A Software Tool for Appropriate Design of Center Pivot Irrigation

Embed Size (px)

Citation preview

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    1/20

    103

    Sudan J. Agric. Res. : (2011), 17, 103 - 122 ARC, Sudan, Email: [email protected]

    A software tool for appropriate design of center pivot irrigation

    system 

    Hassan E. Alsayim1 and Amir B. Saeed2

    Abstract

    The experiment was conducted in the River Nile Sate, Sudan, to develop

    a simulation model for designing a center pivot sprinkler irrigation

    system. A Visual Basic 6.0 program was utilized in the model application

    windows. The program was interactive to design a new system and/or

    evaluate an already designed system. The crop water requirement and

    the pipe size permitted to attain the target. The center pivot hydraulic

    characteristics and its hardware specications were executed. Two center

    pivot systems at Ras Elwadi farm and the Jordanian Bashair project wereused for model testing and verication during 2007/2008 season. With

    respect to the hydraulic characteristics and hardware specications,

    it was found that the center pivot system discharges were 318.8 m3hr-1 

    and 227.2 m3hr-1  for Ras Elwadi farm and Jordanian Bashair project,

    respectively. The package of low drift nozzles (LDN) was 116 nozzles with

    2.8 m spacing and 214 nozzles with 1.9 m spacing for Ras Elwadi farm and

    Jordanian Bashair project, respectively. The ratio of actual to calculated

    nozzle discharge and pressure were within the acceptable range of 0.82 to

    1.13 and 0.97 to 1.17 for Ras Elwadi farm and 0.84 to 1.90 and 1.03 to 1.23for Jordanian Bashair project.

    Introduction

    Pressurized irrigation systems had been used since the early 1900s,

     but the rst center pivot machine was developed in late 1940s. A center pivot

    is a moving irrigation system with a lateral that rotates around a xed pivot

     point. By mid1970s, the center pivot irrigation system had rapidly dominated

    the new and expanding irrigation areas in the USA and the Middle East (Evans,

    2001).Heermann and Kohl (1983) mentioned that the sprinkler irrigation systems

    were designed to uniformly apply water to the soil at a rate equal to or less

    than the soil intake rate. The design guidelines need to be either followed or

    intentionally circumvented with appropriate design criteria when designing

    and managing a center pivot irrigation system. Jorge and Pereira (2003)

    depicted that a poorly designed irrigation system, even if well managed, often1 Department of Agricultural Engineering, Faculty of Agriculture, Nile Valley University, Darmali, Sudan.2 Department of Agricultural Engineering, Faculty of Agriculture, University of Khartoum, Shambat,

    Sudan.

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    2/20

    104

    Hassan E. Alsayim and Amir B. Saeed

    results in crop yield losses and poor water productivity. Evans et al . (1997)

    added that operating an irrigation system differently than assumed in the

    design will alter the application rate and uniformity of coverage. Simulation

    modeling of water, demand and supply is an essential analytical technique forassessing water management. Considerable research data for such conditions

    and areas had been put into developed software to improve irrigation water

    management. Field evaluation of sprinkler systems produced important

    information to support the design in order to achieve better performance to

    help farmers improve the management and maintenance of their irrigation

    systems (Merriam and Keller, 1978). The eld data can easily be manipulated

    through a computer model and effectively supported farmers to generate new

    alternative solutions. To support design of sprinkler systems, several softwares

    had been developed. Some models add graphical interfaces pay a particular

    attention to the farm distribution network; others include topographical tools

    to represent the elds under design. Examples of these models are:

     The software SPRINKMOD developed by Andrae and Allen (1997) to

    simulate pressure and discharges along the existing or newly designed

    sprinkler irrigation systems.

      The model ISADim developed by Abreu and Pereira (2002). It was

    intended to design and/or simulate set sprinkler irrigation systems.

    The model AVASPER developed by Jorge and Pereira (2003), aiming to

    simulate and design sprinkler set systems.

     This study was conducted to develop a center pivot simulation model (CPM)

    for appropriate design of center pivot sprinkler irrigation systems.

    Materials and Methods

    Soil, crop and weather data for 30 years (1971 – 2000) were collected

    from Atbara Meteorological Station, River Nile State. Three double ring

    inltrometers were used for water inltration measurement. This data

    represented the two different experimental sites of Ras Elwadi farm and the

    Jordanian Bashair project, where center pivot systems were erected to irrigate

    a forage crop (alfalfa) and a vegetable crop (onion) respectively. A computer

    model designated (CPM) was developed during the rst season (2006/2007).

    The model theoretical design characteristics were based on the collected data.

    The CPM model accuracy was validated by its output from the data of season

    (2007/2008) as compared with the actual system design criteria. The CPM

    was executed using soil, crop and weather data to obtain the theoretical design

    characteristics for the intended area and crops in the two sites. The obtained

    results were compared with the actual data of the two systems in the two

    sites.

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    3/20

    105

    A software tool for appropriate design of center pivot irrigation system

    Model development

    The model CPM was developed using Microsoft Visual Basic 6.0 with

    Service Pack 2 and included a database in Access 2000 and was run in

    Windows. The program was interactive for designing a new system and/or

    for evaluation of an existing system. In the design mode, computations were

     performed iteratively until design constraints were met.

    Firstly, the input data were prepared and the design criteria of the center

     pivot system were executed later on. Finally, the system layout report was

     printed out. However, in all cases, throughout the program, “click” means to

    click the left mouse button and clicking “Previous” and “Next” buttons to get

     backward to the previous window or upward to the next one.

    When CPM was launched from windows, then the project information was

    entered, and “Open project” button to open the project le for the center pivot

    system design was chosen.

    Field information and water supply

    This option required data inputs of total eld area, diameter or short length

    of the eld, elevation, water source and maximum available water volume

    from source.

    Soil data

    This data were collected for the analysis of soil properties viz: calculation

    of total available water, selection of soil inltration family, water depletion

    ratio and calculation of readily available water. Computations were based onequations proposed by Withers and Vipond (1985) as follows:

    Where: Taw

     is total available water (cm), θfc is soil moisture content at eld

    capacity (%), θwp

     is soil moisture content at permanent wilting point (%), Rd

    is relative density, Drz is root zone depth (cm), Dn is readily available water

    (cm) and Mad

     is water depletion ratio (%).

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    4/20

    106

    Meteorological data

    This window was divided into two parts. The rst part was for location of

    the project, which included altitude, latitude and longitude. The second part

    for ETo calculation using FAO Penman-Monteith equation (3) as modied by

    Allen et al. (1998) or by using class-A evaporation pan method as proposed

     by Jensen (1980), equation (4).

    Where: ETo is reference crop evapotranspiration (mm d-1), ∆ is slope of the

    saturated vapor pressure curve, Rn is net radiation ux (MJ m-2d-1), G is

    sensible heat ux into the soil (MJ m-2d-1), γ is approximately 0.059 (kPa°C-1),

    T is mean air temperature (°C), U2  is wind speed (ms-1) at 2 m above the

    ground, es is saturated vapor pressure (kPa), ea is actual vapor pressure (kPa),

    es - ea is mean daily vapor pressure decit (kPa), kp is dimensionless, pan

    coefcient and Ep is pan evaporation (mm).

    Crop water requirement

    In this window (Fig. 1) the user can determine peak consumptive use for

    four selected crops, irrigation interval and gross water depth. These computed

     performance indicators are as proposed by Merkley and Allen (2007) using

    the following equations:

     

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    5/20

    107

    Where: ETc is crop evapotranspiration (mm day-1), Kc is crop coefcient, ETo

    is reference crop evapotranspiration rate (mmday-1), II is irrigation interval

    (days), Dn is readily available water in the root zone (mm), Dg is the gross

    application depth (mm) and Ea is the application efciency (%).

    Fig. 1. Dialogue box for crop water requirement determination.

    System revolution

    The system revolution design followed the approaches proposed byAl-Ghobari (2004). In this form the simulated parameters were number of

    revolutions, water depth during one revolution, available irrigation time and

    one rotation time. The following equations (8, 9, 10 and 11) were used for the

    aforementioned calculations:

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    6/20

    108

    ( )Re ................................................................................................ 9 Dg 

     Dg v

     Nrev

    =  

    ( )  ..................................................................................................... 11Ti

    Trev Nrev

    =

    Where: Nrev is number of revolutions, Dg is gross water depth (mm), dgmax

    is maximum water depth added without causing runoff (mm), Dgrev is waterdepth during one revolution, Ti is available irrigation time for one irrigation,

    Trat is readily available time (%) and II is irrigation interval.

    System discharge

    System discharge design followed the methodology recommended by

    Merkley and Allen (2007) as follows:

    Where: Q is the system discharge (l s-1), K is 2.78, A is area (ha), D is gross

    daily application depth (mm), F is frequency in days per irrigation and T is

    operating time, generally 20-22 (hr day-1) during the peak use period.

    Pivot lateral design

    In the “Pivot lateral Design” window (Fig. 2), the output design criteria for

    the system with one pipe size or two pipes size are lateral inner diameter andsystem discharge adjusted to the calculated diameter. The calculations were

    carried out as proposed by Keller and Bliesner (1990) as follows:

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    7/20

    109

    Where: d is inside diameter of the main line (m), Q is system discharge

    (m3 sec-1), V is water ow velocity (V ≤ 2 m sec-1) and p is 227

     or 3.14.

    Fig. 2. Window for pivot lateral diameter and system discharge for Ras

     Elwadi farm.

    Application rateThe calculation of maximum application rate and application time for

    specic sprinkler was major functions of this window. The calculation

     procedure used was suggested by Al-Ghobari (2004) as follows:

     

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    8/20

    110

    Where: AR is the average application rate over width W (mm min -1 for ETc

    in mm day-1), k is 60, Q is system discharge, Re is the fraction of applied

    water that reaches the soil surface, Oe is the fraction of water that does not

    leak from the system pipes, R is effective radius (m), Ram is the maximum

    application rate, Tw is application time (min), Dw is sprinkler wetted diameter

    at the distance (r) from the pivot (m) and Trev is revolution time (min).

    Sprinklers (nozzles) conguration

    This window (Fig. 3) represents types of sprinklers (nozzles) and rain guns

    used for center pivot systems and their hydraulic characteristics to help the

    designer in selecting proper sprinklers. The sprinklers (nozzles) conguration

    and selection followed the approaches proposed by King and Kincaid (1997).

    Fig. 3. User interface for sprinklers selection.

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    9/20

    111

    Hydraulic characteristics and hardware specications

    Simulation of hydraulic system includes determination of friction losses

    on the sprinkler line, determination of operating head (pressure) in the

     pivot point, distribution of operating pressure along the lateral, sprinklers(nozzles) operating pressure and nozzle size and color (Fig. 4). The hydraulic

    characteristics design followed the approaches proposed by Keller and Bliesner

    (1990) and Merkley and Allen (2007) as the following equation:

    Where: Hf is the friction losses (m), K is 16.42(10)4, F is 0.555 for a center

     pivot with a “large” number of outlets and no end gun, Q is the ow rate (L

    s-1), C is a roughness coefcient, d is the pipe inside diameter (cm) and R is the

     pipe length (m). The determination of sprinklers (nozzles) operating pressure,

    nozzle size and discharge was carried out using the following equations as

    suggested by Al-Ghobari (2004):

    Where: Psp is sprinkler operating pressure (kPa), Pf is friction losses on the

     pivot lateral (kPa), r is nozzle spacing from the pivot point (m), R is sprinkler

    line length (m), Pe is pressure required in the end of the sprinkler line (kPa),

    dsp is nozzle diameter (mm), Qsp is nozzle discharge (L s-1), Ss is sprinklers

    spacing (m), Q is system discharge (L s-1) and K is a unit conversion of 10000

    in metric units of L s-1

    , m, and L s-1

     ha-1

    .

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    10/20

    112

    System report

    This window is for assembly of output data for the system design, which

    consists of three reports (Figs. 5a, 5b and Table 1).

    Data collection and analysisThe climate data from Atbara meteorological station included rainfall data,

    mean maximum and mean minimum temperatures, mean relative humidity,

    mean sunshine, wind speed and evaporation. Monthly means for 30 years

    (1971 – 2000) were presented in Table 2.

    * Dark color

    Fig. 4. User interface for hydraulics and hardware specications along the

    sprinkler line.

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    11/20

    113

    Soil physical properties for the two sites were obtained from samples

    analyzed in Hudeiba Research Station laboratory. The soil in both sites

    was classied as sandy clay loam. Using the method proposed by Saxton

    et al 

    . (2006), soil moisture contents at eld capacity and permanent wilting point were determined as 30.6 and 19.6, respectively. Eight sprinklers were

    randomly selected along the sprinkler line to measure the sprinkler discharge

    and pressure as recommended by Code of Practice for Irrigation Evaluation

    (2006).

    Results and Discussion

    The simulation model CPM was used to determine the center pivot system

    design criteria. Table (3) shows the results of irrigated area, readily available

    water, reference evapotranspiration, crop evapotranspiration, irrigation intervaland application depth. For Ras Elwadi farm, they were 43.7 ha, 11.9 ha, 49 mm,

    8.11 mm day-1, 8.9 mm day-1, 6 days and 70 mm, respectively. While for the

    Jordanian Bashair project, they were 55.4 ha, 15.1 ha, 49 mm, 8.11 mm day-1,

    9.3 mm day-1, 6 days and 70 mm, respectively. Reference evapotranspiration

    was determined using the modied (FAO) Penman-Monteith equation, then

    the parameters of crop evapotranspiration, irrigation interval and application

    depth were calculated and exhibited in Fig. 1.

    Center pivot sprinkler irrigation modelCPM version 1.0.0

    System design report

    Project data:

    Project No.1 :. Project Name: Ras Elwadi farm.

    Engineer (Designer): Mamoon.

    Project location:

    Country: Sudan. Latitude: 17°40 

    Longitude: 33° 58  Altitude: 346.5 m.

    Field Information and water supply:Total eld area: 55.56 ha. Irrigated area: 43.7 ha.

     None irrigated area: 11.86 ha.

    Maximum available water from source: Well is ________ m3/day.

    Soil:

    Soil Type: Silty loam soil. Readily available water: 49 mm.

    Crop/s Water requirements with application efciency of 70%.

    Fig. 5a. System report of project data.

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    12/20

    114

    System discharge:

    System type:Without rain gun.

    System discharge: 318.6  m3/hr.

    Rain gun discharge:_____ m3/hr (if existent).

    Main line design:

    Main line length: 372.7 m. Main line (Pipe) diameter. Manufacturing:

    162.05 mm.

    Spans (Towers) No.: 9. Spans (Towers) Spacing: 38 m.

    Over hang length: 30.7 m. Rain gun wetted Radius: m.

    (if existent).

    Application rate:

    System application rate: 102.8 mm/hr.

    Maximum application rate: 130.8 mm/hr.Sprinklers selection:

    Sprinkler (Nozzle) type: Low drift and multiple spray head.

    Sprinklers spacings:1.9 m.

    Fig. 5b. System report of system discharge.

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    13/20

    115

       T  a   b   l  e   1 .   S  y  s   t  e  m  r  e  p  o  r   t   (  s  a  m  p   l  e   )   f  o  r   h  y   d  r  a  u   l   i  c  s  c   h  a  r  a  c   t  e  r   i  s   t   i  c  s  a  n   d   h  a  r   d  w  a  r  e  s  p  e  c   i   

      c  a   t   i  o  n  s  a   l  o  n  g   t   h  e  s  p  r   i  n   k   l  e  r   l   i  n  e .

       N

      o  z  z .

       N

      o .

       S  p  a  c   i  n  g

       f  r  o  m 

      p  r  e  v   i  o  u  s

       (  m   )

       D   i  s   t  a  n  c  e

       f  r  o  m 

      p   i  v  o   t

      p  o   i  n   t

       (  m   )

       S  p  r   i  n   k   l  e  r

       d   i  s  c   h  a  r  g  e

       (   L   /  s   )

       S  p  r   i  n   k   l  e  r

       d   i  s  c   h  a  r  g  e

       (  g  p  m   )   +

       S  p  r   i  n   k

       l  e  r

      o  p  e  r  a   t   i  n  g

      p  r  e  s  s  u

      r  e

       (  p  s   i   )

       S  p  r   i  n   k   l  e  r

      o  p  e  r  a   t   i  n  g

      p  r  e  s  s  u  r  e

       (   k  p  a   )

       N  o  z  z   l  e

       d   i  a  m  e   t  e  r

       (  m  m   )

       N

      o  z  z   l  e

       d

       i  a  m  e   t  e  r

       (

       T   H    6

       4

       i

      n  c   h   )

       N  o  z  z   l  e  s   i  z  e  a  n   d

      c  o   l  o  r

     

       I  r  r   i  g  a   t  e   d

      a  r  e  a

      (   h  a   )

       1

       4   6 .   8

       4   6 .   8

       2 .   7

       9   3

       4   4 .   2   7   5

       3   8 .   2

       2   6   3 .   4

       1   2 .   6

       3

       1 .   7

       3   2   Y  e   l   l  o  w

       1 .   3

       7   7

       2

       2 .   8

       4   9 .   6

       0 .   1

       7   7

       2 .   8   0   6

       3   8 .   1

       2   6   2 .   4

       3 .   2

       8

     .   1

       8 .   5   L  a  v  e  n   d  e  r   *

       0 .   0

       8   7

       3

       2 .   8

       5   2 .   4

       0 .   1

       8   7

       2 .   9   6   4

       3   7 .   9

       2   6   1 .   4

       3 .   3

       8

     .   3

       8 .   5   L  a  v  e  n   d  e  r   *

       0 .   0

       9   2

       4

       2 .   8

       5   5 .   2

       0 .   1

       9   7

       3 .   1

       2   3

       3   7 .   8

       2   6   0 .   4

       3 .   4

       8

     .   6

       9   G  r  a  y

       0 .   0

       9   7

       5

       2 .   8

       5   8 .   0

       0 .   2

       0   7

       3 .   2

       8   1

       3   7 .   6

       2   5   9 .   4

       3 .   5

       8

     .   8

       9   G  r  a  y

       0 .   1

       0   2

       6

       2 .   8

       6   0 .   8

       0 .   2

       1   7

       3 .   4   4   0

       3   7 .   5

       2   5   8 .   5

       3 .   5

       8

     .   8

       9   G  r  a  y

       0 .   1

       0   7

       7

       2 .   8

       6   3 .   6

       0 .   2

       2   7

       3 .   5

       9   8

       3   7 .   3

       2   5   7 .   5

       3 .   6

       9

     .   1

       9 .   5   G  r  a  y   *

       0 .   1

       1   2

       8

       2 .   8

       6   6 .   4

       0 .   2

       3   7

       3 .   7

       5   7

       3   7 .   2

       2   5   6 .   5

       3 .   7

       9

     .   3

       9 .   5   G  r  a  y   *

       0 .   1

       1   7

       9

       2 .   8

       6   9 .   2

       0 .   2   4   7

       3 .   9

       1   5

       3   7 .   1

       2   5   5 .   5

       3 .   8

       9

     .   6

       1   0   T  u  r  q  u  o   i  s  e

       0 .   1

       2   2

       1

       0

       2 .   8

       7   2 .   0

       0 .   2

       5   7

       4 .   0   7   4

       3   6 .   9

       2   5   4 .   6

       3 .   9

       9

     .   8

       1   0   T  u  r  q  u  o   i  s  e

       0 .   1

       2   7

       1

       1

       2 .   8

       7   4 .   8

       0 .   2   6   7

       4 .   2   3   2

       3   6 .   8

       2   5   3 .   6

       3 .   9

       9

     .   8

       1   0   T  u  r  q  u  o   i  s  e

       0 .   1

       3   2

       1

       2

       2 .   8

       7   7 .   6

       0 .   2

       7   7

       4 .   3   9   1

       3   6 .   6

       2   5   2 .   7

       4 .   0

       1

       0 .   1

       1   0 .   5   T  u  r  q  u  o   i  s  e   *

       0 .   1

       3   7

       *

       D  a  r   k  c  o   l  o  r .   +  :   G  a   l   l  o  n  s  p  e  r  m   i  n  u   t  e .

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    14/20

    116

    T  a b  l   e 2  . C  l   i   m a t   o l   o g i   c  a l   n or  m a l   s 1  9  7 1 –2  0  0  0  ,A  t   b  ar  a S  t   a t   i   o n ,L  a t   .1  7 °   4  0  /   N ,L  o n g . 3  3 °   5 

     8  /  E ,A  l   t   . 3  4  5  m .

    M on .

    Ai  r  t   e m p e r  a  t   ur  e i  nº   C 

    M e  a n

     d r  y

     t   e m p .

    Br i   gh  t  

     s  un s h i  n e 

     d  ur  a  t  i   on

    R e l   a  t  i   v e 

    h  umi   d i   t   y

      %

    R a i  nf   a l  l  i  nm

    m

    E  VAP  .

     pi   t   c h 

    mm

     Wi  n d 

    m e  a n

     s  p e  e  d 

     a  t  2 m

    M .P  .D

    M a xi  m um

    Mi  ni  m um

     N o . of  r  a i  n d  a  y s 

    M e  a n

    H S T * 

    M e  a n

    L  S 

    T * 

     º   C 

    Hr  s  .

     %

    M e 

     a n

    > = 0  .1 

    > =1  . 0 

    > =1  0  . 0 

     J   a n .

    2  9  . 8 

     3  9  .1 

    1 4  .2 

     6  . 3 

    2 2  . 0 

     9  . 9 

     8  8 

     3  6 

     0  . 0 

     0  . 0 

     0  . 0 

     0  . 0 

    1  3  . 5 

    4  . 9  7 

    F  e  b  .

     3 1  . 8 

    4 1  .4 

    1  5  .1 

     5  . 5 

    2  3  .4 

    1  0  . 3 

     9  0 

     3 1 

     0  . 0 

     0  . 0 

     0  . 0 

     0  . 0 

    1  5  . 0 

    4  . 9  7 

    M a r  c h 

     3  5  . 7 

    4  5  . 7 

    1  8  .4 

    1  0  . 8 

    2  7  . 0 

    1  0  .1 

     8 4 

    2 4 

     0  . 0 

     0  . 0 

     0  . 0 

     0  . 0 

    1  8  .1 

    4  . 9  7 

    A pr  .

    4  0  . 0 

    4  6  . 3 

    2 2  .1 

    1  5  . 0 

     3 1  .1 

    1  0  . 6 

     8  5 

    2  3 

     0  .4 

     0  .2 

     0  .1 

     0  . 0 

    2  0  .1 

    4  .2  6 

    M a  y

    4 2  . 6 

    4  7  . 5 

    2  6  . 5 

    1  8  . 9 

     3 4  . 5 

     9  . 8 

     7  5 

    2  3 

     3  .2 

     0  . 7 

     0  . 5 

     0  .1 

    2  0  .4 

     3  . 5  5 

     J   un .

    4  3  .2 

    4  8  . 0 

    2  8  . 0 

    2 1  . 6 

     3  5  . 6 

     8  . 6 

     6  5 

    2 2 

    1  . 0 

     0  . 3 

     0  .2 

     0  . 0 

    2  0  . 7 

     3  . 5  5 

     J   ul   .

    4 1  .2 

    4  7  . 7 

    2  7  . 3 

    1  9  . 5 

     3 4  . 3 

     8  . 7 

     6  5 

     3 2 

    1  5  .1 

    1  .4 

    1  . 3 

     0  .4 

    1  9  . 0 

    4  .2  6 

    A u g .

    4  0  . 6 

    4  6  . 5 

    2  6  . 9 

    1  9  . 5 

     3  3  . 8 

     8  . 6 

     6  7 

     3  7 

    2  6  . 5 

    2  .2 

    2  . 0 

     0  . 9 

    1  8  . 0 

    4  .2  6 

     S  e  p .

    4 1  . 6 

    4  7  . 6 

    2  7  .4 

    2  0  . 0 

     3 4  . 5 

     8  . 6 

     7 1 

     3 2 

     8  . 6 

    1  .1 

    1  . 0 

     0  . 3 

    1  8  . 5 

    4  .2  6 

     O c  t   .

     3  9  . 7 

    4 4  . 5 

    2  5  .2 

    1  6  . 0 

     3 2  . 5 

     9  . 8 

     8  3 

     3 1 

     3  . 0 

     0  . 5 

     0  . 5 

     0  .1 

    1  7  .4 

     3  . 5  5 

     N o v .

     3 4  . 9 

    4  0  . 7 

    2  0  .1 

    1 1  . 7 

    2  7  . 5 

    1  0  .2 

     9  0 

     3  6 

     0  . 0 

     0  . 0 

     0  . 0 

     0  . 0 

    1 4  . 7 

    4  .2  6 

    D e  c  .

     3 1  .1 

     3  8  . 5 

    1  6  . 0 

     6  . 5 

    2  3  . 6 

     9  . 7 

     8  8 

    4  0 

     0  . 0 

     0  . 0 

     0  . 0 

     0  . 0 

    1  3  .2 

    4  .2  6 

    Y e  a r 

     3  7  . 7 

    4  8  . 0 

    2 2  . 3 

     5  . 5 

     3  0  . 0 

     9  . 6 

     7  9 

     3 1 

     5  7  . 7 

     6  . 7 

     5  .4 

    1  . 8 

    1  7  .4 

    -

     S  o ur  c e :  S  u d  a

     nM e t  r  o l   o g i   c a l  A  u t   h  or  i   t   y ,A  t   b  ar  a S  t   a t   i   o n .

    *  : H S T  : H i   g h  e s  t   s  t   a t   i   o n t   e m p er  a t   ur  e .

    *  : L  S T  : L  o w e s  t   s  t   a t   i   o n t   e m p er  a t   ur  e .

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    15/20

    117

    Table 3 shows sample calculations as CPM Model output. Regarding the

    hydraulic characteristics and hardware specications, it was found that the

    center pivot system discharges were 318.8 m3 hr -1 and 227.2 m3 hr -1 for Ras

    Elwadi farm and the Jordanian Bashair project, respectively (Fig. 2). Onthe other hand, the packages of Low-drift nozzles (LDN) were 116 nozzles

    with 2.8 m spacing and 214 nozzles with 1.9 m spacing for Ras Elwadi farm

    and the Jordanian Bashair project, respectively. Tables (4 and 5) exhibit the

    ratio of actual (measured) to calculated nozzle locations along the sprinkler

    line, nozzle discharge, nozzle pressure and nozzle size and color through the

    sprinkler line. The columns titled VND and VNP in aforementioned tables

    represent the ratio of actual to calculated nozzle discharge and nozzle pressure,

    respectively. VND and VNP for Ras Elwadi farm were within the range of

    0.82 to 1.13 and 0.97 to 1.17, respectively. For the Jordanian Bashair project

    VND and VNP were between 0.84 to 1.90 and 1.03 to 1.23, respectively. The

    obtained results indicated that the variation in nozzle discharge were within

    11% and 19% and the variation in nozzle pressure was within 11% and 12%

    for Ras Elwadi farm and the Jordanian Bashair project, respectively. These

    variations may be attributed to the systems performance which was directly

    inuenced by inadequate nozzle pressure; nozzles wear and water leakage

    through spans connections.

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    16/20

    118

    Table 3. Sample calculations of the design criteria, for the tow center pivot

    sprinkler systems.

    Design criteria Ras Elwadi farm Jordanian Bashair project

    Irrigated areaTotal eld (A) = R 2 

    A=3.14Í(745.4/2)2/10000 =

    43.7 ha

    Total eld (A) = R 2

    A = 3.14Í(840/2)2/10000

    = 55.4 ha

    Readily available

    water 

    Equations (1 and 2)

    (Total available water )

    Taw = (30.6 –

    19.6)/100Í1.49Í60Í10 =

    98 mm

    (Readily available water) Dn =

    98Í

     0.5 = 49 mm

    (Total available

    water) Taw = (30.6 –

    19.6)/100Í1.49Í60Í10

    = 98 mm

    (Readily available water)

    Dn = 98Í

     0.5 = 49 mm

    Reference

    evapotranspiration

    Equation (3)

    ETo = 8.11 mm day-1 ETo = 8.11 mm day-1

    Crop water

    requirements

    Equation (5)

    For Kc = 1.1

    ETcrop (Alfalfa) = 8.11Í1.1=

    8.9 mm day-1

    For Kc = 1.15

    ETcrop (Onion) =

    8.11Í1.15= 9.3mm day-1 

    Irrigation interval

    Equation (6)

    II = 49/8.9 = 5.5 ≈ 6 days II = 49/9.3 = 5.3 ≈ 6 days

    Application depth

      Equation (7)

    Dg = 49/0.7 = 70 mm

    Dg is gross water depth.

    Dg = 49/0.7 = 70 mm

    Dg is gross water depth.

    System discharge

    (Q)

    Equations (12 and 13)

    Q = 43.7Í

    70Í

    10/115.2 =265.5 m3 hr-1

    Q adjusted to selected

    diameter, velocity method

    162.05Í3600Í(3.14Í1.52

    )0.5/4/1000 = 318.8 m3 hr-1 =

    1403.6 gpm

    Q = 55.4Í

    70Í

    10/115.2 =336.6 m3 hr-1

    Q adjusted to selected

    diameter, velocity method

    162.05Í3600Í(3.14Í1

    .52)0.5/4/1000 = 227.2 m3 

    hr-1 = 1000.3 gpm

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    17/20

    119

       T  a   b   l  e   4 .   H  y   d  r  a  u   l   i  c  s  c   h  a  r  a

      c   t  e  r   i  s   t   i  c  s  a  n   d   h  a  r   d  w  a  r  e

      s  p  e  c   i     c  a   t   i  o  n  s  -  a  c   t  u  a   l

      a  n   d  c  a   l  c  u   l  a   t  e   d  a  s   C   P   M

      o  u   t  p  u   t

       f  o  r   R  a  s   E   l  w  a   d   i   f  a  r  m .

       N

       N   P   L

       N   N   S

       D   F   P   P

       (  m   )

       A   N   D

       (   L   /  s   )

       C   N   D

       (   L   /  s   )

       V   N   D

       %

       N   P   A

       K  p  a

       (   P  s

       i   )

       N   P   C

       K  p  a

       (   P  s   i   )

       V   N   P

       %

       A   N   S   C

       (   6   4   T   h   i  n  c   h   )

      a  n   d  c  o   l  o  r

       C   N   S

       C

       (   6   4   T

       h   i  n  c   h   )

      a  n   d  c  o   l  o  r

       2

       0

       4

       1   0   0 .   4

       0 .   3   2

       4

       0 .   3

       5   8

       0 .   9

       1

       2   6   1

     .   8

       (   3   8

       )

       2   4   5 .   2

       (   3   5 .   6   )

       1 .   0   7

       1   1   Y  e   l   l  o  w

       1   2   R

      e   d

       3

       6

       4

       1   4   5 .   6

       0 .   4   2

       4

       0 .   5

       2

       0 .   8

       2

       2   6   1

     .   8

       (   3   8

       )

       2   3   2 .   3

       (   3   3 .   7

       )

       1 .   1   3

       1   2 .   5   R  e   d   *

       1   4 .   5

       B   l  u  e   *

       5

       1

       3

       1   8   8

       0 .   5   9

       4

       0 .   6   7   1

       0 .   8

       9

       2   6   1

     .   8

       (   3   8

       )

       2   2   3 .   3

       (   3   2 .   4   )

       1 .   1   7

       1   5 .   5   D   B  r  o  u  n   *

       1   6 .   5

       O  r  a  n  g  e   *

       6

       7

       3

       2   3   8 .   8

       0 .   7   9

       2

       0 .   8

       3   3

       0 .   9

       5

       2   4   8   (   3   6

       )

       2   1   8 .   2

       (   3   1 .   6   )

       1 .   1   4

       1   7   D

       G  r  e  e  n

       1   8 .   5

       P  u  r  p   l  e   *

       8

       4

       4

       2   8   1 .   2

       0 .   9   1

       3

       1 .   0   0   4

       0 .   9

       1

       2   3   4

     .   3

       (   3   4

       )

       2   1   9 .   6

       (   3   1 .   8

       )

       1 .   0   7

       1   9   B   l  a  c   k

       2   0   T  u  r  q

       1

       0   2

       4

       3   3   2

       1 .   1   8

       8

       1 .   1

       8   5

       1 .   0

       0

       2   3   4

     .   3

       (   3   4

       )

       2   3   0 .   9

       (   3   3 .   5

       )

       1 .   0   1

       2   2   M  a  r  o  o  n

       2   1 .   5

       M  u  s   t  a  r   d   *

       1

       1   1

       1   3

       3   5   7 .   2

       1 .   3   1

       9

       1 .   2

       7   5

       1 .   0

       3

       2   3   4

     .   3

       (   3   4

       )

       2   4   1 .   2

       (   3   5   )

       0 .   9   7

       2   3 .   5   C  r  e  a  m   *

       2   2   M

      a  r  o  o  n

       1

       1   5

       1   7

       3   6   8 .   4

       1 .   4   8

       4

       1 .   3

       1   5

       1 .   1

       3

       2   3   4

     .   3

       (   3   4

       )

       2   4   1 .   2

       (   3   5 .   8

       )

       0 .   9   8

       2   5   Y  e   l   l  o  w

       2   2 .   5

       M  a  r  o  o  n   *

       N   N

       P   L  :   N  o  z  z   l  e  n  u  m   b  e  r  o  n  p   i  v  o   t   l  a   t  e  r  a   l .

       N   N   S  :   N  o  z  z   l  e  n  u  m   b  e  r  o  n  s  p  a  n .

       D   F   P   P  :   D   i  s   t  a  n  c  e   f  r  o  m  p   i  v  o   t  p  o   i  n   t .

       A   N

       D  :   A  c   t  u  a   l  n  o  z  z   l  e   d   i  s  c   h  a  r  g  e .

       C   N   D  :   C  a   l  c  u   l  a   t  e   d  n  o  z  z   l  e   d   i  s  c   h  a  r

      g  e .

       V   N   D  :   V  a  r   i  a  n  c  e   i  n  n  o  z  z   l  e   d

       i  s  c   h  a  r  g  e ,  r  a   t   i  o  o   f  a  c   t  u  a   l   t  o  c  a   l  c  u   l  a   t  e   d   (   %   ) .

       N   P   A  :   N  o  z  z   l  e  p  r  e  s  s  u  r  e  a  c   t  u  a   l .

       N   P   C  :   N  o  z  z   l  e  p  r  e  s  s  u  r  e  c  a   l  c  u   l  a   t  e   d .

       V   N   P  :   V  a  r   i  a  n  c  e   i  n  n  o  z  z   l  e  p  r

      e  s  s  u  r  e ,  r  a   t   i  o  o   f  a  c   t  u  a   l   t  o  c  a   l  c  u   l  a   t  e   d   (   %

       ) .

       A   N

       S   C  :   A  c   t  u  a   l  n  o  z  z   l  e  s   i  z  e   (   6   4   T   h   i  n  c   h   )  a

      n   d  c  o   l  o  r .

       C   N

       S   C  :   C  a   l  c  u   l  a   t  e   d  n  o  z  z   l  e  s   i  z  e   (   6   4   T   h   i  n  c   h   )  a  n   d  c  o   l  o  r .

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    18/20

    120

    T  a b  l   e  5  .

    H y  d r  a u l   i   c  s  c  h  ar  a c  t   e r  i   s  t   i   c  s 

     a n d  h  ar  d  w ar  e  s  p e  c  i     c  a t   i   o

     n s - a c  t   u a l   a n d  c  a l   c  u l   a t   e  d 

     a s  C P M o u t   p u t   f   or  J  or  d  a n i   a n

    B a s  h 

     a i  r  pr  o j   e  c  t   .

     N NP L 

     N N S 

    DF P P 

     (  m )  

    A ND

     (  L  /   s  )  

     C  ND

     (  L  /   s  )  

     V ND

     %

     NP AK p a 

     (  P  s i   )  

     NP  C 

    K p a 

     (  P  s i   )  

     V NP 

     %

    A N S  C 

     (   6 4 T h i  n c h  )  

     a n d  c  ol   or 

     C  N S  C 

     (   6 4 T h i  n c h  )  

     a n d  c  ol   or 

    2 2 

    4  5  . 7 

     0  . 0  8 2 

     0  . 0  6 2 

    1  . 3 2 

    1  3 1  . 0  0  5 

     (  1  9  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .2  3 

     6  . 5 Y e l  l   o w

    1 2 R e  d 

     3  8 

    1  8 

     7  6  .1 

     0  .1 2  0 

     0  .1  0  3 

    1  .1  7 

    1 1  7  .2 1  5 

     (  1  7  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .1  0 

     8 L  a  v e n d  e r 

    1 4  . 5 Bl   u e * 

     6 2 

    2  0 

    1 2 2  . 7 

     0  .1  8  8 

     0  .1  6  7 

    1  .1  3 

    1 1  7  .2 1  5 

     (  1  7  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .1  0 

    1  0 T  ur  q u oi   s  e 

    1  6  . 5  Or  a n g e * 

     8 4 

    2  0 

    1  6  5  . 5 

     0  .2 2  8 

     0  .2 2  5 

    1  . 0 1 

    1 1  7  .2 1  5 

     (  1  7  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .1  0 

    1 1 Y e l  l   o w

    1  8  . 5 P  ur  pl   e * 

    1 2  0 

     6 

    2  3  6  . 6 

     0  .2  8  5 

     0  . 3 2 2 

     0  . 8  9 

    1 1  0  . 3 2  (  1  6  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  . 0  3 

    1 2  . 5 R e  d * 

    2  0 T  ur  q

    1 4  5 

     6 

    2  8  5  . 3 

     0  . 3 2  7 

     0  . 3  8  8 

     0  . 8 4 

    1 1  0  . 3 2  (  1  6  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  . 0  3 

    1  3  . 5  Wh i   t   e * 

    2 1  . 5 M u s  t   a r  d 

    1  6  3 

    2 4 

     3 1  9  . 5 

     0  .4  0  0 

     0  .4  3 4 

     0  . 9 2 

    1 2 4  .1 1 

     (  1  8  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .1  6 

    1 4  . 5 Bl   u e * 

    2 2 M a r  o on

    2 1  3 

    2 4 

    4 1  7  .1 

    1  . 0  8  0 

     0  . 5  6  7 

    1  . 9  0 

    1 2 4  .1 1  (  1  8  )  

    1  0  6  . 9 

     (  1  5  . 5  )  

    1  .1  6 

    1  8 P  ur  pl   e 

    2 2  . 5 M a r  o on* 

     N NP L  :  N ozz

    l   e n um b  e r  on pi   v o t  l   a  t   e r  a l   .

      N N S  :  N ozzl   e n um b  e r  on s  p a n .

    DF P P  : Di   s  t   a n c  e f  r  om pi   v o t   p oi  n t   .

    A ND : A c  t   u a l  n ozzl   e  d i   s  c h  a r  g e  .

     

     C  ND :  C  a l   c  ul   a  t   e  d n ozzl   e  d i   s  c h  a r  g e  .

     V ND :  V a r i   a n c  e i  nn ozzl   e  d i   s  c h  a r  g e  ,r  a  t  i   o of   a  c  t   u a l   t   o c  a l   c  ul   a  t   e  d  (   % )   .

     NP A :  N ozzl   e 

     pr  e  s  s  ur  e  a  c  t   u a l   .

     

     NP  C 

     :  N ozzl   e  pr  e  s  s  ur  e  c  a l   c  ul   a  t   e  d  .

     V NP  :  V a r i   a n c  e i  nn ozzl   e  pr  e  s  s  ur  e  ,r  a  t  i   o of   a  c  t   u a l   t   o c  a l   c  ul   a  t   e  d  (   % )   .

    A N S  C  : A c  t   u a l  n ozzl   e  s i  z e  (   6 4 T h i  n c h  )   a n d  c  ol   or  .

     C  N S  C  :  C  a l   c  u

    l   a  t   e  d n ozzl   e  s i  z e  (   6 4 T h i  n c h  )   a n d  c  ol   or  .

    Hassan E. Alsayim and Amir B. Saeed

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    19/20

    121

    Conclusion

    The Center Pivot Model (CPM), which is a computer technology, could1-

    successfully be used to assess appropriate center pivot system design

    and performance.

    The execution of the simulated system using the viable alternatives2-

    will help the engineers and practitioners to understand the operational

    mechanism of the center pivot system and taking appropriate measures

    for improvement.

    References

    Abreu, V. M. and Pereira, L. S. (2002). Sprinkler irrigation systems design

    using ISADim. In: 2002 ASAE Annual International Meeting/CIGR

    XVth World Congress Chicago, ASAE and CIGR, Paper 022254.

    Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop

    evapotranspiration, guidelines for computing crop water requirements.

    FAO Irrig. and Drain. Paper 56, Food and Agric. Orgn. of the United

     Nations, Rome, Italy. 300 Pp.

    Al-Ghobari, M. H. (2004) Sprinkler Irrigation Systems. Textbook, College of

    Food and Agricultural Sciences, King Saud University, Saudi Arabia,

    Riyadh.

    Andrade, C. L. T. and Allen R. G. (1997). SPRINKMOD - Sprinkler Simulation

    Model User’s Manual. Utah State University (USA) and EMBRAPA

    (Brazil). Available at: www.usu.com.

    Code of Practice for Irrigation Evaluation (2006). Page Bloomer Associates

    Ltd. New Zeland.

    Evans, R. G., Barker, J. C., Smith J. T. and Shefeld, R. E. (1997). Center

    Pivot and Linear Move, North Carolina Cooperative, Extension

    Service, North Carolina State University, E97-30398.

    Evans, R. G. (2001). Center Pivot Irrigation. Washington State University.

    www.bsyse. prosser .wsu.edu/report/centerpivot. pdf .Heermann, D. F. and Kohl, R. A. (1983). Fluid dynamics of sprinkler systems.

    Chapter 14. In: Design and Operation of Farm Irrigation Systems,

    ASAE Monograph No. 3, Pp. 583-618.

    Jensen, M. E. (1980). Design and operation of farm irrigation systems. ASAE,

    Beltsville.

    Jorge, J. and Pereira, L. S. (2003). Simulation and evaluation of set sprinkler

    systems with AVASPER. In: Proceeding of improved irrigation

    technologies and methods: Research, development and testing. ICID

    International workshop, Montpellier, France.

    A software tool for appropriate design of center pivot irrigation system

  • 8/19/2019 A Software Tool for Appropriate Design of Center Pivot Irrigation

    20/20

    122

    Keller, J. and Bliesner, R. D. (1990). Sprinkle and Trickle Irrigation. van

     Nostrand Reinhold. New York. Pp. 99-115.

    King, B. A. and Kincaid, D. C. (1997). Optimal performance from center

     pivot sprinkler systems. College of Agriculture, University of Idaho.BUL 797.

      www.info.ag.uidaho.edu/resources/PDFs/BUL0797.pdf.

    Merkley G. P. and Allen, R. G. (2007). Sprinkler and Trickle Irrigation. Utah

    State University. Dept. of Bio. And irrig. Eng. Lecture Notes.

    Merriam, J. L. and Keller, J. (1978). Farm irrigation system evaluation: A

    guide for management. Utah State Univ. Agricultural and Irrigation

    Engineering Department. Logan.

    Saxton, K. E., Willey P. H. and Rawls W. J. (2006). Field and pond Hydrologic

    Analysis with the SPAW Model. ASAE Annual International Meeting,

    Portland, Oregon 9 - 12 July, 2006.

    Withers, B. and Vipond, S. (1985). Irrigation design and practice. Batsford

    Academic and Educational Limited, London. P. 148-155.

    Hassan E. Alsayim and Amir B. Saeed