21
A STUDY ON 4 REACTIONS FORMING THE 46 TI* Magda Cicerchia on behalf of NUCL-EX Collaboration Department od Physics and Astronomy – Padua University Padua Legnaro National Laboratory – INFN IWM-EC 2018 22-25 MAGGIO 2018 CATANIA

A STUDY ON 4 REACTIONS FORMING THE TI*

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A STUDY ON 4 REACTIONS FORMING THE TI*

A STUDY ON 4 REACTIONS FORMING THE 46TI*

Magda Cicerchia

on behalf of NUCL-EX Collaboration

Department od Physics and Astronomy – Padua University Padua

Legnaro National Laboratory – INFN

IWM-EC 2018 22-25 MAGGIO 2018

CATANIA

Page 2: A STUDY ON 4 REACTIONS FORMING THE TI*

OUTLINE

• Clustering & Pre-equilibrium in Light Nuclei

• The Experiment

• The Simulation Codes: GEMINI++ and AMD

• Analysis Results

IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

2

Page 3: A STUDY ON 4 REACTIONS FORMING THE TI*

NUCLEAR CLUSTERING Ikeda Diagram

2N=2Z nuclei: a-cluster structure at E* close to the a-decay threshold

W. Von Oertzen et al. Phys. Rep. 432 (2006) 43

M. Freer et al. , Rep. Progr. Phys. 70 (2007) 2149

J. P. Ebran et al. , Nature 487 (2012) 341

W.N. Catford J. Phys. Conf. Series 436, 012095

P.E. Hodgson, E. Běták, Phys. Rep. 374 (2003) 1-89

Extended Ikeda Diagram

Neutron-rich nuclei : molecular

structures of clusters bound by

valence neutrons

Extended IKEDA

diagram

At drip-lines: clustering

might be the preferred

structural mode of the

light nuclei .

3 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 4: A STUDY ON 4 REACTIONS FORMING THE TI*

STUDYING CLUSTER EFFECTS

Light Nuclei

Coexistence of cluster and mean-fields aspects:

connection between cluster emission and nuclear structure.

Y. Kanada‐En’yo, International School of Physics "Enrico Fermi“, course 201

(Nuclear Physics with Stable and Radioactive Beams), 14-19 July 2017

Y. Kanada‐En’yo et al., Prog.Theo.Exp.Phys. 01A202 (2012).

P.E. Hodgson, E. Běták, Phys. Rep. 374 (2003) 1-89.

Medium Mass Nuclei

Clustering effects on reaction dynamics can be related

either to their preformation or to their dynamical formation.

Study the competition between evaporation

(surface) and fast (volume) emission of LCP.

analize

pre-equilibrium

particles emission

Moscow

Pre-equilibrium

Models

4 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 5: A STUDY ON 4 REACTIONS FORMING THE TI*

HOW TO STUDY THE CLUSTERING EFFECTS ON REACTION DYNAMICS?

Possible effects of α-cluster structure in the projectile

𝑶𝟏𝟔 + 𝑺𝒏𝟏𝟏𝟔 @ 𝟖, 𝟏𝟐, 𝟏𝟔 𝑴𝒆𝑽/𝒖

Over-production of α-particles emitted during the

non-equilibrium stage → α-cluster structure in the 16O projectile nucleus.

a

29°- 41° A. Corsi et al., PLB 679 (2009) 197.

experimentally

Studying pre-equilibrium particles emission:

Comparing LCP emission from fusion

reactions with different N/Z projectiles:

29°- 41° 29°- 41°

p a

Experimental Energy spectra

𝑶𝟏𝟔 + 𝑪𝒖𝟔𝟓 & 𝑭𝟏𝟗 + 𝑵𝒊𝟔𝟐 @𝟏𝟔 𝑴𝒆𝑽/𝒖 19F-reaction α-overproduction > 16O one.

Es 𝐅𝟏𝟗 ≡ α + N15 = 4,01 MeV Es 𝐎𝟏𝟔 ≡ α + C12 = 7,2 MeV

D. Fabris et al., Proceedings of the X LANSPA, Proc. of Science (2014).

5 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 6: A STUDY ON 4 REACTIONS FORMING THE TI*

THE EXPERIMENT: REACTIONS MAIN CHARACTERISTICS

Entrance

channel Ebeam, lab

𝜽𝒈𝒓𝒂𝒛𝒊𝒏𝒈 CN Mass

Asymm 𝝈𝒇𝒖𝒔 E* Lab. Vel.

E.R. Distrib.

𝜽𝒍𝒂𝒃

Beam + Target MeV MeV/u deg mb MeV cm/ns deg

16O + 30Si 128 8 8,8 46Ti 0,30 1070 98,4 1,37 0 – 30

16O + 30Si 111 7 10,1 46Ti 0,30 1081 88,0 1,28 0 – 30

18O + 28Si 126 7 9,0 46Ti 0,22 1110 98,5 1,44 0 – 28

19F + 27Al 133 7 8,9 46Ti 0,17 1100 103,5 1,52 0 – 28

same beam velocity same pre-equilibrium component same CN Excitation Energy same statistical component

6 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 7: A STUDY ON 4 REACTIONS FORMING THE TI*

REACTION MECHANISMS

𝑬𝒑 > 𝑩𝑪 ⟹ 𝜎𝑟𝑒𝑎𝑧 = 𝜎𝑟𝑒𝑎𝑧

ℓ =𝜋

𝑘2 (2ℓ + 1)

0

𝑇ℓ

levap

7 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

“Complete Fusion (CF) is the most dominating

mode of reaction”

Process involving two heavy colliding ions that at end form a CN with LARGE EXCITATION ENERGY and ANGULAR MOMENTUM will DEEXCITE:

emitting evaporation particles and residues

fission

Page 8: A STUDY ON 4 REACTIONS FORMING THE TI*

THE EXPERIMENTAL ARRAY

GA

RFIE

LD +

RC

o

• F. Gramegna et al., Proc. of IEEE Nucl.Symp., 2004, Roma, Italy, 0-7803-8701-5/04/.

• M. Bruno et al. Eur. Phys. J. A (2013) 49: 128

Evaporation Residue is detected in

coincidence with Light Particles

Selection of

CENTRAL

EVENTS

RESIDUE identification

LCP identification

8 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 9: A STUDY ON 4 REACTIONS FORMING THE TI*

TARGET CONTAMINATION

Ge

min

i Sim

ula

tio

n

Plo

t: 3

0Si ta

rge

t G

em

ini Sim

ula

tio

n

Plo

t: 1

6O

ta

rge

t

Elastic Scattering DIC &

Peripheral Collisions

9 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 10: A STUDY ON 4 REACTIONS FORMING THE TI*

GOOD EVENTS SELECTION Correlation between the longitudinal momentum and total charge

Correlation between the laboratory

energy and charge

10 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

0,06% of total

events

0,8% of the

good events 8% of the

total events

Page 11: A STUDY ON 4 REACTIONS FORMING THE TI*

QUASI-COMPLETE EVENTS

8% of the total

events

11 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

LCP

RESIDUES

LCP

LCP RESIDUES

Page 12: A STUDY ON 4 REACTIONS FORMING THE TI*

THEORETICAL SIMULATIONS 16O(8AMeV)+30Si

16O(7AMeV)+30Si 18O(7AMeV)+28Si 19F(7AMeV)+27Al

46Ti*

DECAY

Interacting Nuclei Structure

& Reaction Dynamics

AMD code

• describes the cluster structure of the interacting particles.

• takes into account the particle-particle correlations.

{A. Ono, Phys. Rev. C59, 853 (1999)}

GEMINI++ code

Simulate the decay of hot nuclei formed in fusion/quasi-fusion reaction.

• Standalone when a good selection of central events can be performed;

• Afterburner (after a dynamical code) to produce secondary particles distributions from primary fragments -> to be compared with exp data.

{R. J. Charity, Phys Rev C 82 (2010) 014610.}

DEFORMED NUCLEUS

12 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Effect of the Experimental

filter (software) applied

on GEMINI++ simulation

of the 4 studied systems

p a

nd

α m

ultip

lic

itie

s

in 4π

vs.

ge

o

Re

sid

ue

Dis

trib

utio

n

Page 13: A STUDY ON 4 REACTIONS FORMING THE TI*

𝑇𝑖46 : A DEFORMED NUCLEUS

{M. Brekiesz et al., Nucl.Phys A 788 (2007) 224c-230c}

{A. Maj et al., Eur.Phys.J. A 20 (2004) 165-166}

𝛽 = 0.6

CACARIZO code:

𝐸 𝐽 =ℏ2𝐽(𝐽+1)

ℑ𝑠𝑝ℎ𝑒𝑟𝑒(1+𝛿1𝐿2+𝛿2𝐿4), 𝑤𝑖𝑡ℎ 𝛿1𝑎𝑛𝑑 𝛿2 deformation parameters

the equivalent in GEMINI++ code:

𝐸𝑌𝑟𝑎𝑠𝑡 𝐽 = 𝐸𝑆𝑖𝑒𝑟𝑘 𝐽 𝑖𝑓 𝐽 < 𝐽∗

𝐸𝑆𝑖𝑒𝑟𝑘 𝐽 + 𝐽 − 𝐽∗ 𝐸𝑆𝑖𝑒𝑟𝑘 𝐽∗ 𝑖𝑓 𝐽 > 𝐽∗, 𝑤𝑖𝑡ℎ 𝐽∗ = 0.319𝐴

13 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

0 10 20 30 40

0

20

40

60

80

100

J (hbar)

E (

Me

V)

Yrast Line

Gemini Sierk

Gemini RLDM

Maj et al.

16O+30Si @ 8 AMeV

16O+30Si @ 7 AMeV

18O+28Si @ 7 AMeV

19F+27Al @ 7 AMeV

𝐄 𝐓𝐢∗𝟒𝟔

𝛽 = 0.6

𝛽 𝛿1 𝛿2 Shape

0.2 𝑅𝐿𝐷𝑀 parameters

𝟎. 𝟔 𝟒. 𝟔 × 𝟏𝟎−𝟒 𝟏. 𝟎 × 𝟏𝟎−𝟕 𝑸𝒖𝒂𝒔𝒊 − 𝑺𝑼𝑷𝑬𝑹𝑫𝑬𝑭𝑶𝑹𝑴𝑬𝑫

1.0 1.1 × 10−3 1.0 × 10−7 𝑄𝑢𝑎𝑠𝑖 − 𝐻𝑌𝑃𝐸𝑅𝐷𝐸𝐹𝑂𝑅𝑀𝐸𝐷

Page 14: A STUDY ON 4 REACTIONS FORMING THE TI*

THE STATISTICAL CODE: GEMINI++

Hauser-Feshbach Model Weisskopf Evaporative Theory

Quantum Description of Angular Momentum

𝑊𝛽 ∝ ℓ 𝑇ℓ𝜌𝐵 𝐸∗𝐵, 𝐽𝐵 𝑑휀𝑏𝑑𝜙

ℓ = 2ℓ + 1

3 ingredients in the statistical model:

1. Transmission coefficients

𝑇𝑙 𝜖 =𝑇𝑙

𝑅0−𝛿𝑟𝜖 + 𝑇𝑙

𝑅0 𝜖 + 𝑇𝑙𝑅0+𝛿𝑟

𝜖

3, δ𝑟 = 𝑤 𝑇

2. Level density parameter 𝜌𝐵 𝐸𝐵

∗ ∝ 2 𝑎𝐸𝐵∗

𝑎 =𝐴

𝑘∞ − 𝑘∞ − 𝑘0 𝑒𝑥𝑝 −𝜅

𝑘∞ − 𝑘0

𝑈𝐴

𝜅 𝐴 = 0.000517𝑒𝑥𝑝 0.0345𝐴

3. Macroscopic rotational energy of the nucleus 𝐸𝑌𝑟𝑎𝑠𝑡 𝐽 =

𝐸𝑆𝑖𝑒𝑟𝑘 𝐽 𝑖𝑓 𝐽 < 𝐽∗

𝐸𝑆𝑖𝑒𝑟𝑘 𝐽 + 𝐽 − 𝐽∗ 𝐸𝑆𝑖𝑒𝑟𝑘 𝐽∗ 𝑖𝑓 𝐽 > 𝐽∗, 𝐽∗ = 0.319𝐴

14 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

0 10 20 30 40

0

20

40

J (hbar)

E (

Me

V)

Yrast Line

{R. J. Charity, Phys Rev

C 82 (2010) 014610}

{R. J. Charity, Phys Rev C 82 (2010) 014610}

16O+30Si @ 8AMeV

Page 15: A STUDY ON 4 REACTIONS FORMING THE TI*

16

ANALYSIS RESULTS: ANGULAR DISTRIBUTION

IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 16: A STUDY ON 4 REACTIONS FORMING THE TI*

𝐸𝐶𝑁∗

ANALYSIS RESULTS: PROTON & 𝛼-PARTICLE SPECTRA

17 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 17: A STUDY ON 4 REACTIONS FORMING THE TI*

𝐸𝐶𝑁∗

ANALYSIS RESULTS: PROTON & 𝛼-PARTICLE MULTIPLICITY

18 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 18: A STUDY ON 4 REACTIONS FORMING THE TI*

ANALYSIS RESULTS: DEUTERON, TRITON AND 3HE

19 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

𝐸𝐶𝑁∗ 𝐸𝐶𝑁

Page 19: A STUDY ON 4 REACTIONS FORMING THE TI*

… AND PERSPECTIVE

20 IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Study on particle-particle correlations will be performed, selecting

specific decay channels (1α, 2α, 3α …) to get a better insight on the

reaction interplay;

The AMD calculations are in progress: AMD events are available for

only one system. Further calculations are ongoing for all systems for a

number of events necessary to compare with exclusive experimental

data.

Studying the decay of 46Ti*, the theoretical GEMINI++ simulations

reasonably reproduce the major part of global variables for all the

reactions; nevertheless, the slight differences observed are crucial for

analyzing the interplay between the two different reaction mechanisms.

In particular, the overproduction of alpha-particles of forward angles

represents a signature of the onset of fast emission.

SUMMARY

Page 20: A STUDY ON 4 REACTIONS FORMING THE TI*

THANK YOU FOR YOUR ATTENTION!

IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA

Page 21: A STUDY ON 4 REACTIONS FORMING THE TI*

NUCL-EX COLLABORATION

M.Cicerchia1,2, F. Gramegna1, D. Fabris3, T. Marchi1, M. Cinausero1, G. Mantovani1,2, A. Caciolli2,3, G. Collazzuol2,3, D. Mengoni2,3, M. Degerlier4, L. Morelli5, M. Bruno5, M. D’Agostino5, S. Barlini6, S. Piantelli6, M. Bini6, G. Pasquali6, P. Ottanelli6, G. Casini6, G. Pastore6, C. Frosin6, D. Gruyer7, A. Camaiani6, S.Valdré6, N. Gelli6, A. Olmi6, G.Poggi6, I. Lombardo8, D. Dell’Aquila8,9, S. Leoni10, N. Cieplicka-Orynczak10-11, B. Fornal11

¹INFN Laboratori Nazionali di Legnaro, Legnaro (PD), Italy. 2Dipartimento di Fisica e Astronomia dell’Università di Padova, Padova, Italy.

3INFN Sezione di Padova, Padova, Italy. 4Science and Art Faculty, Physics Department, Nevsehir Haci Bektas Veli Univ., Nevsehir, Turkey.

5INFN Sezione di Bologna e Dipartimento di Fisica e Astronomia, Univ. di Bologna, Bologna, Italia. 6INFN Sezione di Firenze e Dipartimento di Fisica e Astronomia, Univ. di Firenze, Firenze, Italia.

7Grand Accélérateur National d'Ions Lourds, 14076 Caen, France, 8INFN Sezione di Napoli e Dipartimento di Fisica, Univ. Federico II Napoli, Napoli, Italia.

9Institut de Physique Nuclèaire (IPN) Université Paris-Sud 11, Orsay, Île-de-France, France. 10INFN Sezione di Milano e Dipartimento di Fisica, Univ. di Milano, Milano, Italia.

11Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland.

IWM-EC 2018 24 MAGGIO 2018 CATANIA

M. CICERCHIA