23
A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Embed Size (px)

Citation preview

Page 1: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

A study of Thin Film Shape Memory Alloys

By Rajlakshmi PurkayasthaMetallurgical and Materials ScienceIIT Bombay

Page 2: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Shape Memory AlloysShape Memory Alloys Shape memory alloys (SMAs) are metals that

"remember" their original shapes. SMAs are useful for such things as actuators which are

materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields"

The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields.

The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology.

The diverse applications for these metals have made them increasingly important and visible to the world.

Page 3: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Shape Memory EffectShape Memory Effect The Shape Memory effect refers to

the fact that after a sample of SMA has been deformed from its "original" conformation, it regains its original geometry by itself during heating (one-way effect) or, at higher ambient temperatures, simply during unloading (pseudo-elasticity or superelasticity).

SME is the ability to return to a previously defined shape through appropriate thermal procedure after being severely deformed.

Page 4: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

These extraordinary properties are due to a temperature-dependent martensitic phase transformation from a low-symmetry to a highly symmetric crystallographic structure.

Those crystal structures are known as martensite and austenite.

Page 5: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Thin FilmsThin Films Shape memory alloys (SMA’s) possess an array of

desirable properties: high power to weight (or force to volume) ratio, thus the

ability to recover large transformation stress and strain upon heating and cooling,

peudoelasticity (or superelasticity), high damping capacity, good chemical resistance and biocompatibility, etc. This attracted much attention to the research of SMAs

as smart (or intelligent) and functional materials. More recently, thin film SMA has been recognized as a

promising and high performance material in the field of micro-electro-mechanical system (MEMS) applications, since it can be patterned with standard lithography techniques and fabricated in batch process.

Page 6: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Why thin films?• Thin films have a wide variety of applications. Thus

an analysis of the stress – strain behaviour of these films becomes very important to analyse, and predict their beahaviour under different conditions.

• The main factors that affect the behaviour of these films are:

1. Temperature

2. Materials Used

3. Stress Applied

Page 7: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

The transformation from Austenite to Martensite and vice-versa is temperature Dependant

The temperatures at which the SMA changes its crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios.

Typically, Ms denotes the temperature at which the structure starts to change from

austenite to martensite upon cooling. Mf is the temperature at which the transition is finished. Accordingly, As and Af are the temperatures at which the reverse transformation from martensite to austenite start and finish, respectively.

Temperature Dependance

Page 8: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Materials Used Each Material is different in terms of:

1. Transformation Temperature

2. Youngs Modulus and other Material constants The most common and important alloy used is

Nitinol – composed of Nickel and Titanium Other examples include Indium thallium ,

Nickel Aluminium Magnesuim

Page 9: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Stress Applied Stress can be applied in two Directions – biaxial

stress or in only one direction – uniaxial stress Rather than measuring the stress applied, it is

easier to measure the strain caused, and calculate stress using Hookes law

Stress = [elastic coeff]*strain Phase transformations can also be brought

about by the application of stress rather than change in temperature

Page 10: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Mechanics of thin films deposited on substrate The major three reasons for biaxial

stresses in thin films are thermal strains, growth strains, and epitaxial strains.

In general thermal strains are the result of thermal expansion coefficient mismatch between the substrate and the thin film equation (1) shows this effect

(1) ε=−∆α ∆T∗ The film is free to move in the z

direction only, as it is constrained by the substrate in the y and x direction

The transformation and subsequent stress equations are modelled on this fact.

Thus a solution to a very real problem, thermally induced stress, is sought.

Page 11: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

The problem When austenite transforms

into martensite it transforms into different variants

The number of variants depends on the crystal structure. For example a tetragonal system has three variants whilst a monoclinic (check) has 12 variants.

These variants have different orientations.What we have to do is analyse and detemine the volume fractions of each of the variants formed in a phase transformation , due to applied stress in a thin film.

Page 12: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

MethodologyMethodology The problem is solved using Energy

Minimisation We know that the film will transform in such a

way so as to minimise the total stress energy. We therefore calculate the total energy due to

the formation of these variants and then use a standard optimisation routine with set boundary conditions to calculate the volume fraction of each variant.

Page 13: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

The details…. In this problem we are analysing a biaxial

stress applied to a thin film of In-23%Th, i.e. an Indium-Thallium Shape Memory Alloy

It is a Cubic-Tetragonal transformation. There are three variants of Martensite formed Assumptions1. We assume that there is no change in

temperature during the transformation2. We assume that all of the austenite is

transformed into Martensite i.e. there is no retained austenite.

3. All material constants are kept fixed throughout the transformation.

Page 14: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

t = (I – U1)*v1 + (I – U2)*v2 + (I-U3)*v3 strain applied t = strain due to phase transformation Ui = Transformation Matrix in the ‘i’th Direction I = Identity Matrix

Now, we assume that the body is allowed to move freely in the ‘z’ direction as it perpendicular to both of the applied stresses and is normal to the plane of the substrate.

With this in mind, the applied strain in the z-direction is taken to be * , and is calculated using the stress relationship.

Basic Equations

Page 15: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Therefore ,app = [ * 0 00 0 00 0 0 ]

Thus, = app – t

E = where, = stress, = strain, E = energy

= *C , where C = stress transformation Coefficient Matrix

Thus, E = *C* Boundary conditions are:1. v1 + v2 + v3 = 12. v1,v2,v3 03. v1,v2,v3 1

Page 16: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Results

On running the optimisation routine for equal strains applied in both x and y direction, we get the following graph

The graph shows that the energy clearly reaches a minimum at v2 = v3 = 0.5, when v1 = 0.0

Page 17: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

• The adjacent graph shows the variation of the minimum. The minimum keeps on shifting to the right as the value of v1 increases, but is always reached at a point where v2 = v3.

•Also, note that as v1 increases, the total energy increases, making the system more unstable. Thus the system is most stable at minimum v1 i.e. v1 = 0.0

Page 18: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

...when unequal strains are applied…

•The variants are formed in different ratios in order to accommodate the varying strain.

•The equations used are the same, but will change for energy calculation due to symmetry considerations

Page 19: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

The two graphs below show the change in the variants due to the unequal stress. Again, V1 is varied from 0.1 to 1.0

The variation of Energy with V3 shows that energy minimisation occurs at V3 -> 0.

The variation of Energy with V2 shows that all the variant forms tends to be V2

Page 20: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Conclusion In an ideal situation, the maximum variant

fraction formed depends on the direction in which the stress is applied.

When strains are equally applied, then fractions of V2 and V3 are the same

When unequal strains are applied, the maximum variant formed is in the direction of the larger strain.

Page 21: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Acknowledgement I would sincerely like to thank my guide for

this project, Prof Prita Pant, for giving me this opportunity to work with her. It has been a very good learning experience, indeed.

I would also like to mention the IRCC Summer Fellowship Programme, under whose aegis this work was carried out

Thank You

Page 22: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Basic Equations…Basic Equations… t = (I – U1)*v1 + (I – U2)*v2 + (I-U3)*v3 strain applied t = strain due to phase transformation Ui = Transformation Matrix in the ‘i’th Direction I = Identity Matrix

Now, we assume that the body is allowed to move freely in the ‘z’ direction as it perpendicular to both of the applied stresses and is normal to the plane of the substrate.

With this in mind, the applied strain in the z-direction is taken to be * , and is calculated using the stress relationship.

Page 23: A study of Thin Film Shape Memory Alloys By Rajlakshmi Purkayastha Metallurgical and Materials Science IIT Bombay

Therefore ,app = [ * 0 0 0 0 0 0 0 0 ] Thus, = app – t E = where, = stress, = strain, E = energy = *C , where C = stress transformation Coefficient Matrix Thus, E = *C* Boundary conditions are:1. v1 + v2 + v3 = 12. v1,v2,v3 03. v1,v2,v3 1