31
A Single-Phase Multi-level D-STATCOM Inverter Using Modular Multi-level Converter (MMC) Topology For Renewable Energy Sources October, 2013 PhD Defense: Pedram Sotoodeh Major advisor: Dr. Ruth Douglas Miller

A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

  • Upload
    vunhu

  • View
    233

  • Download
    5

Embed Size (px)

Citation preview

Page 1: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

A Single-Phase Multi-level D-STATCOM Inverter Using Modular Multi-level Converter (MMC)

Topology For Renewable Energy Sources October, 2013

PhD Defense: Pedram Sotoodeh Major advisor: Dr. Ruth Douglas Miller

Page 2: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

A combination of an inverter and a D-STATCOM in a single unit without additional cost

Goal: To control the power factor (PF) on feeder lines

The D-STATCOM option permits the inverter to deliver reactive power fully independent of the wind speed

Two modes of operation:

When wind speed is too low: Wind turbine is disconnected from the inverter

Inverter acts as a source of reactive power to control PF of the grid (D-STATCOM)

When wind is blowing: Inverter is able to control active and reactive power (Inverter + D-STATCOM )

Page 2

What is D-STATCOM inverter?

Page 3: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 3

Proposed D-STATCOM Inverter Configuration

Complete configuration of the proposed inverter with FACTS capability

Page 4: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Multi-level Inverter Topologies

History of multi-level inverters goes back to the 1970s

For medium- to high-power applications: Large-scale utility applications, electric vehicles, and inverters for renewable

energy systems

Lower switching frequency

Lower THD: Reduces AC filtering

Less 𝑑𝑣 𝑑𝑡 and therefore less voltage stress on the switches

More components

Complex control strategy

Page 4

Multi-level Inverters

Page 5: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 5

Literature Review (Contd…)

Classification of multi-level voltage source converters

Page 6: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 6

Number of Components for 11-level Topologies

11-Level

Comparison of Components For

Different Single-Phase Multi-Level

Topologies

Switches DC Link

Capacitors

Clamping

Diodes

Auxiliary

Capacitors

Inductors DC

Sources

Total

NPC 20 10 90 0 0 1 121

FC 20 10 0 45 0 1 76

CHB 20 0 0 0 0 5 25

HC 38 10 72 9 0 1 130

CHB-Single Source 20 4 0 0 0 1 25

SMC 20 0 0 8 0 2 30

MMC 40 2 0 20 2 1 65

Number of components for 11-level inverter

Page 7: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Modular Multi-level Converter (MMC)

Modular topology Scalable to any level

Simple structure

No need for snubber circuits

Requires only one DC source

Can deliver both active and reactive power

Requires many capacitors!

Page 7

Modular Multi-level converter (MMC)

It seems that MMC is an ideal choice for our application

Page 8: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

An n-level, single-phase MMC consists of:

A series connection of 2(𝑛 − 1) basic sub-modules (SMs)

Two buffer inductors

Each Sub-module (SM):

Two switches and a capacitor

The output voltage of each SM switches between: - Its capacitor voltage (𝑉𝑐): The SM is so-called ON

- Zero : The SM is so-called OFF

A complicated control method is needed

to maintain balanced capacitor voltages

Page 8

MMC (Cntd…)

Page 9: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 9

MMC (Cntd…)

Configuration of the MMC topology Configuration of each sub-module (SM)

Page 10: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 10

Phase Disposition PWM (PDPWM)Technique

PDPWM technique for an 11-level inverter Output Voltage

Page 11: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

The active and reactive power flow of the D-STATCOM inverter is governed by:

𝑃𝑆 = 𝑚𝐸𝑆𝐸𝐿

𝑋sin 𝛿 (*) and 𝑄𝑠 =

𝑚𝐸𝑠𝐸𝐿 cos 𝛿−𝐸𝐿2

𝑋 (**)

Page 11

Proposed Control Strategy

The proposed control strategy for MMC D-STATCOM inverter

Page 12: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 12

Simulations

Parameter Value for 5-level model Value for 11-level model

𝐿𝑙𝑖𝑛𝑒 1 mH 1 mH

𝑅𝑙𝑖𝑛𝑒 1 Ohm 1 Ohm

𝐿𝑓𝑖𝑙𝑡𝑒𝑟 25 mH 20 mH

𝐶𝑓𝑖𝑙𝑡𝑒𝑟 90 uF 70 uF

Transformer power rating 25 kVA 25 kVA

Transformer primary voltage 12000 V 12000 V

Transformer secondary voltage 600 V 600 V

Switching frequency 4 kHz 3 kHz

Target PF 0.80, 0.90, 0.95 0.80, 0.90, 0.95

DC link reference value 2500 V 2000 V

Initial voltages of DC link capacitors 1250 V 1000 V

Initial voltages of SM capacitors 625 V 200 V

Transformer inductance

𝑅1 = 0.001 𝑝. 𝑢., 𝐿1 = 0.001 𝑝. 𝑢.

𝑅2 = 0.001 p.u., 𝐿2 = 0.002 𝑝. 𝑢.

𝑅1 = 0.001 𝑝. 𝑢., 𝐿1 = 0.001 𝑝. 𝑢.

𝑅2 = 0.001 p.u., 𝐿2 = 0.002 𝑝. 𝑢.

Parameter values used for simulations

Page 13: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 13

Simulations (Cntd…) Time (s) Loads Load P & Q Load PF Target PF

0 1 50 kW, 35 kVAR 0.82 0.90

1 1 50 kW, 35 kVAR 0.82 0.90

2 1 50 kW, 35 kVAR 0.82 0.90

3 2 50 kW, 28 kVAR 0.87 0.90

4 2 50 kW, 28 kVAR 0.87 0.90

5 2 50 kW, 28 kVAR 0.87 0.90

6 2+3 60 kW, 31 kVAR 0.89 0.90

7 2+3 60 kW, 31 kVAR 0.89 0.90

8 2+3+4 65 kW, 42 kVAR 0.84 0.90

9 2+3+4 65 kW, 42 kVAR 0.84 0.90

10 2+4 55 kW, 39 kVAR 0.81 0.90

11 2+4 55 kW, 39 kVAR 0.81 0.90

12 2 50 kW, 28 kVAR 0.87 0.90

13 2 50 kW, 28 kVAR 0.87 0.90

14 1 50 kW, 35 kVAR 0.82 0.90

15 1 50 kW, 35 kVAR 0.82 0.90

16 1 50 kW, 35 kVAR 0.82 0.90

17 1 50 kW, 35 kVAR 0.82 0.90

18 1 50 kW, 35 kVAR 0.82 0.90

19

.

.

43

1

.

.

1

50 kW, 35 kVAR

.

.

50 kW, 35 kVAR

0.82

.

.

0.82

0.90

.

.

0.90

44 1 50 kW, 35 kVAR 0.82 0.90

Output active power from the wind turbine: 45-second simulation

Page 14: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 14

Simulation Results for 5-level Model

2.7 2.702 2.704 2.706 2.708 2.71 2.712 2.714 2.716

-500

0

500

FFT window: 1 of 2700 cycles of selected signal

Time (s)

0 1000 2000 3000 4000 5000 60000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency (Hz)

Fundamental (60Hz) = 849.4 , THD= 0.24%

Mag (

% o

f F

undam

enta

l)

2.72 2.722 2.724 2.726 2.728 2.73 2.732 2.734 2.736

-20

0

20

FFT window: 1 of 2700 cycles of selected signal

Time (s)

0 1000 2000 3000 4000 5000 60000

1

2

3

4

Frequency (Hz)

Fundamental (60Hz) = 21.39 , THD= 5.83%

Mag (

% o

f F

undam

enta

l)

0.24% 5.83%

Simulated output voltage before and after the filter Output current on both sides of the distribution transformer

FFT of the filtered output voltage of the 5-level inverter FFT of the inverter-side current

Page 15: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 15

Simulation Results for 5-level Model (Cntd…)

PF of the local distribution grid

Active and reactive power of the feeder line

Active and reactive power delivered by the inverter

Power angle and modulation index of the inverter

Page 16: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 16

Simulation Results for 11-level Model

2.5 2.502 2.504 2.506 2.508 2.51 2.512 2.514 2.516

-500

0

500

FFT window: 1 of 158.8 cycles of selected signal

Time (s)

0 1000 2000 3000 4000 5000 60000

0.05

0.1

Frequency (Hz)

Fundamental (60Hz) = 849.5 , THD= 0.23%

Mag (

% o

f F

undam

enta

l)

2.52 2.522 2.524 2.526 2.528 2.53 2.532 2.534 2.536

-20

0

20

FFT window: 1 of 158.8 cycles of selected signal

Time (s)

0 1000 2000 3000 4000 5000 60000

0.5

1

1.5

2

2.5

Frequency (Hz)

Fundamental (60Hz) = 22.21 , THD= 3.46%

Mag (

% o

f F

undam

enta

l)

0.23% 3.46%

Simulated output voltage before and after the filter Output current on both sides of the distribution transformer

FFT of the filtered output voltage of the 11-level inverter FFT of the inverter-side current

Page 17: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 17

Simulation Results for 11-level Model (Cntd…)

Simulated output voltage before and after the filter Output current on both sides of the distribution transformer

FFT of the filtered output voltage of the 5-level inverter FFT of the inverter-side current

Page 18: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 18

PQ Diagrams

P-Q diagram of the proposed inverter in terms of device’s capability

P-Q diagram of the system considering the operating conditions

Page 19: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 19

Setup Implementation

A 5-level and 11-level model of the system has been built and tested

Page 20: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 20

Setup Implementation (Cntd…)

5-level reduced scale model The opto-coupler isolation board designed for the 5-level system

Page 21: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 21

Setup Implementation (Cntd…)

Page 22: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 22

Experimental Results

Voltage and current waveforms of the grid before compensation

Active power, reactive power, and PF of the grid before compensation

Page 23: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 23

Experimental Results (Cntd…)

Unfiltered output voltage of the 5-level inverter Filtered output voltage and current of the 5-level inverter

THD of the filtered output voltage and current of the 5-level inverter

Page 24: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 24

Experimental Results (Cntd…)

THD of filtered output voltage and current of the 11-level inverter

Unfiltered output voltage of the 11-level inverter Filtered output voltage and current of the 11-level inverter

Page 25: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 25

Experimental Results (Cntd…)

System parameters after compensation when wind is blowing (Target PF=0.90)

Page 26: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 26

Comparison Between 5- and 11-level Experiments

Parameter 5-level Model 11-level Model

Output Filter 10 mH, 25 uF 2.5 mH, 12 mF

Switching Frequency 3 kHz 2 kHz

Efficiency 93% 94%

Distribution Transformer 120:24 120:24

Current THD 4.2% 2.7%

Voltage THD 2.1% 2.1%

Compatibility with IEEE 519

Standard

Yes Yes

Page 27: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 27

Cost Comparison Between 5- and 11-level Prototype Models

Component 5-level model 11-level model Cost: 5-level Cost: 11-level

SMs capacitor 8 (50 V, 1000 uF)

Each: $ 0.94

20 (25 V, 1000 uF)

Each: $ 0.23

~ $ 8 ~ $ 5

DC link capacitor 2 (50 V, 1000 uF)

Each: $ 0.94

2 (50 V, 1000 uF)

Each: $ 0.94

~ $ 2 ~ $ 2

Arm inductor 2 (5 mH, 1 A)

Each: $ 30

2 (5 mH, 1 A)

Each: $ 30

~ $ 60 ~ $ 60

Power Switch 16 (IRF 510)

Each: $ 0.91

40 (IRF 510)

Each: $ 0.91

~ $ 16 ~ 40

Gate Drive Module 16

HCPL 3120, resistors,

Schottkey & Zener diodes

Each: ~ $ 5

40

HCPL 3120, resistors,

Schottkey & Zener diodes

Each: ~ $ 5

~ $ 80 ~ $ 200

PC Board $ 66 (2 Boards) $ 99 (3 Boards) ~ $ 66

~ $ 99

Isolation Module 8: opto-coupler, resistors,

diodes, capacitors. Each: $ 3

20: opto-coupler, resistors,

diodes, capacitors. Each: $ 3

~ $ 24 ~ $ 60

Miscellaneous

connectors, sensors

including 14A-2.5R12,

13/10TALEMA, connectors

Each: $ 20

including 14A-2.5R12,

13/10TALEMA, connectors

Each: $ 50

~ $ 20 ~ $ 50

Total ~ $ 275 ~ $ 515

Page 28: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 28

Cost Comparison Between Proposed Inverter and Conventional Inverters

Power Rating 5-level model 11-level model Market Price

250 W ~ $ 275 ~ $ 515 $ 200-400

1 kW ~ $700 ~ $ 1250 $ 600- $ 800

3 kW ~ $1500 ~ $ 2650 $ 1400- $ 1600

10 kW ~ $ 2500 ~ $ 4400 $ 3750- $ 4500

20 kW ~ $ 3500 ~ $ 6100 > $ 5200

Page 29: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

The concept of a D-STATCOM inverter is presented.

The MMC D-STATCOM inverter has the ability to provide utilities with capacitive VAR compensation.

The unique work of this research is to combine the two concepts of D-STATCOM and inverter using the most advanced multi-level topology to make a single unit called D-STATCOM inverter.

The proposed MMC inverter is not only able to transfer active power, but is able to control the power factor (PF) of the distribution system (FACTS capability).

The proposed inverter cost is comparable with market price, however, it has more functionality and options.

Page 29

Conclusion

Page 30: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Implementing of higher-rated inverters by using higher-rated components

Implementing the proposed inverter using a microcontroller such as digital signal processor (DSP)

Other multi-level topologies could be chosen to design the proposed inverter

Page 30

Future Work

Page 31: A Single-Phase Multi-level D-STATCOM Inverter Using …distributedwind.org/wp-content/uploads/2015/03/Pedram... ·  · 2015-04-17A Single-Phase Multi-level D-STATCOM Inverter Using

Page 31

Questions?

Thank you!