A Survey of Biomass Gasification

Embed Size (px)

Citation preview

  • 8/15/2019 A Survey of Biomass Gasification

    1/6

    Progress in techniques of biomass conversion into syngas

    Weijuan Lan  a ,  *, Guanyi Chen  b , Xinli Zhu  b , Xuetao Wang  a , Bin Xu  a

    a College of Vehicle and Traf  c Engineering, Henan University of Science and Technology, Luoyang 471003, Chinab School of Environmental Science  &  Engineering, Tianjin University, Tianjin 300072, China

    a r t i c l e i n f o

     Article history:

    Received 16 August 2013

    Accepted 12 May 2014

    Available online 17 June 2014

    Keywords:

    Biomass

    Syngas

    Gasication reactor

    Technique

    a b s t r a c t

    Biomass gasication is one of major biomass utilization technologies to get high quality gas. The high

    quality gas can be subsequently used for gas supply and power generation as well as syngas. Signi

    cantefforts have therefore been made in biomass-derived syngas production. The paper reviews the state-of-

    the-art biomass-derived syngas production techniques in terms of technical performance. Various kinds

    of gasication reactor are briey introduced. Main technologies of syngas production can be divided into

    four approaches: partial oxidation and steam reforming of biomass pyrolysis oils, co-gasication of 

    biomass and coal, coupled steam hydrogasication of biomass and reforming of methane, gasication of 

    biomass-derived char. Each of these production processes are also analyzed in detail. Among these

    production technologies, the primary technology for syngas production is steam hydrogasication and

    reforming. Syngas has a higher H2/CO ratio by using these two technologies: the steam hydrogasication

    and reforming technology and biomass-derived char technology.

    © 2014 Energy Institute. Published by Elsevier Ltd. All rights reserved.

    1. Introduction

    With fossil fuel depleting and increasing serious environmental problems, biomass energy as a clean and renewable resource has been

    paid more and more attention in the global sourcing strategy [1]. Because of the increasing energy demand and the limitation of the fossil

    sources, renewable energy sources should be used to the maximum. In order to achieve growth in economic development, it is essential to

    meet energy needs of all sectors, such as agriculture, industryand transportation [2]. Biomass gasication is one of major biomass utilization

    technologies to get high quality gas. The high quality gas can be subsequently used for gas supply and power generation as well as syngas. So

    it is regardedas one of the most attractive options for utilization of biomass. Syngas production from biomass is widely studied, since syngas

    could be further widely used for many purposes.

    Many research institutes have involved in biomass gasication for many years. For example, in China, including Guangzhou Institute of 

    Energy Conversion, Tsinghua University, Tianjin University, Huazhong University of Science and Technology, Xi'an Jiao Tong University, East

    China University of Science and Technology, Shandong Province Academy of Science, and so on. Syngas production technologies can be

    divided into four approaches: partial oxidation and steam reforming of biomass pyrolysis oils, co-gasication of biomass and coal, coupled

    steam hydrogasication of biomass and reforming of methane, gasication of biomass-derived char. In the gasication process, the gasi-

    cation reactor is a critical component as is the main syngas production technology. In this paper, various kinds of gasi cation reactor are

    briey introduced, such as,  xed bed, circulating  uidized bed (CFB), bubbling  uidized bed (BFB). And the main technologies of syngasproduction are summarized.

    2. Gasication reactor type

    Biomass gasication reactors are classied into two main types:  xed bed and  uidized bed. The sub-categories for the  xed bed type

    gasiers are (a) updraft, (b) downdraft. And the sub-categories for the  uidized bed gasiers are (a) bubbling  uidized bed (BFB) and (b)

    circulating  uidized bed (CFB).

    *  Corresponding author.

    E-mail address: [email protected] (W. Lan).

    Contents lists available at ScienceDirect

     Journal of the Energy Institutej o u r n a l h o m e p a g e :   h t t p : / / w w w . j o u r n a ls . e l s e v i e r . c o m / j o ur n a l - o f - t h e - e n e r g y -

    i n s t i t u t e

    http://dx.doi.org/10.1016/j.joei.2014.05.003

    1743-9671/©

      2014 Energy Institute. Published by Elsevier Ltd. All rights reserved.

     Journal of the Energy Institute 88 (2015) 151e156

    mailto:[email protected]://www.sciencedirect.com/science/journal/17439671http://www.journals.elsevier.com/journal-of-the-energy-institutehttp://www.journals.elsevier.com/journal-of-the-energy-institutehttp://dx.doi.org/10.1016/j.joei.2014.05.003http://dx.doi.org/10.1016/j.joei.2014.05.003http://dx.doi.org/10.1016/j.joei.2014.05.003http://dx.doi.org/10.1016/j.joei.2014.05.003http://dx.doi.org/10.1016/j.joei.2014.05.003http://dx.doi.org/10.1016/j.joei.2014.05.003http://www.journals.elsevier.com/journal-of-the-energy-institutehttp://www.journals.elsevier.com/journal-of-the-energy-institutehttp://www.sciencedirect.com/science/journal/17439671http://crossmark.crossref.org/dialog/?doi=10.1016/j.joei.2014.05.003&domain=pdfmailto:[email protected]

  • 8/15/2019 A Survey of Biomass Gasification

    2/6

  • 8/15/2019 A Survey of Biomass Gasification

    3/6

     2.2.1. Bubbling bed gasi er 

    In this kind of system, the bed material rests on a distributorplate. Fluidizing mediumis air. Air passes at a velocity aboutve times faster

    than that of minimumuidization velocity through this plate. The temperature in the bed is about 700e900 C [9]. The biomass is pyrolyzed

    in the hot bed. In this process, char and gases are produced. Then char particles are lifted along with   uidizing air. At the same time

    gasication reaction occurs in relatively upper part of the bed. Because of contacting with the high temperature bed, the high molecular

    weight tar compounds are cracked, so that the net tar content of the produced gas is reduced to less than 1 e3 g/Nm3 [5].

     2.2.2. Circulating  uidized bed (CFB)Circulating uidized bed (CFB) is an economic and environmentally acceptable technology for biomass gasication or low-grade burning.

    In this kind of system, the velocity of theuidizing air is much higher than the terminal settling velocity of the bed material. The gasier can

    be operated at high pressures. The material operated by CFB ranges from 1 to 80 tons  [10].

     2.2.3. Entrained ow gasi er 

    In this kind of system, the material (which is pulverized into solid) is fed in the gasi er by pneumatic feeding. The powder is moved by

    inert gas and injected in a so-called burner in the gasier. The characterized of this kind of gasier is that fuel particles dragged along with

    the gas stream. That is to say: the process needed short residence times, high temperatures and small fuel particles. Furthermore, entrained

    ow gasier is often operated under pressure (typically 20e50 bar) and with pure oxygen. Solid fuel and oxygen can be well mixed, Vortex

    ow patterns are created in the burner. The temperatures in the burner zone can be research 2500   C or even higher. The capacity of the

    gasifer is hundreds of MW.

    3. Syngas production technology 

    Main technologies of syngas production are:

     3.1. Syngas production from partial oxidation and steam reforming of biomass pyrolysis oils

    This method of biomass conversion is called fast pyrolysis, which benets from years of research and is an industrially technology [11,12].

    By rapidly heating biomass in the absence of oxygen, pyrolysis oils (bio-oils) can be formed. Pyrolysis oils contain water and oxygen. They

    can be pumped or shipped more ef ciently and be upgraded at a central facility, thus can be used in an industrial way [13e15]. In addition,

    pyrolysis represents a chemical step that can be combined with ash removal. In this process, the ash is removed with the solids (char), a by-

    product of pyrolysis, thus bio-oils contain much less ash than their original biomass source   [16]. Bio-oils vary greatly when different

    feedstocks and methods were used. They require further upgrading to convert them to usable fuels. Several options can be considered for

    further upgrading pyrolysis oils to high-quality liquid fuels. Perhaps the most versatile way for producing fuels from pyrolysis oils is

    gasi

    cation to syngas [17]. Typical two-stage biomass gasi

    cation process is represented in Fig. 3.

    Fig. 2.  The downdraft gasier.

    W. Lan et al. / Journal of the Energy Institute 88 (2015) 151e156    153

  • 8/15/2019 A Survey of Biomass Gasification

    4/6

    The two-stage biomass gasication process has advantages, such as: a high pressure pump could be used in stead of the traditional

    compressor. Pyrolysis oils can be catalytically converted to syngas. Noble metal catalysts could achieve high conversion of bio-oil to H2 and

    CO. Fast deactivation of catalyst is the disadvantage of this process [18].

     3.2. Syngas production from co-gasification of biomass and coal

    Syngas production from co-gasication of biomass and coal is considered as a promising technology. The produced syngas is hydrogen-

    rich and contains CH4, which can be used for power plants. This process has several advantages. During the co-gasi cation process the

    volatiles readily decompose and form free radicals which react with the organic matter of the coal, thus the conversion rate increases  [19].

    This process can also reduce CO2, SO2  and NOx emissions. In addition, during the devolatilization of the biomass, the hydrogen-rich

    molecules form. At the same time, hydrogen may react with the free radicals produced from coal at the moment of their formation and

    prevent recombination reactions that could produce less reactive secondary tar species. Sj€ostr€om reported that the alkali metals in biomasscan act as catalyst for promoting the conversion of the coal char [19]. The disadvantages of this process is that the technical challenges in

    developing replicated turnkey co-gasicaion plants are considerable, since there is no turnkey supplier of co-gasication technology with

    associated materials handling [20].

     3.3. Syngas production from coupled steam hydrogasi cation of biomass and reforming of methane

    In the process of steam hydrogasication, carbon-containing solid feedstock is converted into methane rich gas in the presence of steam.

    It is a thermo-chemical process   [21]. A lot of research works have demonstrated that the enhanced methane production from steam

    hydrogasication can be combined with steam reforming to generate syngas with a  exible H2/CO ratio from a number of carbonaceous

    feedstocks [22e25]. Because the steam methane reformer is a catalytic reactor, contaminants such as chlorine, sulfur and other trace metals

    in the produced gas stream should be removed. By using a warm-gas cleanup unit, this task can be accomplished. The clean gas stream

    contained large amount of methane and steam, which is converted into a clean syngas in the steam methane reformer. The syngas from the

    steam methane reformer can be used for power generation and also used in a fuel synthesis process to produce synthetic hydrocarbon fuels[26].

    The H2/CO ratio of the syngas produced from the steam methane reformer is higher than that is required for FischereTropsch synthesis.

    The excess H2 from the syngas is separated and fed back into the steam hydrogasication reactor. The advantage of this process is that by

    altering the H2O/C and H2/C ratios of the steam hydrogasication reactor, the nal H2/CO ratio of the syngas can be adjusted in a simple way.

    Fig. 4 shows a schematic diagram of the process [27].

     3.4. Syngas production from gasi cation of biomass-derived char 

    Biomass pyrolysis can generate fuel products consisting of approximately 70 wt% liquid,15 wt% char, and 15 wt% gas [28]. In this process,

    the char isa byproduct and needs tobe utilized. A lot of researchworks havebeenreported onthe gasication of biomass-derived char using

    several agents such as air, steam and carbon dioxide  [29e31]. Gasication using biomass-derived char as feedstock to produce syngas is

    more preferable than the raw biomass. Syngas obtained from direct gasication of raw biomass is usually rich in tar. As for biomass-derived

    char gasication, syngas products with lower content of tar can be obtained, since the volatile matter content has been removed during the

    Fig. 3.   Biomass two-stage gasication.

    Fig. 4.  Schematic diagram of the coupled steam hydrogasi

    cation and reforming process.

    W. Lan et al. / Journal of the Energy Institute 88 (2015) 151e156 154

  • 8/15/2019 A Survey of Biomass Gasification

    5/6

    pyrolysis of biomass [32]. Furthermore, biomass-derived char contains a higher content of xed carbon, so the productivity can be increased

    during the process [33].

    Gasication of biomass-derived char for syngas production has many advantages and can be widely used [33]. On one hand, the process

    is rapid and the operating condition is not complicated [34]. On the other hand, the syngas contains a higher content of H 2 and CO could be

    used as fuel gas according to the gas composition [31].

     3.5. Syngas production from pure biomass

    In the process, gasication can be operated with or without a catalyst in a xed bed, movable bed oruidized bed, with theuidized bed

    normally yielding better performance [35]. In order to maximize syngas production with minimum tar formation, the reaction temperature

    should be increased, volatile residence time should be extended [36]. Oxygen or steam as gasifying medium is the most suitable gasifying

    medium for syngas production [37]. Meanwhile, the advanced technologies including catalytic gasication and thermal plasma gasication

    can be used for enhancing syngas production  [37]. Because impurities from the gasitication process can cause operational problems by

    eroding and blocking pipelines and may deactivate catalysts  [38], so the gas needed to be clean. The  rst step of gas cleaning is to remove

    tars. Three methods are usually used to reduce tar content: thermal cracking, catalytic cracking and scrubbing  [39]. The method by using

    catalytic cracking is effect. After the tars are removed, two methods can be applied to cope with other impurities: wet gas cleaning and dry

    gas cleaning [40]. After the cleaning process, syngas can be collected or further applied.

    4. Overview and conclusions

    Syngas production is an effectiveway to utilize biomass resources. Technologies of syngas production from biomass have been discussed

    in this paper. The primary technology for syngas production is steam hydrogasi

    cation and reforming. In this process, methane and steamare catalytically and endothermically converted to syngas. Partial oxidation is an alternative approach, the exothermic, non-catalytic re-

    action of methane and oxygen to produce syngas. For the technology of co-gasification of biomass and coal, the conversion rate can increase

    in the process, but there is no turnkey supplier of co-gasication technology with associated materials handling. Syngas production

    technologies are applicable under different conditions. In principle, syngas can be produced from any hydrocarbon feedstock. The com-

    positions of syngas from different technology are different. In particular, syngas have a higher H2/CO ratio by using these two technologies:

    the steam hydrogasication and reforming technology and biomass-derived char technology. This represents a distinct advantage for them

    in hydrogen-production applications. There also have many factors inuencing syngas production capacity. With the improvement of 

    gasication technology, the capacity of syngas production from biomass can be signicantly improved in the future.

     Acknowledgments

    This paper is nancially supported by Henan University of Science and Technology Talent Introduction Fund Projects (No. 09001759) and

    Education Department of Henan Province Science and Technology Key Project (No. 14B470020) and Henan University of Science and

    Technology Research Fund Project (No. 2014QN004).

    References

    [1]   Z.Y. Luo, J.S. Zhou, S.R Wang, Biomass utilization as a clean energy in Zhejiang University, in: International Conference on Power Engineering, Hangzhou, China, 23e27October, 2007, pp. 14e18.

    [2]   G. Fischer, S. Prieler, H.V. Velthuizen, Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia,Biomass Bioenergy 28 (2) (2005) 119e132.

    [3]   M. Kaltschmitt, A.V. Bridgwater, Biomass Gasication and Pyrolysis: State-of-the-art and Future Prospects, CPL Press, Newbury, 1997.[4]   V.V.N. Kishore, Renewable Energy Engineering  &  Technology, a Knowledge Compendium, Energy and Resources Institute, TERI Press, New Delhi, 2008 .[5]   B. Buragohain, P. Mahanta, V.S. Moholkar, Biomass gasication for decentralized power generation: the Indian perspective, Renew. Sustain. Energy Rev. 14 (1) (2010)

    73e92.[6]   D. Hebden, H.J.F. Stroud, Coal gasication processes, in: M.A. Elliott (Ed.), Chemistry of Coal Utilization. Second Supplementary Volume, Wiley, New York, 1981 (Chapter

    24).[7]   P. Liu, X.F. Guo, C.Z. Wu, Gasication characteristics of biomass wastes in  uidized bed gasier, J. Propuls. Power 16 (2000) 606e608.[8]  P. Garcí-Iba~nez, A. Cabanillas, J.M. Sanchez, Gasication of leached or ujillo (olive oil waste) in a pilot plant circulating  uidized bed reactor-preliminary results, Biomass

    Bioenergy 27 (2) (2004) 83e194.[9]   H. Liu, B.M. Gibbs, Modeling NH3  and HCN emissions from biomass circulating  uidized bed gasiers, Fuel 82 (2003) 1591e1604.

    [10]  W.J. Lan, G.Y. Chen, W.C. Ma, Biomass gasication in China, in: Asia-Pacic Power and Energy Engineering Conference, Wuhan, China, March 25e

    28, 2011.[11]   A.V. Bridgewater, Fast Pyrolysis of Biomass, CPL Press, Newbury, 2008.[12]   D.N. Wang, S. Czernik, E. Chornet, Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils, Energy Fuels 12 (1998) 12e24.[13]   D. Wang, S. Czernik, D. Montane, Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions, Ind. Eng. Chem. Res. 36 (1997)

    1507e1518.[14]   M.M. Wright, R.C. Brown, A.A. Boateng, Distributed processing of biomass to bio-oil for subsequent production of FischereTropsch liquids, Biofuels, Bioprod. Bioren. 2

    (2008) 229e238.[15]   J.R. Marda, J. DiBenedetto, S. McKibben, Non-catalytic partial oxidation of bio-oil to synthesis gas for distributed hydrogen production, Int. J. Hydrogen Energy 34 (2009)

    8519e8534.[16]   S. Czernik, A.V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy Fuels 18 (2004) 590 e598.[17]   D. Rennard, R. French, S. Czernik, et al., Production of synthesis gas by partial oxidation and steam reforming of biomass pyrolysisoils, Int. J. Hydrogen Energy 35 (9)

    (2010) 4048e4059.[18]   R.H. Venderbosch, W. Prins, Entrained Flow Gasication of Bio-oil for Synthesis Gas, BTG Biomass Technology Group b. V. Hallenweg, The Netherlands, 2002 .[19]   F. Miccio, G. Ruoppolo, S. Kalisz, et al., Combined gasication of coal and biomass in internal circulating  uidized bed, Fuel Process. Technol. 95 (2012) 45e54.[20]  N. Koukouzas, A. Katsiadakis, E. Karlopoulos, et al., Co-gasication of solid waste and lignite  e  a case study for Western Macedonia, Waste Manag. 28 (7) (2008)

    1263e1275.[21] J.M. Norbeck, C.S. Park, US Patent Application Number 11/489, 298, 2007.[22] J.M. Norbeck, C.E. Hackett, United States patent number 7,208,530 B2, 2007.

    [23]   S.K. Jeon, C.S. Park, C.E. Hackett, et al., Characteristics of steam hydrogasi

    cation of wood using a micro-batch reactor, Fuel 86 (2007) 2817e

    2823.

    W. Lan et al. / Journal of the Energy Institute 88 (2015) 151e156    155

    http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref3http://refhub.elsevier.com/S1743-9671(14)00069-5/sref3http://refhub.elsevier.com/S1743-9671(14)00069-5/sref3http://refhub.elsevier.com/S1743-9671(14)00069-5/sref3http://refhub.elsevier.com/S1743-9671(14)00069-5/sref4http://refhub.elsevier.com/S1743-9671(14)00069-5/sref4http://refhub.elsevier.com/S1743-9671(14)00069-5/sref4http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref11http://refhub.elsevier.com/S1743-9671(14)00069-5/sref11http://refhub.elsevier.com/S1743-9671(14)00069-5/sref12http://refhub.elsevier.com/S1743-9671(14)00069-5/sref12http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref16http://refhub.elsevier.com/S1743-9671(14)00069-5/sref16http://refhub.elsevier.com/S1743-9671(14)00069-5/sref16http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref18http://refhub.elsevier.com/S1743-9671(14)00069-5/sref18http://refhub.elsevier.com/S1743-9671(14)00069-5/sref18http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref21http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref20http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref19http://refhub.elsevier.com/S1743-9671(14)00069-5/sref18http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref17http://refhub.elsevier.com/S1743-9671(14)00069-5/sref16http://refhub.elsevier.com/S1743-9671(14)00069-5/sref16http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref15http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref14http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref13http://refhub.elsevier.com/S1743-9671(14)00069-5/sref12http://refhub.elsevier.com/S1743-9671(14)00069-5/sref12http://refhub.elsevier.com/S1743-9671(14)00069-5/sref11http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref10http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref9http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref8http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref7http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref6http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref5http://refhub.elsevier.com/S1743-9671(14)00069-5/sref4http://refhub.elsevier.com/S1743-9671(14)00069-5/sref4http://refhub.elsevier.com/S1743-9671(14)00069-5/sref3http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref2http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1http://refhub.elsevier.com/S1743-9671(14)00069-5/sref1

  • 8/15/2019 A Survey of Biomass Gasification

    6/6

    [24]   C.S. Park, S.P. Singh, J.M. Norbeck, Steam hydrogasication of carbonaceous matter to liquid fuels, in: Proceedings of the 24th Annual International Pittsburgh CoalConference, Johannesburg, South Africa, 2007.

    [25]   A.S.K. Raju, C.S. Park, J.M. Norbeck, Production of synthesis gas for liquid fuel synthesis using a steam hydrogasication and reforming process, in: Fifteenth EuropeanBiomass Conference, Berlin, Germany, 2007.

    [26] A. Aguirre, C.S. Park, J.M. Norbeck, Method for high energy density biomass-water slurry, US Patent Application Number 11/488, 299, 2007.[27]   A.S.K. Raju, C.S. Park, J.M. Norbeck, Synthesis gas production using steam hydrogasication and steam reforming, Fuel Process. Technol. 90 (2009) 330e336.[28]   S.T. Chaudhari, A.K. Dalai, N.N. Bakhshi, Production of hydrogen and/or syngas (H2  þ  CO) via steam gasication of biomass-derived chars, Energy Fuels 17 (4) (2003)

    1062e1067.[29]   G.X. Chen, Q.Z. Yu, K. Sj€ostr€om, Reactivity of char from pyrolysis of birch wood, J. Anal. Appl. Pyrolysis 40 (1997) 491e499.[30]   M. Sakaguchi, A. Paul-Watkinson, N. Ellis, Steam gasification reactivity of char from rapid pyrolysis of bio-oil/char slurry, Fuel 89 (2010) 3078 e3084.

    [31]   K. Matsumoto, K. Takeno, T. Ichinose, et al., Gasication reaction kinetics on biomass char obtained as a by-product of gasi fication in an entrained-ow gasifier withsteam and oxygen at 900e1000   C, Fuel 88 (2009) 519e527.

    [32]  H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Gasi fication of biomass chars in steam-nitrogen mixture, Energy Convers. Manag. 47 (2006) 1004e1013.[33]   P.W. He, S.Y. Luo, G. Cheng, et al., Gasication of biomass char with air-steam in a cyclone furnace, Renew. Energy 37 (1) (2012) 398 e402.[34]  F. Mermoud, S. Salvador, L. Van de Steene, et al., Inuence of the pyrolysis heating rate on the steam gasification rate of large wood char particles, Fuel 85 (2006)

    1473e1482.[35]  J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (2009) 244 e260.[36]   J.F. Wang, J. Chang, X.L. Yin, T.J. Wang, C.Z. Wu, Synthesis of clean fuel dimethyl ether by indirect liquefaction of biomass, Acta Energiae Solaris Sin. 26 (2005) 414e418.[37]   X.L. Yin, J. Chang, J.F. Wang, Y. Fu, C.Z. Wu, D.Y.C. Leung, Exploration of possibility and technical route for methane synthesis via biomass gasication in China, Coal

    Convers. 27 (2004) 17e22.[38]   C. Li, D. Hirabayashi, K. Suzuki, Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas, Fuel Process. Technol. 90 (2009)

    790e796.[39]   C.N. Hamelinck, A.P.C. Faaij, H. den Uil, H. Boerrigter, Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and

    development potentials, Energy 29 (2004) 1743e1771.[40]   X.L. Guo, Y.C. Zhao, H. Huang, Methanol production via biomass gasication, Energy Eng. 28 (2004) 28e31.

    W. Lan et al. / Journal of the Energy Institute 88 (2015) 151e156 156

    http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref32http://refhub.elsevier.com/S1743-9671(14)00069-5/sref32http://refhub.elsevier.com/S1743-9671(14)00069-5/sref33http://refhub.elsevier.com/S1743-9671(14)00069-5/sref33http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref37http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref36http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref35http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref34http://refhub.elsevier.com/S1743-9671(14)00069-5/sref33http://refhub.elsevier.com/S1743-9671(14)00069-5/sref33http://refhub.elsevier.com/S1743-9671(14)00069-5/sref32http://refhub.elsevier.com/S1743-9671(14)00069-5/sref32http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref31http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref30http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref29http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref28http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref27http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref26http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref25http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref24http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref23http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22http://refhub.elsevier.com/S1743-9671(14)00069-5/sref22