23
A New Set of Multilevel A New Set of Multilevel Methods for Obtaining Methods for Obtaining Accurate Energies on the Accurate Energies on the Potential Energy Surface Potential Energy Surface Wei-Ping Hu Wei-Ping Hu ( ( 胡胡胡 胡胡胡 ) ) Department of Chemistry and Department of Chemistry and Biochemistry Biochemistry National Chung Cheng University National Chung Cheng University

A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

  • Upload
    amal

  • View
    35

  • Download
    2

Embed Size (px)

DESCRIPTION

A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface. Wei-Ping Hu ( 胡維平 ) Department of Chemistry and Biochemistry National Chung Cheng University. I. Introduction. H full Y God = E exact Y God Y (FCI/CBS) = Y (FCC/CBS) = Y God - PowerPoint PPT Presentation

Citation preview

Page 1: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

A New Set of Multilevel Methods for A New Set of Multilevel Methods for Obtaining Accurate Energies on the Obtaining Accurate Energies on the

Potential Energy SurfacePotential Energy Surface

Wei-Ping Hu Wei-Ping Hu ((胡維平胡維平 ))

Department of Chemistry and Biochemistry Department of Chemistry and Biochemistry

National Chung Cheng UniversityNational Chung Cheng University

Page 2: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

I. IntroductionI. Introduction

Hfull GodEexact God

(FCI/CBS) = (FCC/CBS) = God  

E (FCI/CBS) = E (FCC/CBS) = Eexact

  QCISD(T), CCSD(T) Scale as N 7

  Multilevel Methods: Eexact E(LL/IBS) + EHLC + ECB

Page 3: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

Currently Used Multilevel Methods: G2, G3, CBS, SAC, G3S, MCG3

HF, MP2, MP4, QCISD(T), empirical HLC6-31G(d), 6-311G(d,p), 6-311+G(d,p)6-311+G(2df,p), 6-311+G(3df,2p), G3LargeTarget Accuracy:

QCISD(T)/6-311+G(3df,2p), QCISD(T)/G3Large

New Method: (no empirical parameters, Dynamics Calc.)Target Accuracy: QCISD(T)/aug-cc-pVT(Q)ZDunning’s Corrlation Consistent Basis SetsBasis set extension: MP2, extrapolation

Page 4: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

簡稱簡稱QCISD(T)/cc-pVDZ 方法 : QT2

QCISD(T)/cc-pVTZ 方法 : QT3

估計 QCISD(T)/cc-pVTZ 能量之方法 : EQT3

估計 QCISD(T)/cc-pVQZ 能量之方法 : EQT4

估計 QCISD(T)/cc-pVnZ 能量之方法 : EQTn

估計 QCISD(T)/aug-cc-pVTZ 能量之方法 : E(A)QT3+

估計 QCISD(T)/aug-cc-pVQZ 能量之方法 : E(A)QT4+

Page 5: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

II. MethodsII. Methods

ETZ = MP2/cc-pVTZ MP2/cc-pVDZ

EQZ = MP2/cc-pVQZ MP2/cc-pVTZ

E+ = MP2/aug-cc-pVTZ MP2/cc-pVTZ

EQT3 = QT2 + ETZ EQT3+ = EQT3 + E+

EQT4 = EQT3 + EQZ EQT4+ = EQT4 + E+

AQT3+ = QT3 + E+AQT4+ = AQT3+ + EQZ

Page 6: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

以外插的方法估計到無窮大 basis set 時的能量。以 QT2(n = 2), EQT3(n = 3), EQT4(n = 4) 來估計 EQTn 的

能量 [ EQTn = c , as n = ∞ ] 。

E(A)QTn 方法

f (n) = aebn + c

EQTn = -76.376 (H2O)

Page 7: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

III. Results and DiscussionIII. Results and DiscussionTable 1 : 原子化能量之誤差 (kcal/mol)

EQT4 及 EQTn 所需的計算時間相同,但 EQTn 因利用外插的方法使基底函數趨近於無窮大,而使其 RMSE 較 EQT4 下降了 0.6 kcal/mol 左右。aJ. Phys. Chem. 1999, 103, 3139

在本研究中 EQTn 方法準確度與 CCSD(T)-SAC/pTZ 相當,而其所需計算時間較 CCSD(T)-SAC/pTZ 方法少。

method MUE RMSEMP2/cc-pVDZ 20.3 22.9MP2/cc-pVTZ 6.9 8.7MP2/cc-pVQZ 6.1 7.5

MP2/aug-cc-pVTZ 6.3 7.8QT2 22.6 24.9QT3 7.8 8.7

EQT3 7.1 8.0EQT3+ 5.0 6.0EQT4 2.3 3.5

EQT4+ 2.4 3.4AQT4+ 2.1 3.3EQTn 2.1 2.9

MP2-SAC/pTZa 5.9 7.3

CCSD(T)-SAC/pTZa 1.9 2.7G2 1.2 1.5

PDG2 5.9 6.4

Page 8: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

在原子化能量計算中我們可得知, single-level 中以 MP2/cc-pVTZ 方法所得的 MUE及 RMSE 都比以 MP2/cc-pVDZ 方法所得的約小 14.0 kcal/mol 左右,而 QT2 方法並沒有比 MP2 方法好。

在 multi-level 中基底函數為 triple-zeta 時,擴散函數的貢獻相當重要,而基底函數為quadruple-zeta 時,擴散函數的貢獻較少。

Page 9: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

Table 2: 文獻上記載之反應能障最佳估計值 (kcal/mol)J. Phys. Chem. A. 2001, 105, 2936

reaction Vf≠ Vr

≠ reaction Vf≠ Vr

1. Cl + H2 → HCl + H 8.7 5.6 12. H + PH3 → PH2 + H2 3.2 25.5

2. OH + H2 → H + H2O 5.7 22.0 13. H + ClH’ → HCl + H’ 18.0 18.0

3. CH3 + H2 → H + CH4 12.1 15.0 14. OH + H → H2 + O 10.1 13.1

4. OH + CH4 → CH3 + H2O 6.7 20.2 15. H + trans -N2H2 → H2+ N2H 5.9 41.0

5. H + CH3OH → CH2OH + H2 7.3 13.8 16. H + H2S → H2 + HS 3.6 17.4

6. H + H2 → H2 + H 9.6 9.6 17. O + HCl → OH + Cl 9.8 9.9

7. OH + NH3 → H2O + NH2 3.2 13.2 18. CH4 + NH → NH2 + CH3 22.7 8.4

8. HCl + CH3 → Cl + CH4 1.8 7.8 19. C2H6 + NH → NH2 + C2H5 18.4 8.0

9. OH + C2H6 → H2O + C2H5 3.4 20.7 20. C2H6 + NH2 → C2H5 + NH3 10.4 17.8

10. F + H2 → H + HF 1.8 33.2 21. NH2 + CH4 → CH3 + NH3 14.5 17.9

11. OH + CH3 → O + CH4 7.8 13.7 22. s-trans cis -C5H8 → s-trans cis -C5H8 38.4 38.4

Page 10: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

Table 3 : 能量障礙之誤差 (kcal/mol) 以 EQT3+ , EQT4 ,EQT4+ 及 EQTn 等四種方法所估計出來的 V≠ 值與文獻上認為最準確的值比較其 MUE 都在 1.0 kcal/mol 以下,而 RMSE 也都約 1.0 kcal/mol 左右, table 2 其誤差範圍在 1.0 kcal/mol 左右,所以本研究中的 multilevel 方法以及文獻上的 G3S 和MMCG3 方法預測反應能障的準確度都相當高。

method MUE RMSE

MP2/cc-pVDZ 3.8 4.6

MP2/cc-pVQZ 3.5 4.2

MP2/aug-cc-pVTZ 3.3 4.1

QT2 2.3 2.8

EQT3 1.1 1.4

EQT3+ 0.8 1.0

EQT4 0.9 1.1

EQT4+ 0.9 1.2

EQTn 0.9 1.2

PDG2 2.8 3.4

PDG3 2.6 3.3

G3S 0.6 0.8

MMCG3 0.6 0.8

B3LYP/6-31+G(d,p) 4.2 4.9

MPW1K/6-31+G(d,p) 1.5 1.9

QCISD(T)/6-31+G(d,p) 3.2 3.7

QCISD(T)/MG3 1.3 1.5

G3S 是 Donald G. Truhlar 等人發明的方法,其將 G3 方法中的 HLC 修正省略,而加入半經驗參數來加以校正,而 Larry A. Curtiss 等人發明的 MMCG3 方法與 G3S 類似。

Page 11: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

使用使用 multi-levelmulti-level 進行位能曲線的計算進行位能曲線的計算我們使用 EQT3+ 、 EQT4+ 、 EQTn 、AQT4+ 、 AQTn 、 PDG2 、 G3S 與 MMCG3 等 multi-level方法計算 H2+H 、 OH+H2 、 CH4+OH 、 NH3+OH 、以及H2S+H 之位能曲線,比較各種方法所得之能量障礙與能障半高寬 (S1/2) ,並與文獻值比較。以上五種反應路徑之幾何結構計算是使用:

H2+H

OH+H2

CH4+OH

NH3+OH MP2/6-311+G**

H2S+H

QCISD(T)/6-311+G**

Page 12: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

6

7

8

9

10

11

12

13

14

15

-0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01S(Bohr)

ΔV

‡(kc

al/m

ol)

MP2/6-311+G**

QT4+

EQT3+

EQT4+

AQT4+

EQTn

AQTn

PDG2

G3S

H2+H

Page 13: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

 H2+H  

ΔV‡

(kcal/mol)

誤差(kcal/mol)

誤差百分比(%)

S1/2

(bohr)

MP2/6-311+G** 14.08 4.48 46.64 0.344

QT3 10.00 0.40 4.21 0.299

QT3+ 9.76 0.16 1.68 0.263

EQT3+ 10.09 0.49 5.08 0.275

QT4+ 9.70 0.10 1.00 0.264

EQT4+ 9.90 0.30 3.15 0.289

AQT4+ 9.64 0.04 0.39 0.269

EQTn 9.96 0.36 3.72 0.276

AQTn 9.57 -0.03 -0.34 0.267

PDG2 10.86 1.26 13.09 0.279

G3S 10.42 0.82 8.58 0.289

MMCG3 10.17 0.57 5.95 0.281

Literature 9.60

Page 14: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

2

4

6

8

10

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

S(Bohr)

ΔV

‡ (kca

l/mol

)

MP2/6-311+G**QT4+EQT3+EQT4+AQT4+EQTnAQTnPDG2G3S

OH+H2

Page 15: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

   OH+H2

ΔV‡

(kcal/mol)誤差

(kcal/mol)誤差百分比

(%)S1/2

(bohr)

MP2/6-311+G** 9.28 3.58 62.79 0.218

QT3 6.45 0.75 13.15 0.355

QT3+ 5.54 -0.16 -2.86 0.310

EQT3+ 6.49 0.79 13.95 0.302

QT4+ 5.31 -0.39 -6.79 0.301

EQT4+ 6.07 0.37 6.46 0.268

AQT4+ 5.56 -0.14 -2.41 0.270

EQTn 6.49 0.79 13.83 0.295

AQTn 5.88 0.18 3.11 0.295

PDG2 9.47 3.77 66.18 0.249

G3S 5.78 0.08 1.36 0.279

MMCG3 6.05 0.35 6.19 0.273

Literature 5.70

Page 16: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

-8

-6

-4

-2

0

2

4

6

8

10

12

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4S(Bohr)

ΔV

‡ (kca

l/mol

)

MP2/6-311+G**

QT3+EQT3+

EQT4+AQT4+

EQTnAQTn

PDG2G3S

CH4+OH

Page 17: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

 CH4+OH  

ΔV‡

(kcal/mol)誤差

(kcal/mol)誤差百分比

(%)S1/2

(Bohr)

MP2/6-311+G** 10.00 3.30 49.31 1.282

QT3 7.40 0.70 10.45 1.116

QT3+ 6.36 -0.34 -5.14 1.200

EQT3+ 7.23 0.53 7.84 1.125

EQT4+ 6.93 0.23 3.48 1.158

AQT4+ 6.44 -0.26 -3.89 1.149

EQTn 7.28 0.58 8.64 1.129

AQTn 6.89 0.19 2.90 1.218

PDG2 4.22 -2.48 -37.07 1.201

G3S 6.29 -0.41 -6.08 1.115

MMCG3 6.21 -0.49 -7.37 1.168

Literature 6.70

Page 18: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

0

1

2

3

4

5

6

7

8

9

10

-0.35 -0.2 -0.05 0.1 0.25 S(Bohr)

ΔV

‡ (kca

l/mol

)

MP2/6-311+G**QT3+EQT3+EQT4+AQT4+EQTnAQTnG3S

NH3+OH

Page 19: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

 NH3+OH  

ΔV‡

(kcal/mol)誤差

(kcal/mol)誤差百分比

(%)S1/2

(Bohr)

MP2/6-311+G** 9.49 6.29 196.49 0.793

QT3 4.30 1.10 34.51 0.597

QT3+ 3.70 0.50 15.60 0.546

EQT3+ 5.16 1.96 61.27 0.710

EQT4+ 5.19 1.99 62.10 0.713

AQT4+ 4.35 1.15 35.81 0.595

EQTn 5.15 1.95 60.94 0.654

AQTn 3.30 0.10 3.03 0.457

G3S 4.01 0.81 25.35 0.487

MMCG3 3.75 0.55 17.31 0.608

Literature 3.20

Page 20: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

0

1

2

3

4

5

6

7

8

9

-0.35 -0.2 -0.05 0.1 0.25 S(Bohr)

ΔV

‡ (kca

l/mol

)

MP2/6-311+G**QT4+EQT3+EQT4+AQT4+EQTnAQTnG3S

H2S+H

Page 21: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

 H2S+H  

ΔV‡

(kcal/mol)誤差

(kcal/mol)誤差百分比

(%)S1/2

(Bohr)

MP2/6-311+G** 8.25 4.65 129.29 0.490

QT3 4.18 0.58 16.04 0.715

QT3+ 3.59 -0.01 -0.34 0.668

EQT3+ 3.96 0.36 10.05 0.685

EQT4+ 3.76 0.16 4.50 0.645

AQT4+ 3.51 -0.09 -2.52 0.637

EQTn 4.15 0.55 15.35 0.668

AQTn 3.94 0.34 9.50 0.662

G3S 4.36 0.76 21.17 0.678

MMCG3 4.23 0.63 17.45 0.627

Literature 3.60

Page 22: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

我們使用的 multi-level 方法所算出來的 ΔV‡ 與文獻值的誤 差約在 0.1~1.9kcal/mol 左右,幾乎都比 G2 與 G3 系列的方 法良好。實際使用 single-level 的結果與我們所使用之方法的結果很 接近,相差大約 0.2~1.5kcal/mol 左右。ΔV‡ 會隨著計算 level 提升、加大 basis set ,以及加入 diffuse function 而降低﹔加入 diffuse function 的下降量則特 別顯著。在 S1/2 方面,加大 basis set 的改變與實際做 single-level 的趨 勢相同,但是加入 diffuse function 之後卻呈現不規則變化。 造成這種情況的原因是由於 MP2 與 QCISD(T) 兩種計算 level 在計算位能曲線時,有不同的趨勢所導致。

Page 23: A New Set of Multilevel Methods for Obtaining Accurate Energies on the Potential Energy Surface

感 謝

國科會對本研究計畫的經費補助

李宗憓、牟君浩中國化學會

國立中正大學化學暨生物化學系