the

    non-:ero stresses all occur in a sin+le plane# For a thin plate, %e"

    or sin l$in+ in the -$ plane, the onl$ non-:ero stress components

    are , ,xx yy xy #

  • 8/12/2019 A04 Introduction to FEM

    8/75

    A04 - Introduction to the Finite Element Method ?

    @e no% consider the deelopment o a plane stress inite element#

    .uppose %e hae a +eometr$ lie that sho%n "elo% %here the

    thicness is small compared to the other t%o dimensions

    )he onl$ ma

  • 8/12/2019 A04 Introduction to FEM

    9/75

    A04 - Introduction to the Finite Element Method

    Cracet /eometr$ D FEM Mesh, oadin+ and C

    t = 0.5 in.

  • 8/12/2019 A04 Introduction to FEM

    10/75

    A04 - Introduction to the Finite Element Method 10

    otice that the +eometr$ has "een diided up into a num"er o

    rectan+ular re+ions elements2 - these are called Guad elements#

    @e could also use trian+ular elements# @e %ill demonstrate the

    deelopment o the stiness matri and load ector or a trian+ular

    element as sho%n

    "elo%# @e assume that

    plane stress occurs in the

    -$ plane and deine

    displaceent

    coponents , 2u x y and , 2v x y # @e deine

    nodal displaceentsat

    the three corners as

    ode 1 1u and 1v

    ode & &u and &v

    ode 3 3u and 3v

  • 8/12/2019 A04 Introduction to FEM

    11/75

    A04 - Introduction to the Finite Element Method 11

    )he process o deelopin+ the equilibriu equationsor a +ien

    element re5uires that %e utili:e an ener+$ or ariational principle

    or eample, the principle o minimum potential ener+$ +ien "$

    2 0! " + =

    %here is the internal strain ener+$ and J is the eternal potential

    ener+$#

    For a plane stress state, the internal potential2 ener+$ is +ien "$

    1&

    8 9 8 9#"

    ! d" =

    %here

    8 9 8 9

    xx xx

    yy yy

    xy xy

    and

    = =

  • 8/12/2019 A04 Introduction to FEM

    12/75

    A04 - Introduction to the Finite Element Method 1&

    Assumin+ a linear elastic material, the constitutie e5uation ma$

    "e %ritten as8 9 78 9$ =

    %here >7 or plane stress is +ien "$

    &

    1 0

    7 1 010 0 1 2 ! &

    %

    $

    = ote that >7 is s$mmetric#

    )he ininitesimal strains are +ien

    , ,xx yy xyu v u v

    x y y x

    = = = +

    %here , 2u x y and , 2v x y are the displacement ields#

  • 8/12/2019 A04 Introduction to FEM

    13/75

    A04 - Introduction to the Finite Element Method 13

    .u"stitutin+ into +ies the strain ener+$ as

    1

    & 8 9 78 9

    #

    "! $ d" = %here use has "een made o the s$mmetr$ o >7# ote that i %e

    su"stitute into , is no% in terms o the displacement ields , 2u x y and , 2v x y #

    )he eternal potential J can "e ealuated once the eternal

    tractions and "od$ orces are speciied# In +eneral, J %ill hae the

    orm o

    2 2x y x yS "" p u p v ds & u & v d" = + +

    %here xp and yp are "oundar$ tractions, . is the element

    "oundar$ surace, x& and y& are "od$ orces# ote that J is in

    terms o displacements , 2u x y and , 2v x y #

  • 8/12/2019 A04 Introduction to FEM

    14/75

  • 8/12/2019 A04 Introduction to FEM

    15/75

    A04 - Introduction to the Finite Element Method 1'

    Assume the corners o

    the trian+le nodes2 are

    num"ered @, and

    hae coordinates

    1 1 , 2x y , etc# as sho%n#

    At each node iK1,&,32,

    assume the nodal

    displacements are +ien

    "$ , 2i iu v # @e can no%

    %rite 6 B"oundar$

    conditionsB as ollo%s

    For u,$2

    At node 1 1 1 1 1 & 1 3 1 , 2u u x y x y = = + +At node & & & & 1 & & 3 & , 2u u x y x y = = + +At node 3 3 3 3 1 & 3 3 3 , 2u u x y x y = = + +

  • 8/12/2019 A04 Introduction to FEM

    16/75

    A04 - Introduction to the Finite Element Method 16

    For ,$2

    At node 1 1 1 1 1 & 1 3 1 , 2v v x y x y = = + +

    At node & & & & 1 & & 3 & , 2v v x y x y = = + +At node 3 3 3 3 1 & 3 3 3 , 2v v x y x y = = + +

    @e can no% sole or the constants in terms o nodal

    displacements# E5s# can "e %ritten in matri orm as

    1 1 1 1

    & & & &

    3 3 3 3

    1

    1

    1

    x y u

    x y u

    x y u

    =

    .olution is1 1 1 & & 3 3

    & 1 1 & & 3 3

    3 1 1 & & 3 3

    2 !& 2

    2 !& 2

    2 !& 2

    a u a u a u A

    b u b u b u A

    c u c u c u A

    = + += + += + +

  • 8/12/2019 A04 Introduction to FEM

    17/75

    A04 - Introduction to the Finite Element Method 1(

    %here

    1 & 3 3 & & 3 1 1 3 3 1 & & 1

    1 & 3 & 3 1 3 1 &

    1 3 & & 1 3 3 & 1

    , ,

    , ,, c , c

    a x y x y a x y x y a x y x y

    b y y b y y b y yc x x x x x x

    = = =

    = = = = = =

    and

    1 1

    & &

    3 3

    1

    & 1 & 2

    1

    x y

    A x y area of trian'le

    x y= =

    .u"stitutin+ into and rearran+in+, u,$2 can "e %ritten

    1 1 1 1 & & & &

    3 3 3 3

    1 , 2 2 2

    &

    2 7

    u x y a b x c y u a b x c y uA

    a b x c y u

    = + + + + ++ + +

    ote that the a;s, ";s and c;s are constants and depend onl$ upon the

    nodal coordinates ,$2 o the 3 corner nodes#

  • 8/12/2019 A04 Introduction to FEM

    18/75

    A04 - Introduction to the Finite Element Method 1?

    >einin+ the coeicients o iu as iN , e5uation "ecomes3

    1

    , 2 i ii

    u x y N u

    =

    =

    %here1

    , 2 2&

    i i i iN x y a b x c yA

    = + +

    A similar result is o"tained or ,$2

    3

    1

    , 2 i ii

    v x y N v=

    =

    )he 5uantities , 2iN x y are calledshape functions# ote that the

    same shape unctions appl$ or "oth , 2u x y and , 2v x y #

    @e can no% o"tain the strains "$ su"stitutin+ displacement

    unctions and into strain epressions to o"tain

  • 8/12/2019 A04 Introduction to FEM

    19/75

    A04 - Introduction to the Finite Element Method 1

    3 3

    1 1

    3 3

    1 1

    3 3 3 3

    1 1 1 1

    &

    &

    & &

    i ixx i i

    i i

    i iyy i i

    i i

    i i i ixy i i i i

    i i i i

    N buu u

    x x A

    N cvv v

    y y A

    N N c bu vu v u v

    y x y x A A

    = =

    = =

    = = = =

    = = =

    = = =

    = + = + = +

    )he last 3 e5uations or strains can "e put into matri notation as

    1

    1

    1 & 3&

    1 & 3&

    1 1 & & 3 33

    3

    0 0 010 0 0

    &

    xx

    yy

    xy

    u

    v

    b b b uc c c

    vAc b c b c b

    u

    v

    =

  • 8/12/2019 A04 Introduction to FEM

    20/75

    A04 - Introduction to the Finite Element Method &0

    Or, more compactl$ as or an$ element BeB2

    8 9 78 9e e e( q =

    %here

    1 & 3

    1 & 3

    1 1 & & 3 3

    0 0 01

    7 0 0 0&

    e

    b b b

    ( c c cA

    c b c b c b

    =

    and

    1

    1

    &

    &

    3

    3

    8 9e

    u

    v

    uq

    v

    u

    v

    =

    .ince the terms in 7e( are constant or an element, the strains

    8 9e are constant %ithin an element hence the name )constant

    strain trian'le) or *S##

  • 8/12/2019 A04 Introduction to FEM

    21/75

    A04 - Introduction to the Finite Element Method &1

    @e can no% ealuate the internal strain ener+$ # .u"stitutin+

    into +ies

    1&

    1&

    8 9 7 7 78 9

    K 8 9 7 7 7 8 9

    e e # e # e e e

    "

    e # e # e e e

    "

    ! q ( $ ( q d"

    q ( $ ( d" q

    =

    )he 5uantit$ in parentheses can "e identiied as the eleentstiffness atrix 7ek and can "e %ritten as

    1&

    8 9 78 9e e # e e! q k q=

    %here the eleent stiffness atrix 7ek is deined "$

    7 7 7 7e e # e e"

    k ( $ ( d" =

  • 8/12/2019 A04 Introduction to FEM

    22/75

    A04 - Introduction to the Finite Element Method &&

    I the element has a constant thicness te, then dJKtdA# Assumin+

    that E is constant oer the element and notin+ that the terms in C

    are constants, then 7 7 7 7e e e e # e ek t A ( $ (=

    ote that the element stiness matri 7ek is a 66 matri, i#e#, %e

    hae a 6 de+ree-o-reedom do2 element#

    ote that the +eneral orm or the strain ener+$ can "e%rittenininde notation also

    6 61 1

    & &1 18 9 78 9

    e e # e e e e e

    i+ i +i +! q k q k q q= == =

    Cecause 7e$ is s$mmetric, the stiness matri 7ek deined "$

    either or is a s$mmetric matri al%a$s the case2#

  • 8/12/2019 A04 Introduction to FEM

    23/75

  • 8/12/2019 A04 Introduction to FEM

    24/75

    A04 - Introduction to the Finite Element Method &4

    )o deine the eternal potential

    ener+$ J, %e hae to deine the

    eternal load# .uppose %e hae a

    uniorm traction pressure2 p applied

    on the element ed+e deined "$

    nodes 1 and )he eternal

    potential then "ecomes

    0 2 cos 2 sin 7

    ,e" u s p v s p tds = +ote that cosp is the component o p in the direction#>isplacements u and on "oundar$ 1-& must "e %ritten asunctions o position s on the "oundar$

    1 & 1 &

    1 & 1 &

    2 1 ! 2 ! 2

    2 1 ! 2 ! 2

    u s s , u s , u

    v s s , v s , v

    = +

    = +

  • 8/12/2019 A04 Introduction to FEM

    25/75

    A04 - Introduction to the Finite Element Method &'

    .u"stitutin+ us2 and s2 into J, and inte+ratin+ oer the

    "oundar$, +ies

    ( ) ( ) ( ) ( )1 1 1 11 1 & && & & &cos sin cos sin" pt, u pt, v pt, u pt, v = + + + )he last result can "e %ritten in matri notation as

    6

    1

    8 9 8 9e e # e e ei ii

    " q & & q=

    = =

    %here

    1&

    1&

    1

    &1&

    cos

    sin

    cos8 9

    sin

    0

    0

    e

    e

    ee

    e

    pt ,

    pt ,

    pt ,&

    pt ,

    =

  • 8/12/2019 A04 Introduction to FEM

    26/75

    A04 - Introduction to the Finite Element Method &6

    )he matri 8F9 represents the equivalent 'enerali-ed nodal force

    vectordue to pressure load on "oundar$ 1-&, i#e#, %e hae replaced

    the pressure p on "oundar$ 1-& "$ the nodal orces 8F9 at nodes 1

    and

    ote that the total orce due to p

    on "oundar$ 1-& is pt2 and diides e5uall$ "et%een nodes 1 and

    =

  • 8/12/2019 A04 Introduction to FEM

    27/75

    A04 - Introduction to the Finite Element Method &(

    Another set o orces eists on the "oundar$ o an$ element#

    )hese are due to surroundin+ elements that appl$ orces due to

    contact %ith the element in 5uestion, i#e#, surroundin+ elements are

    "ein+ deormed and hence the$ tr$ to deorm the element in

    5uestion and there"$ put orces on this element# Additionall$,

    %here a node is at a support or Bied,B there %ill "e a reaction

    orce on the element node# all these reaction orces 8 9S #

    1S1

    &

    3

    &S3S

    4S

    'S6

    S

    iS reactions fro ad+acent eleents=

    )he et# pot# ener+$ due to reactions is 8 9 8 9e e # e" q S=

  • 8/12/2019 A04 Introduction to FEM

    28/75

    A04 - Introduction to the Finite Element Method &?

    @e can determine the e5uations o e5uili"rium or the element#

    sin+ and notin+ that e! and e" are unctions o nodal

    displacements , 1,###,6

    e

    iq i= , %e hae6

    1

    2 2 0

    e ee e e

    iei i

    ! "! " q

    q

    =

    ++ = =

    .ince 0iq , then 2

    0 1,&,###,6e e

    ei

    ! "for i

    q

    + = =

    .u"stitutin+ and J and 7 into +ies the equilibriu equation

    for any eleent#

    78 9 8 9 8 9e e e ek q & S = +

    ote that 7eK is 662 and 8 9e& D 8 9eS are 612 matrices#

  • 8/12/2019 A04 Introduction to FEM

    29/75

    A04 - Introduction to the Finite Element Method &

    E5uations - proide the e5uili"rium e5uation or a sin+le element#

    .uppose %e loo at a collection o elements i#e#, a complete

    structure2# )hen the total ener+$ o the structure is +ien "$ the

    sum o internal and potential ener+$ o all the elements elN 2

    ( )6 6

    1 1& &

    1 1 1 1 1

    8 9 78 9el el el N N N

    e e # e e e e estr i+ i +

    e e e i +

    ! ! q k q k q q= = = = =

    = = =

    and

    ( ) ( )1 1 1

    6 6

    1 1 1 1

    8 9 8 9 8 9 8 9

    el el el

    el el

    N N Ne e # e e # e

    str

    e e e

    N Ne e e e

    i i i ie i e i

    " " q & q S

    & q S q

    = = =

    = = = =

    = =

    =

    )he principle o minimum potential ener+$ or the structure

    re5uires that

  • 8/12/2019 A04 Introduction to FEM

    30/75

    A04 - Introduction to the Finite Element Method 30

    1

    2 2 0

    Mstr str

    str str i

    i i

    ! "! " q

    q

    =

    ++ = =

    %here 8 9q contains the M de+rees o reedom or the structure

    O) do or each element2# For 0iq , the last e5uationre5uires that

    20 1,&,###,str str

    i

    ! "for i M

    q

    += =

    .u"stitutin+ str! and str" into +ies

    ( ) ( ) ( )1&1 1 1

    8 9 78 9 8 9 8 9 8 9 8 9

    0

    el el el N N Ne # e e e # e e # e

    e e e

    i

    q k q q & q S

    q= = =

    =

    1,&,###,for i M=

    *ro"lem )he ener+$ terms or each element are in terms o the

    element do, "ut in order to o"tain the e5uations o e5uili"rium or

  • 8/12/2019 A04 Introduction to FEM

    31/75

    A04 - Introduction to the Finite Element Method 31

    the structure a"oe e5uation2, %e hae to tae the partial

    deriaties %ith respect to the +lo"al structural do# In order to

    complete the a"oe, the element de+rees o reedom8 9

    e

    qmust "e

    %ritten in terms o the M +lo"al structural de+rees o reedom 8 9q #

    For an$ element, %e can %rite a transormation "et%een element

    local and +lo"al do called the local-+lo"al transormation2

    6 26 12 12

    8 9 7 8 9e e

    xMx Mx

    q # q=

    )he transormation %ill "e nothin+ more then 1;s and 0;s# As an

    eample, suppose %e hae the ollo%in+ element and structural

    node num"erin+

    1 2 3 4

    5 6 7 8

    1211109x

    y

    1q&q

    3q4q

    'q6q

    (q?q

    &3q&4q

    -q10q

    1(q1?q

    1 2 3 4

    5 6 7 8

    1211109

    12

    34

    56

    78

    910

    1112

    x

    y

    p

  • 8/12/2019 A04 Introduction to FEM

    32/75

    A04 - Introduction to the Finite Element Method 3&

    onsider element (# .uppose %e place element node 1 at +lo"al

    node 6#

    1

    &

    31eq&eq

    3eq

    4eq

    'eq6

    eq

    (

    Element nodesand local dofs

    (

    Structural nodesand global dofs

    611q

    1&q

    13q14q

    (

    11&1q

    &&q

    @e see that or element (, there is a correspondence "et%een the 6

    element local dos at element nodes 1, & and 3, and the 6 structural

    +lo"al dos at nodes 6, 11and (# @e see that local element2 node1 corresponds to +lo"al node 6, local element2 node & corresponds

    to +lo"al node 11, and local node 3 corresponds to +lo"al node (#

    @e can %rite this local to +lo"al transormation 8 9 78 9e eq # q= as

  • 8/12/2019 A04 Introduction to FEM

    33/75

    A04 - Introduction to the Finite Element Method 33

    1,&

    3,4

    ',6

    (,?

    ( ,1,&

    (3,4

    (',6

    1 007 07 07 07 07 07 07 07 07 07 07

    0 1

    1 007 07 07 07 07 07 07 07 07 07 07

    0 1

    1 0

    07 07 07 07 07 07 07 07 07 07 070 1

    e

    q

    q

    q

    q

    qq

    q

    q

    =

    =

    10

    11,1&

    13,14

    1',16

    1(,1?

    1,&0

    &1,&&

    &3,&4

    q

    q

    q

    q

    q

    q

    q

    Each 07 is a &&2# )he a"oe sa$s that or element (, local

    element2 node 1 corresponds to +lo"al node 6, i#e#, local dos 1,&correspond to +lo"al dos 11,1& local node & corresponds to +lo"al

    node 11, i#e#, local dos 3,4 correspond to +lo"al dos &1,&&, etc#

    +lo"al node L

    1 & 3 4 ' 6 ( ? 10 11 1&

  • 8/12/2019 A04 Introduction to FEM

    34/75

    A04 - Introduction to the Finite Element Method 34

    o% transorm e! and e" rom local to +lo"al do "$ su"stitutin+

    into and to o"tain

    1 1 1& & &8 9 78 9 8 9 7 7 78 9 8 9 78 9

    8 9 7 8 9 8 9 7 8 9 8 9 8 9 8 9 8 9

    e e # e e # e # e e # e'

    e # e # e # e # e # e # e' '

    ! q k q q # k # q q K q

    " q # & q # S q & q S

    = =

    =

    o% %e can deine the ollo%in+ element matrices in +lo"al do

    instead o local element do2

    62 6 62 6 2 2

    62 6 12 12

    7 7 7 7

    8 9 7 8 9

    8 9 7 8 9

    e e # e e'

    Mx x xMMxM

    e e # e'

    Mx xMx

    e e # e'

    K # k #

    & # &

    S # S

    )o see %hat an element stiness and orce matri %ritten in +lo"al

    do loos lie, consider element ( a+ain# @e o"tain or( 7'K and

    (

    8 9'&

    6 11 7

  • 8/12/2019 A04 Introduction to FEM

    35/75

    A04 - Introduction to the Finite Element Method 3'

    Element #

    Each "loc is a &&2 su"-matri

    1 & 3 4 ' 6 ( ? 10 11 1&

    1

    &

    3

    4'

    6 (11k

    (13k

    (1&k

    ( (31k

    (33k

    (3&k

    (3&

    ?

    10

    11 (&1k

    (&3k

    (&&k

    1&

    o% the internal and eternal potential ener+$ is +ien "$

    ( ( (11 1& 13

    ( ( (&1 && &3

    ( ( (31 3& 33

    k k k

    k k k

    k k k

    6 11 7

    6

    11

    7

    (1

    (&

    (3

    &

    &

    &

    ( 7'K = (8 9'& =

  • 8/12/2019 A04 Introduction to FEM

    36/75

    A04 - Introduction to the Finite Element Method 36

    ( )1 1& &1 1 1 1 1

    8 9 78 9el el el N N N M M

    e # e estr ' 'i+ i +

    e e e i +

    ! ! q k q k q q= = = = =

    = = =

    ( ) ( )1 1 1

    1 1 1 1

    8 9 8 9 8 9 8 9

    el el el

    el el

    N N Ne # e # e

    str ' '

    e e e

    N NM Me e

    'i i 'i i

    e i e i

    " " q & q S

    & q S q

    = = =

    = = = =

    = =

    =

    o% %e can su"stitute and into to o"tain

    ( ) ( ) ( )1

    &1 1 1

    8 9 78 9 8 9 8 9 8 9 8 9

    0

    el el el N N N# e # e # e

    ' ' 'e e e

    i

    q k q q & q S

    q

    = = =

    =

    1,&,###,for i M=

  • 8/12/2019 A04 Introduction to FEM

    37/75

    A04 - Introduction to the Finite Element Method 3(

    %hich +ies a s$stem o M e5uations in terms o the structural

    displacements

    ( )1 1 1

    78 9 8 9 8 9 809el el el

    N N Ne e e

    ' ' '

    e e e

    k q & S = = =

    = or

    1 1 1

    7 8 9 8 9 8 9el el el N N N

    e e e' ' '

    e e e

    k q & S

    = = =

    = +

    @hen all the element contri"utions hae "een summed, %e simpl$

    %rite 78 9 8 9 8 9K q Q S= +

    ote that %hen the element stiness and orce matrices are %ritten

    in terms o structural displacements usin+ local to +lo"al

    transormation2, the$ "ecome additie see e5# 7 i#e#, to +et the

    structural stiness matri 7, %e sum the contri"utions or all

    elements#

  • 8/12/2019 A04 Introduction to FEM

    38/75

    A04 - Introduction to the Finite Element Method 3?

    Assem$lage o% Elements

    A sin+le element "$ itsel is useless# @e ust deterine the

    equilibriu equations for an assebla'e of eleents that coprise

    the entire structures#

    onsider the ollo%in+ structure onl$ a e% elements are taen to

    simpli$ the discussion2 %ith a uniorml$ pressure p on the ri+ht

    "oundar$ and ied on the let "oundar$ assume a constantthicness t2#

    @e num"er the structural nodes

    rom 1 to 1& as sho%n# @e also

    num"er the elements rom 1 to1& as sho%n in an$ order2#

    For each +lo"al node o the structure, %e can speci$ the ,$2

    coordinates ix , iy , iK1, &, N, 1

    1 2 3 4

    5 6 7 8

    1211109

    12

    34

    56

    78

    910

    1112

    x

    y

    p

  • 8/12/2019 A04 Introduction to FEM

    39/75

    A04 - Introduction to the Finite Element Method 3

    Each node o the structure %ill

    hae t%o de+rees o reedom

    do2# @e la"el these

    structural .'lobal/ de'rees of

    freedoin order as sho%n to

    the ri+ht# ote that the

    structural nodal displacements

    are %ritten %ithout the superscript Be#B )he nodal displacement

    ector is %ritten as 8 9q and is &412 or this pro"lem#

    @e note that the let side is ied nodes 1, ' and 2# Hence,

    displaceent boundary conditions%ill re5uire that

    1 & 10 1( 1? 0q q q q q q= = = = = = #

    ote %e do not hae to num"er the do consistentl$ and inse5uence %ith the structural nodes# Ho%eer, this maes the

    "ooeepin+ much, much simpler

    For each element, %e can construct a ta"le called the eleent

    connectivitythat speciies %hich structural +lo"al2 nodes are

    1 2 3 4

    5 6 78

    1211109x

    y

    1q&q

    3q4q

    'q6q

    (q?q

    &3q&4q

    -q

    10q

    1(q1?q

  • 8/12/2019 A04 Introduction to FEM

    40/75

    A04 - Introduction to the Finite Element Method 40

    connected "$ an element# Hence, or the pro"lem a"oe, %e hae

    the ollo%in+ eleent connectivity table

    Element &o. Element &ode ' Element &ode ( Element &ode )1 1 ' &

    & ' 6 &

    3 ' 10 6

    4 ' 10

    ' & 6 36 6 ( 3

    ( 6 11 (

    ? 6 10 11

    3 ( 4

    10 ( ? 411 ( 1& ?

    1& ( 11 1&

    ote that or the .), element nodes M.) "e +ien as @#

    Element node 1 can "e attached %ith an$ +lo"al node o the

    element#

  • 8/12/2019 A04 Introduction to FEM

    41/75

    A04 - Introduction to the Finite Element Method 41

    ote that i %e are careul in num"erin+ the nodes and choosin+

    the element connectiit$ in a Bs$stematicB manner, there %ill "e a

    pattern to the element connectiit$ ta"le see a"oe2# An

    autoatic esh 'enerator, lie the one in FEMA*, tries to ollo%

    this pattern#

    ote that the +lo"al node num"ers or the structure are some%hat

    ar"itrar$, i#e#, %e could num"er them in an$ order# Ho%eer, it

    %ill turn out that there are optimum %a$s to num"er nodes or a+ien structure and mesh2 in order to reduce the "and%idth o the

    structural stiness matri 7 - this saes time solin+ the

    e5uations# For the mesh a"oe, it %ould "e optimum to num"er

    do%n%ard and let-to-ri+ht, as opposed to let-to-ri+ht and

    do%n%ard# @e;ll discuss that later# ie%ise, the elementnum"erin+ is ar"itrar$, "ut a+ain there ma$ "e optimum

    approaches# An automatic mesh +enerator tries to do the

    num"erin+ in an optimum ashion#

  • 8/12/2019 A04 Introduction to FEM

    42/75

    A04 - Introduction to the Finite Element Method 4&

    ote that or this structure, %e hae 1& +lo"al nodes# )here are &

    de+rees o reedom do2 at each node u and 2# Hence, the

    structure has &4 do and the structural stiness matri 7 %ill "e

    &4&42# )he structural e5uili"rium e5uations can "e %ritten as

    &4 &42 &4 12 &4 12

    7 8 9 8 9 8 9x x x

    K q Q S= +

    %here 7Kstructural stiness matri,

    8G9Kstructural orces matri due to applied tractionsand "od$ orces2

    8.9Kstructure reaction orces due to "oundar$ conditions

    ets see ho% each element contri"utes to +lo"al matrices# )ae

    element 1 to start %ith# ote that %e can use su"-matri notationto diide the element matrices as ollo%in+# se a superscript o 1

    on the terms to indicate element 1#

  • 8/12/2019 A04 Introduction to FEM

    43/75

    A04 - Introduction to the Finite Element Method 43

    1 1 1 111 1& 13 1

    & &2 & 12

    1 1 1 1 1 1&1 && &3 &

    6 621 1 1 131 3& 33 3

    7 , 8 9

    x x

    x

    k k k &

    k k k k & &

    k k k &

    = =

    @e no% loo at element 1 and note that element node num"ers 1, &, 3

    correspond to +lo"al node num"ers 1, ', & rom the dra%in+ o themesh, or rom the element connectiit$ ta"le2# @e can indicate this

    inormation on the stiness and orce matrices as ollo%s

    1 ' &1 1 1 111 1& 13 1

    & &2 & 12

    1 1 1 1 11&1 && &3 &

    6 62 6 121 1 1 131 3& 33 3

    7 , 8 9

    x x

    x x

    k k k &

    k k k k & &

    k k k &

    = =

    1

    '

    &

    1

    '

    &

  • 8/12/2019 A04 Introduction to FEM

    44/75

    A04 - Introduction to the Finite Element Method 44

    Hence, %e see that element 1 contri"utes stiness and orces to

    +lo"al nodes 1, ' and *lacin+ these contri"utions into the +lo"al

    stiness matri +iesElement ' only

    1 & 3 4 ' 6 ( ? 10 11 1& 859 G

    1 111k113k

    11&k 1,&

    q 11&

    & 131k133k

    13&k 3,4

    q 13&

    3 ',6q4 (,?q

    ' 1&1k1&3k

    1&&k ,10

    q 1&&

    6 =

    (

    ?

    10

    11

    1& &3,&4q

    PP remem"er, each "loc is a &&2 su"-matri

    6 11 7

  • 8/12/2019 A04 Introduction to FEM

    45/75

    A04 - Introduction to the Finite Element Method 4'

    o% tae element (#

    Element # only

    1 & 3 4 ' 6 ( ? 10 11 1& 859 G

    1 1,&q

    & 3,4q

    3 ',6q

    4 (,?q

    ' ,10q

    6 =

    (

    ?

    10

    11

    1& &3,&4q

    PP remem"er, each "loc is a &&2 su"-matri

    ( ( (11 1& 13

    ( ( (&1 && &3

    ( ( (31 3& 33

    k k k

    k k k

    k k k

    6 11 7

    6

    11

    7

    (1

    (&

    (3

    &

    &

    &

  • 8/12/2019 A04 Introduction to FEM

    46/75

    A04 - Introduction to the Finite Element Method 46

    ote that the distri"uted pressure load p is applied onl$ to the ri+ht

    "oundar$ o elements 10 and 11# Hence 8F9 or all elements

    ecept 10 and 11 %ill "e :ero# For elements 10 and 11, %e %ill

    hae

    14 ?&10

    14 ?&

    0

    0

    8 9 0

    0

    pt,

    &

    pt,

    =

    8

    4

    7

    1? 1&&11

    1? 1&&

    0

    0

    8 9 0

    0

    pt,

    &

    pt,

    =

    7

    12

    8

    %here 4 ?, is the len+th "et%een +lo"al nodes 4 and ?, etc#

    I %e assem"le all element stiness matrices 7 and orces

    matrices 8F9 to the +lo"al e5uili"rium e5uations, %e hae the

    ollo%in+ result

    4(

  • 8/12/2019 A04 Introduction to FEM

    47/75

    A04 - Introduction to the Finite Element Method 4(

    !tructural E*uations o% E*uili$rium

    1 & 3 4 ' 6 ( ? 10 11 1& 859 G

    1 Q Q Q 1,&q

    & Q Q Q Q Q 3,4q

    3 Q Q Q Q Q ',6q

    4 Q Q Q Q (,?q Q

    ' Q Q Q Q Q Q ,10q

    6 Q Q Q Q Q Q Q =

    ( Q Q Q Q Q Q Q

    ? Q Q Q Q Q

    Q Q Q

    10 Q Q Q Q Q

    11 Q Q Q Q Q

    1& Q Q Q Q &3,&4q Q

    Q means that one or more elements hae contri"uted here

    PP remem"er, each "loc is a &&2 su"-matri

    ote that 7 issyetric also it is bandedsemi-"and%idthK1&2#

    4?

  • 8/12/2019 A04 Introduction to FEM

    48/75

    A04 - Introduction to the Finite Element Method 4?

    In the preious pa+e, each Q

    means that one or more elements

    hae contri"uted to that &&2

    su"-matri# For eample, %e notethat node & %ill hae stiness

    rom elements 1, & and '# Hence,

    the &,& position o the +lo"al

    stiness matri %ill "e e5ual to

    note $ou hae to reer to the element connectiit$ to see %hichelement node or each element corresponds to +lo"al node &2

    1 & '&& 33 33 11 7 7 7 7K k k k= + + each su"-matri is &&2

    )he +lo"al node &-6 couplin+ term&6

    7K %ill hae contri"utions

    rom elements & and ' since onl$ these elements share the

    "oundar$ "et%een nodes & and 6 & '&6 3& 1& 7 7 7K k k= + #/lo"al node 6 %ill hae stiness contri"utions rom elements &, 3,

    ', 6, (, and ? & 3 ' 6 ( ?66 && 33 && 11 11 11 7 7 7 7 7 7 7K k k k k k k= + + + + + #

    1 2 3

    56

    7

    11109

    1

    23

    4

    5

    67

    8

    1

    2

    3 1

    1 22

    33

    1111

    22

    2

    22

    3

    3 3

    3

    4

  • 8/12/2019 A04 Introduction to FEM

    49/75

    A04 - Introduction to the Finite Element Method 4

    Guestion= @hat happened to the reactions 8.9 or each element=

    @h$ don;t the$ sho% up in the structural stiness matri=

    .imple# It is e5uili"rium# Recall that %hen %e mae a ree-"od$,in this case tae a sin+le inite element as the ree-"od$, %e %ill

    hae e5ual and opposite reactions %here the cut is made thou+h the

    "od$# onsider elements 1 and & "elo%

    1

    &

    3

    1 1

    22

    11S

    1&S

    13S

    1

    4S

    1

    '

    S

    16S

    1

    &

    3

    &6S

    &'S

    &4S

    &3S

    &&S &

    1S

    At the "oundar$ "et%een elements 1 and &, the reactions are e5ual

    and opposite# Hence, %e add them up %e hae 1 &1 3 0S S+ = ,1 &

    & 4

    0S S+ = , 1 &' '

    0S S+ = , and 1 &6 6

    0S S+ = # Hence, all the reactions

    '0

  • 8/12/2019 A04 Introduction to FEM

    50/75

    A04 - Introduction to the Finite Element Method '0

    "et%een elements sum to :ero and do not hae to "e put into the

    structural e5uili"rium e5uations#

    O, "ut %hat a"out the "oundar$ %here there are supports= @hathappens to the reactions there= For eample, the cantileer plate

    eample a"oe

    )he$ don;t disappear and should

    "e included in the structuralstiness matri#

    @e no% that there %ill "e

    unno%n reactions at +lo"al

    nodes 1, ' and # @e could call

    these reactions 10 , &0 , 0 , 100 ,

    1(0 and 1?0 consistent %ith

    +lo"al displacements2# .o %e

    hae the ree "od$ o the

    structure

    1 2 3 4

    5 6 7 8

    1211109

    12

    34

    56

    78

    910

    1112

    x

    y

    p

    1 2 3 4

    5 6 7 8

    1211109

    12

    34

    56

    78

    910

    1112

    x

    y

    p

    10

    &0

    -0100

    1(0

    1?0

    '1

  • 8/12/2019 A04 Introduction to FEM

    51/75

    A04 - Introduction to the Finite Element Method '1

    !tructural E*uations o% E*uili$rium +ith !upport ,eactions

    1 & 3 4 ' 6 ( ? 10 11 1& 859 G

    1 Q Q Q 1,&q 1,&0

    & Q Q Q Q Q 3,4q

    3 Q Q Q Q Q ',6q

    4 Q Q Q Q (,?q Q

    ' Q Q Q Q Q Q,10q

    ,100

    6 Q Q Q Q Q Q Q =

    ( Q Q Q Q Q Q Q

    ? Q Q Q Q Q

    Q Q Q 1(,1?0

    10 Q Q Q Q Q11 Q Q Q Q Q

    1& Q Q Q Q &3,&4q Q

    Q means that one or more elements hae contri"uted here

    PP remem"er, each "loc is a &&2 su"-matri

    A04 I d i h Fi i El M h d '&

  • 8/12/2019 A04 Introduction to FEM

    52/75

    A04 - Introduction to the Finite Element Method '&

    O, no% one last step# @e hae to appl$ displaceent boundary

    conditions# )he structure is ied at nodes 1, ' and thus,

    1 & 10 1( 1? 0q q q q q q= = = = = = # )he easiest %a$ to appl$"oundar$ conditions to an$ s$stem o e5uations is as ollo%s

    1# ero out the ro% and column on the let side matri the 7

    matri2 correspondin+ to each C##, and :ero out the ro% o the

    ri+ht side the 8G9 matri2 correspondin+ to each C##

    *lace a 1 on the dia+onal o the let side matri the 7 matri2

    correspondin+ to each C##

    Sou %ill notice that eer$ do that has a C## also corresponds toa do %here a support reaction R2 occurs# Appl$in+ C## as

    descri"ed a"oe %ill thus eliminate the reactions rom the

    e5uili"rium e5uations# A theoretical reason %h$ %e donTt hae to %orr$ a"out reactionsin structural e5uations o e5uili"rium= Cecause these support

    reactions R do no %or displacement is :ero at support2 and

    hence do not aect e5uili"rium o the structure

    A04 I t d ti t th Fi it El t M th d '3

  • 8/12/2019 A04 Introduction to FEM

    53/75

    A04 - Introduction to the Finite Element Method '3

    !tructural E*uations o% E*uili$rium +ith B.. Applied

    1 & 3 4 ' 6 ( ? 10 11 1& 859 G

    1

    1

    1

    0 0

    0 0

    0 0

    0 0

    1,&q 0

    0

    &0 0

    0 0

    Q Q

    0 0

    0 0

    Q 3,4q

    3 Q Q Q Q Q ',6q

    4 Q Q Q Q (,?q Q

    '0 0

    0 0

    0 0

    0 0

    1

    1

    0 0

    0 0

    0 0

    0 0

    0 0

    0 0

    ,10

    q 00

    6 Q Q 0 00 0 Q Q Q Q =( Q Q Q Q Q Q Q

    ? Q Q Q Q Q

    0 0

    0 0

    1

    1

    0 0

    0 0

    0

    0

    100 0

    0 0

    Q

    0 0

    0 0

    Q Q

    11 Q Q Q Q Q

    1& Q Q Q Q &3,&4q Q

    Q means that one or more elements hae contri"uted here

    PP remem"er, each "loc is a &&2 su"-matri

    A04 I t d ti t th Fi it El t M th d '4

  • 8/12/2019 A04 Introduction to FEM

    54/75

    A04 - Introduction to the Finite Element Method '4

    )he structural e5uations %ith C## ma$ no% "e soled or the

    unno%n displacements# ote that %hen %e sole the s$stem o

    e5uations, the solution %ill +ie 1 & 10 1( 1? 0q q q q q q= = = = = = ,i#e, the 1ste5uation simpl$ sa$s 112 0q = , etc#

    Element !trains and !tresses

    o% %e are read$ to sole or the element strains and stresses# For

    each element, %e can su"stitute the 6 +lo"al displacements

    correspondin+ to that element into

    3 623 12 6 12

    8 9 78 9e e e

    xx x

    ( q = eK1, &, N, no# o elements

    )he stresses or each element can then "e o"tained "$ su"stitutin+the strains or that element into

    3 323 12 3 12

    8 9 78 9e e e

    xx x

    $ = eK1, &, N, no# o elements

    A04 Introduction to the Finite Element Method ''

  • 8/12/2019 A04 Introduction to FEM

    55/75

    A04 - Introduction to the Finite Element Method ''

    Ealuation o stress results "ased on stress components in the

    artesian coordinates directions , , , #xx yy xy etc 2 leaes

    somethin+ to "e desired# @h$= .tresses in these directions ma$

    not necessaril$ represent the lar+est stresses and %e need these in

    order to consider $ieldin+ or ailure# Sou alread$ no% that $ou

    can calculate principal stresses and maimum shear stress usin+

    stress transormation e5uations or Mohr;s ircle# Hence, stress

    results stress components2 are oten represented in t%o additional

    %a$s

    *rincipal stresses and maimum shear stress, and on Mises stress#

    *rincipal stresses can, as noted a"oe, "e o"tained "$ either stresstransormation e5uations or throu+h the use o Mohr;s ircle# An

    alternate approach to deine principal stresses is to %rite

    A04 Introduction to the Finite Element Method '6

  • 8/12/2019 A04 Introduction to FEM

    56/75

    A04 - Introduction to the Finite Element Method '6

    0

    xx p xy xy

    yx yy p y-

    -x -y -- p

    =

    Epansion o the determinant proides a cu"ic e5uation that can "e

    soled or the three principal stresses p # omparin+ principal

    stresses to a tensile $ield stress proides some measure oealuation ho%eer, one has to eep in mind that comparin+ the

    principal stress o"tained rom a three-dimensional stress state2 to

    a $ield stress o"tained rom a uniaial tension test is ris$ at "est#

    )he on Mises stress proides a means to etrapolate uniaialtensile test data or $ield stress2 to a three-dimensional stress state#

    In eect, the on Mises stress proides an Be5uialentB uniaial

    stress approimation to the three-dimensional stress state in a "od$

    throu+h the ollo%in+ e5uation

    A04 Introduction to the Finite Element Method '(

  • 8/12/2019 A04 Introduction to FEM

    57/75

    A04 - Introduction to the Finite Element Method '(

    1& & & &

    1&

    2 2 2

    6 6 6

    xx yy yy -- -- xx"M

    xy y- -x

    + + =

    + + + or

    1& & & &1

    1 & & 3 3 1& 2 2 2"M p p p p p p = + +

    %here 1 & 3 , , 2p p p are the principal stresses# /ien the stresscomponents , , , #xx yy xy etc 2 or principal stresses, one can

    compute the on Mises stress#

    )his representation has "een used 5uite successull$ to model the

    onset o $ieldin+ in ductile metals and colla"orates %ell %itheperiment# It is %idel$ used in industr$# For a material to remain

    elastic,

    "M y < or no $ieldin+2

    A04 - Introduction to the Finite Element Method '?

  • 8/12/2019 A04 Introduction to FEM

    58/75

    A04 - Introduction to the Finite Element Method '?

    E5uation orms an ellipsoid in 3-> ellipse in &->2 %hen the

    stresses are plotted in principal stress space# As lon+ as the stress

    state represented "$ the principal stresses is inside the ellipse the

    $ield surace2, the material is elastic#

    A04 - Introduction to the Finite Element Method '

  • 8/12/2019 A04 Introduction to FEM

    59/75

    A04 - Introduction to the Finite Element Method '

    Element -i$raries

    .or1 choose the ri'ht eleent for a structural coponent and

    loadin'1 in order to axii-e potential for correct results with the

    least aount of coputation/

    Man$, man$ inite elements hae "een deeloped or use in

    modern FEM sot%are# hoosin+ the correct element or a

    particular structural is paramount# For eample,

    i a structural mem"er "ehaes lie a "eam in "endin+, %eshould choose a "eam element to model it,

    i a structural mem"er "ehaes lie a thin plate in plane stress,%e should choose an appropriate element to model it,

    i a structural mem"er loos lie a shell o reolution, %e

    should use a thin shell o reolution element,

    i a structural mem"er %ill eperience a three-dimensionalstress state, %e hae to choose an element that models that

    "ehaior,

    etc#

    A04 - Introduction to the Finite Element Method 60

  • 8/12/2019 A04 Introduction to FEM

    60/75

    A04 Introduction to the Finite Element Method 60

    Here are some eamples o the t$pes o elements aaila"le

    )russ element &-> and 3->2 Ceam "endin+ element &-> and 3-> strai+ht and cured2

    Mem"raneelement no "endin+ lat and cured2

    )rian+ular, Guad "oth strai+ht and cured sides2

    dof at eac node

    A04 - Introduction to the Finite Element Method 61

  • 8/12/2019 A04 Introduction to FEM

    61/75

    A04 Introduction to the Finite Element Method 61

    *lanes .tress and *lane .train elements )rian+ular and Guadrilateral shapes "oth strai+ht and cured

    sides2#

    *lane stress re5uires that the onl$ non-:ero stresses occur in

    the plane o the element ho%eer, strain does occur normal

    to plane2# /enerall$ applica"le to thin +eometries# )%o

    displacement do per node O rotational do2#

    *lane strain re5uires that the onl$ non-:ero strains occur in

    the plane o the element strain is :ero normal to plane, "ut

    stress is not :ero2# on+ constrained +eometries or

    eample, a lon+ pipe, a dam2# Elements %ith cured

    "oundaries %ill al%a$s hae 3 or more nodes per ed+e#

    A04 - Introduction to the Finite Element Method 6&

  • 8/12/2019 A04 Introduction to FEM

    62/75

    0 t oduct o to t e te e e t et od 6

    *late and shell "endin+ elements "endin+ and in-planestresses lat and cured elements2

    )rian+ular, Guad "oth strai+ht and cured sides2

    *late and shell "endin+

    elements are characteri:ed

    as "ein+ thincompared to

    other dimensions, and

    hain+ no stress normal to

    the plate similar to plane

    stress2#

    A04 - Introduction to the Finite Element Method 63

  • 8/12/2019 A04 Introduction to FEM

    63/75

    *late and shell "endin+ elements %ill hae in-plane and normal

    displacements , ,u v w2 and rotations ,x y 2 a"out the t%o aes

    in the plane o the plate!shell# o stiness a"out the normal

    aes#

    A04 - Introduction to the Finite Element Method 64

  • 8/12/2019 A04 Introduction to FEM

    64/75

    Ais$mmetric shell "endin+ element or shell o reolution2

    )he shell o reolution can "e

    descri"ed +eometricall$ "$ a curedor strai+ht2 line that is reoled

    a"out the ais o s$mmetr$# )op

    t%o i+ures are eamples o thin

    shells o reolution# >e+rees o

    reedom and stress state or a shello reolution are similar to plate

    and shell "endin+ elements, i#e#,

    displacements parallel and

    perpendicular to the shell surace,

    and rotations a"out the t%o aesthat lie in the plane o the shell# o

    stress normal to surace#

    A04 - Introduction to the Finite Element Method 6'

  • 8/12/2019 A04 Introduction to FEM

    65/75

    o%er i+ure multicell tu"e2 is O) a shell o reolution, "ut

    %ould re5uire plate or shell elements#

    Ais$mmetric "od$ o reolution element 3-> stress anal$sis2

    Cod$ is solid and ais$mmetric a"out some ais o reolution#

    .tress state is ull$ three-dimensional includes all stress

    components2# ote that the

    element orms a trian+ular-shaped

    rin+, i#e#, the element itsel is a"od$ o reolution#

    A04 - Introduction to the Finite Element Method 66

  • 8/12/2019 A04 Introduction to FEM

    66/75

    /eneral solid element or ull 3-> stress anal$sis2

    )etrahedron, Cric shapes "oth strai+ht and cured sides2

    .tress state is ull$ three-dimensional includes all stress

    components2# )hree-dimensional solid elements hae 3

    displacements per node O rotational dos2# Elements %ith

    A04 - Introduction to the Finite Element Method 6(

  • 8/12/2019 A04 Introduction to FEM

    67/75

    cured "oundaries %ill al%a$s hae 3 or more nodes per

    ed+e#

    A04 - Introduction to the Finite Element Method 6?

  • 8/12/2019 A04 Introduction to FEM

    68/75

    Mesh eneration/ re and ost1processing/ !ol2ers

    In order to +enerate the structural stiness matri, %e must speci$

    the nodal coordinates ,$,:2 o each +lo"al node and elementconnectiit$ or each element# For a lar+e pro"lem %ith comple

    +eometr$, this is a monumental tas i done "$ hand# Mesh

    +enerators are sot%are tools that automate this process#

    Mesh eneration and reprocessingIn +eneral, mesh +eneration starts "$ speci$in+ the coordinates o

    a e% e$ locations that %ill suicientl$ deine the outer "oundar$

    t = 0.5 in.

    A04 - Introduction to the Finite Element Method 6

  • 8/12/2019 A04 Introduction to FEM

    69/75

    o a structural component and other distin+uishin+ eatures such as

    holes, illets, etc# onsider the "racet sho%n a"oe# @e could

    irst deine the corners o a 10B &'B rectan+le# )o speci$ the

    rounded ed+es on the ri+ht "oundar$, %e could speci$ that a 4Bradius illet is to "e placed at each ri+ht corner# Finall$, to speci$

    the location o the hole, %e %ould deine a &B radius circle %hose

    center is located 'B rom the ri+ht "oundar$#

    )o speci$ the mesh ho% man$ elements are to "e used2, %e%ould speci$ so man$ elements in the direction and so man$

    elements in the $ direction#

    .ince the structure is &-> and in plane stress, %e %ould speci$ the

    t$pe o element trian+ular, 5uad, etc#2 to "e used in deinin+ themesh#

    A04 - Introduction to the Finite Element Method (0

  • 8/12/2019 A04 Introduction to FEM

    70/75

    )he mesh +enerator %ould then automaticall$ determine the

    coordinates o all +lo"al nodes and determine the element

    connectiit$ or all elements#

    As a part o the mesh +eneration, %e %ould also speci$ the

    thicness to "e used or each element# /enerall$, the mesh

    +enerator %ould allo% or a linear thicness ariation %ithin the

    re+ion "ein+ meshed# For a aria"le thicness case, one %ould

    hae to speci$ the thicness at seeral e$ locations and mesh+enerator %ould determine the thicness or all elements in the

    re+ion#

    Also, the material properties %ould "e speciied or each element

    in the re+ion# Most mesh +enerators onl$ proide or one materialset to "e used %ithin a re+ion i#e#, same material or all elements2#

    et, the mesh +enerator also called thepreprocessor, "ecause it

    processes all the re5uired input2 %ould re5uire the t$pe o loadin+

    A04 - Introduction to the Finite Element Method (1

  • 8/12/2019 A04 Introduction to FEM

    71/75

    that is applied to elements or element "oundaries point orces,

    "od$ orces, surace tractions2# For a thermal stress anal$sis, the

    preprocessor %ould also re5uire inormation on thermal loadin+#

    For a d$namic transient2 anal$sis, %e %ould hae to speci$ mass

    properties or each element and the time histor$ o the loadin+#

    astl$, the displacement "oundar$ conditions must "e speciied#

    /ien all this inormation, the mesh +enerator!preprocessor %illhae +enerated a model somethin+ lie that sho%n "elo%

    A04 - Introduction to the Finite Element Method (&

  • 8/12/2019 A04 Introduction to FEM

    72/75

    @ith this inormation, the preprocessor %ould create a data set an

    output ile2 in a ormat suita"le to "e read and processed "$ the

    inite element anal$sis pro+ram also called thesolver2#

    !ol2er

    Once thesolverhas created the structural stiness and orce

    matrices, soled or +lo"al nodal displacements, and soled or

    stresses and strains plus a e% other thin+s appropriate to each

    element t$pe2, it +enerates an output ile and %e are no% read$ toeamine and interpret the results#

    ost1processing

    learl$, or a complicated structure %ith man$ nodes and

    elements, the eamination and ealuation o all results is anenormous tas "ecause o the shear olume o data displacements,

    strains, stresses, etc2# )hepost2processorno% taes oer# Its

    purpose is to proide output such as the deormed +eometr$,

    contour plots o principal stress components, contour plots o on

    A04 - Introduction to the Finite Element Method (3

  • 8/12/2019 A04 Introduction to FEM

    73/75

    Mises stress, contour plots o strain components, etc# %hat eer

    youdecide is important2# @hat, and ho%, the postprocessor can

    displa$ inormation depends on the t$pe o elements "ein+ used#

    Celo% are outputs o the deormed +eometr$ and onMises stress#

    A04 - Introduction to the Finite Element Method (4

  • 8/12/2019 A04 Introduction to FEM

    74/75

    Oten the pre and post-processor are com"ined into one sot%are

    paca+e lie FEMA* or *A)RA2# Most preprocessor pro+rams

    %ill create output iles in ormats accepta"le to arious solers

    A04 - Introduction to the Finite Element Method ('

  • 8/12/2019 A04 Introduction to FEM

    75/75

    lie AEFEM, A.)RA, A.S., ACA., etc#2# ie%ise,

    most postprocessor pro+rams %ill accept the output ile o most

    solers and displa$ a ariet$ o data results +enerated "$ the

    soler#

    ast )hou+hts on Mesh /enerators, *re!*ost-*rocessors D .olers

    )he$ %ill do a lot the tedious %or or $ou#

    )he$ are not a su"stitute or +ood en+ineerin+ no%-ho%,