25
A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND THEORY ARTICLE Frontiers in Neuroscience, 07 June 2017 Xiaoping Hu Professor of Biomedical Engineering University of California, Riverside Andrej Cichocki Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia Nicolaus Copernicus University (UMK), Torun, Poland Systems Research Institute, Polish Academy of Science, Warsaw, Poland Luke Oeding Department of Mathematics and Statistics Auburn University Rangaprakash Deshpande Department of Psychiatry and Biobehavioral Sciences UCLA Gopikrishna Deshpande AU MRI Research Center AU Department of Electrical and Computer Engineering AU Department of Psychology Alabama Advanced Imaging Consortium

A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

ANewGenerationofBrain-ComputerInterfacesDrivenbyDiscoveryofLatentEEG-fMRILinkagesUsingTensorDecomposition

HYPOTHESISANDTHEORYARTICLEFrontiers inNeuroscience, 07June 2017

XiaopingHuProfessor ofBiomedical EngineeringUniversity ofCalifornia, Riverside

Andrej CichockiSkolkovo InstituteofScience andTechnology(Skoltech), Moscow, RussiaNicolaus Copernicus University (UMK), Torun,PolandSystemsResearchInstitute,PolishAcademyofScience,Warsaw,Poland

LukeOedingDepartmentofMathematicsandStatisticsAuburn University

Rangaprakash DeshpandeDepartmentofPsychiatry andBiobehavioral SciencesUCLA

Gopikrishna DeshpandeAUMRIResearchCenterAUDepartmentofElectricalandComputer EngineeringAUDepartmentofPsychologyAlabamaAdvanced ImagingConsortium

Page 2: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

BrainComputerInterface

https://en.wikipedia.org/wiki/File:Brain-computer_interface_(schematic).jpg

Page 3: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

EEGBasedBCI

• +Non-invasive• +Hightemporalresolutionforreal-timeinteraction• +Inexpensive,lightweight,andhighlyportable• - Poorspatialspecificity• - EEGSignalsindifferentchannelsarehighlycorrelated,reducingabilitytodistinguishneurologicalprocesses.• - Longtrainingtimerequired

Page 4: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

Real-timefMRIBasedBCI

• +Highspatialspecificity-- moreaccuracy• - Highcost• - Non-portable• - Lowtemporalresolution• - Restrictiveenvironment

Page 5: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

SimultaneousEEG– fMRIdataacquisition

http://www.ant-neuro.com/sites/default/files/styles/product_imageshow/public/85500991.jpg?itok=0WPQPi1c

Page 6: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

EEGData

Electrodeposition measurements viaPolhemus Fastrak 3DDigitizerSystemEEGdatawereepoched withrespecttoRpeaks ofEKG

signaland averagedovertrials.Theballistocardiogram (BCG)artifactintheEEGsignalobtained inside MRscannerisremoved.

Page 7: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

Objective:DiscoveryofLatentLinkagesbetweenEEGandfMRIandimproveBCI• Hypothesis:latentlinkagesbetweenEEGandfMRIcanbeexploitedtoestimatefMRI-likefeaturesfromEEGdata.• ThiscouldallowanindependentlyoperatedEEG-BCItodecodebrainstatesinrealtime,withbetteraccuracyandlowertrainingtime.• Hypothesis:Featuresfromasub-setofsubjectscanbegeneralizedtonewsubjects(forahomogeneoussetofsubjects).

Page 8: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

Strategies• ObtainfMRIdatawithhightemporalresolution:

• Usemultibandecho-planarimaging(M-EPI)[Feinberg,etal.2010]toachievewholebraincoveragewithsampling intervals(TR)asshortas200ms.• ViewfMRIasconvolutionofHDF(Hemodynamicresponsefunction)andneuronalstates.UsecubatureKalman filterbasedblinddeconvolutionoffMRI[Havlicek,etal.2011]torecoverdrivingneuronalstatevariableswithhighereffectivetemporalresolution.

• ObtaincleanEEGdata:• EEGsignalsampledat5000Hztoensureaccurategradientartifactremoval,thendownsampled to250Hztomakedatasetmoremanageable.

• UsethecomplexMorlet wavelet[Teolis,1998]togiveatime-frequencyrepresentationofbothEEGandfMRIforeachtrial.

Page 9: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

DiscoverlatentlinkagesbetweenEEGandfMRI• SimultaneousEEG/fMRIdatacollectedusingaP300spellerbasedparadigm.• EEGmodalities:trial–time–frequency–channel

• 4msupdates,63+1channels,4trials

• fMRImodalities:trial–time–neuronalstate–voxel• 200msupdateswithwholebraincoverageand3mmvoxels

• ApplyOrthogonalDecompositiontoeachEEGandfMRI.[ZhouandCichocki 2012]• Thefirstdimensionof“trials”isthesameforbothtensors,permittingtheapplicationofHOPLS.ThisimportantpropertyallowsbothEEGandfMRItobesampledatdifferentrates.• ItisnotrequiredtodownsampleEEGtofMRI’stemporalresolution,asdonebymostresearchersintheEEG-fMRIcomparisonliterature(Goldman,etal.2002)(Hinterberger,Veit,etal.2005),whichwillleadtolossofvitaltemporalinformation.

Page 10: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

• Assumptions:EEGdataistheindependentvariableX,anddeconvolvedfMRI(neuronalstates)dataisthedependentvariableY.• Reasonableassumptionbecausethehemodynamic/metabolic activityisasecondaryresponsetotheelectricalactivity.

• Goal:GivenX andY overmanytrials,andassumingF(X)=Y,discoverF.• HigherOrderMultilinearSubspaceRegression/HigherOrderPartialLeastSquares(HOPLS)[Q.Zhao,etal.2011]topredictthedependentvariable(deconvolvedfMRI)fromtheindependentvariable(EEG).• HOPLSparameters(latentvariables,coretensorsandtensorloadings)arelikelytoprovideinformationonlatentEEG-fMRIrelationships acrossthedimensionsconsidered.

DiscoverlatentlinkagesbetweenEEGandfMRI

Page 11: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

PartialLeastSquares(PLS)

𝑋 = 𝑇𝑃% +𝐸 =( 𝑡*

+

*,-

𝑝*% + 𝐸

𝑌 = 𝑈𝑄% + 𝐹 = ( 𝑢*

+

*,-

𝑞*% + 𝐹

𝑇 = 𝑡-,𝑡7,⋯ , 𝑡+ and𝑈 = 𝑢-,𝑢7,⋯ , 𝑢+ arematricesofR extractedlatentvariables fromX andY,respectively.U will havemaximum covariancewithT column-wise.P andQ arelatentvectorsubspace base loadings.E andF areresiduals.

TherelationbetweenT andU canbeapproximatedas𝑈 ≈ 𝑇𝐷whereD isanR×R diagonalmatrixofregression coefficients.

Partialleastsquares: Predictsasetofdependent variablesY fromasetofindependent variablesX.Attemptstoexplain asmuch aspossible thecovariancebetweenXand Y.

PLSoptimizationobjective istomaximizepairwise covarianceofasetoflatentvariables byprojecting bothXandY ontonewsubspaces.

(3)

Page 12: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

LeastSquares(UndergraduateLinearAlgebra)

• Givenalineartransformation𝑃 → 𝑄 wewanttosimultaneouslypredictthesubspacesℝR ⊂ 𝑃 andℝT ⊂ 𝑄 sothattherestrictedmapℝR → ℝTgivesagoodapproximationofthemapping.

• Givenanunderdeterminedmatrixequation𝐴�⃗� = 𝑏,wecanattempttosquarethesystemandsolve:𝐴\𝐴�⃗� = 𝐴\𝑏• PerhapsuseQR.

• Thestandardleast-squaressolutionis𝑥] = 𝐴\𝐴 ^-𝐴\𝑏.• ProjecttoalinearsubspaceandreplaceAwithafullrankmatrixusingSVD.

Page 13: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

SingularValueDecomposition• TheSingularValueDecomposition𝐴 = 𝑈Σ𝑉\

• Thequasi-diagonalmatrixofsingularvalues𝜎-, 𝜎7,… canbetruncatedtothelargestr singularvaluestogivethebestrankr approximation.

• TheorthogonalmatricesU andV(calledloadings)givetheembeddings oftherespectivesubspacesonwhichA isbestapproximatedtorankr.

• Thepseudoinverse ofA is𝐴† = 𝑉Σ†𝑈\,whereΣ† = diag(𝜎-^-, 𝜎7^-, …)

• Theminimalnormsolutionto𝐴�⃗� = 𝑏 is𝑥] = 𝐴†𝑏 = Σd,-* ef

ghif𝑣d.

Page 14: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

SVDandPLS• Givenm dataobservationsofnparticipantsstoredinadatamatrixX(independentvariables).• Givenk responsesofthen participantsstoredinadatamatrixY(dependentvariables).• FindalinearfunctionF thatexplainsthemaximumcovariancebetweenXandY.

𝑌 = 𝑋𝐹+ 𝐸• CenterandnormalizebothX andY.• ComputetheCovarianceMatrix𝑅 = 𝑌\𝑋• PerformSVD:R = 𝑈Σ𝑉\ (compactform,iterativealgorithm)• ThelatentvariablesofX andY areobtainedbyprojections:

𝐿n = 𝑋𝑉 𝐿o = 𝑌𝑈• U andVgivetheembeddingsofthesubspaces(theloadingsofthevariables)

Page 15: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

Structuredvariables• InthesituationofEEG-fMRIdata,evenafterawaveletdecompositionofthedata,westillhaveextrastructureinthedependentvariables(fMRI)YandintheindependentvariablesX.• EEGmodalities:trial–time–frequency–channel

• 4msupdates,63+1channels,4trials• SoXcouldbe4trialsx100waveletsx63channels

• fMRImodalities:trial–time–neuronalstate–voxel• 200msupdateswithwholebraincoverageand3mmvoxels• SoYcouldbe4trialsx200waveletsx36,000voxels

• Don’tthinkof100x63as6,300,don’tthinkof200x36,000as7.2×10u• Unfoldingleadsto“smallp largen”problemandalossofinformation.

Page 16: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

ModalProductsforTensors• For𝒜 ∈ ℝxy×xz×⋯×x{ and𝑈 ∈ ℝ|}×x} the𝑛��modetensor-matrixproductis

𝒜×T𝑈 ∈ ℝxy×xz×⋯×x}�y×|}×x}�y×⋯×x{

𝒜×T𝑈 ∶= ( 𝑎dy,dz,…,d},…d{𝑢�},d}d}∈x}

• Thismodalproductgeneralizesthematrixproductandvectorouterproductandreplacestranspose.

If𝐴 ∈ ℝxy×xz and𝐵 ∈ ℝxy×|z then𝐴×-𝐵 = 𝐵\𝐴 ∈ ℝ|z×xz

Ifx ∈ ℝ-×T andy ∈ ℝ-×R then �⃗�\𝑥 ∈ ℝR×T

Page 17: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

MatrixSVDusingmodalproductnotation

• SVDTheorem:Everycomplex𝐼-×𝐼7 matrix𝐹 hasanexpression𝐹 = 𝑆×-𝑈(-)×7𝑈(7)

with𝑈(-) aunitary𝐼-×𝐼-matrix𝑈(7) aunitary𝐼7×𝐼7 matrix𝑆 pseudodiagonal𝐼-×𝐼7 matrix,𝑆 = diag(𝜎- , 𝜎7,… , 𝜎��� xy,xz )Thesingularvaluesareordered:𝜎- ≥ 𝜎7 ≥ ⋯ ,≥ 𝜎��� xy,xz ≥ 0

Page 18: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

TensorSVD(OrthogonalTuckerDecomposition)

• Every𝐼-×𝐼7×⋯×𝐼� array𝒜 canbewrittenasaproduct:𝒜 = 𝑆×-𝑈(-)×7𝑈(7)⋯×�𝑈(�)

• Each𝑈(T)isaunitary𝐼T×𝐼T matrix.

• 𝑆isa𝐼-×𝐼7×⋯×𝐼� complextensorwithsliceshavingnorm 𝑆d},d = 𝜎d(T),

then-modesingularvaluesof𝒜• Foreachnthesingularvaluesareordered𝜎-

(T) ≥ 𝜎7T ≥ ⋯ ≥ 𝜎x}

T ≥ 0• Theslices𝑆d},d areall-orthogonal:

𝑆d},�,𝑆d},� = 0∀𝛼 ≠ 𝛽∀𝑛

• Computethen-modesingularmatrix𝑈(T) andn-modesingularvaluesbythematrixSVDofthen-th unfoldingofsize𝐼T×𝐼7𝐼�⋯𝐼T^-𝐼T�-𝐼�.• Siscomputedby𝑆 = 𝒜×-𝑈 - ∗

×7𝑈 7 ∗⋯×�𝑈 � ∗

Theorem:[DeLauthawer 2005, Zhao-Cichocki 2013]

Page 19: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

TuckerDecompositionforEEG--fMRI• Takean𝑁-×𝑁7×𝑁�×𝑁�tensorandexpressitasa(small)coretensorofsize𝐿-×𝐿7×𝐿�×𝐿�togetherwithchangesofbases(loadings)toputthecorebackintothelargertensorspace.• Let𝑋 and𝑌 betensorsofEEGanddeconvolvedfMRI,respectivelywithmodalities:trials,voxels/channels,timeandfrequency.• ObtainnewtensorsubspacesviatheTuckermodelforeachtrial:

• Approximate𝑋 withasumofmultilinear rank-(1, 𝐿7,𝐿�,𝐿�)terms• Approximate𝑌 withasumofmultilinear rank-(1,𝐾7, 𝐾�,𝐾�) terms

• ThecoretensorsmodeltheunderlyingbiophysicsandaredifferentforEEGandfMRI.• PerformHOSVDonthe𝐿7×𝐿�×𝐿�×𝐾7×𝐾�×𝐾� contraction𝑋×- 𝑌

Page 20: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

HigherorderPartialLeastSquares(HOPLS)TheHOPLSisexpressed as

𝑌 = (𝐷*

+

*,-

×-𝑡*×7𝑄*(7)×�𝑄*

(�)×�𝑄*� +𝐹

𝑋 =( 𝐺*

+

*,-

×-𝑡*×7𝑃*(7)×�𝑃*

(�)×�𝑃*� +𝐸

whereR isthenumber oflatentvectors,𝑡* istherth latentvector,𝑃*(T) and𝑄*

(R) areloadingmatricescorrespondingtolatentvector𝑡* onmode-n andmode-m,respectively,𝐺* and𝐷* arecoretensors,and×� istheproduct inthekth mode.

Compute the𝑡* astheleadingleftsingular vectorofanunfolding, deflate,andrepeat.

Page 21: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

FeasibilityStudy

• WeperformedthesimultaneousEEG/fMRIexperimentandEEG-onlyBCIusingtheP300spellerparadigmin4right-handedmalesubjects(meanage:21.5years)withnohistoryofneurologicalorotherillness.• fMRIdatawereacquiredusingtheM-EPIsequence(TR=200ms,multibandfactor=8,3mmisotropicvoxels,fullcoverage)anddeconvolvedusingthecubatureKalman filterapproach.• Theanalyseswerecarriedoutona highperformancecomputerwithIntel®Core™i7-3820(QuadCore,10MBCache)overclockedupto4.1GHzprocessorwithatopofthelineNVidiaGPUQuadro Plex 7000.• WeobtainedsignificantlyhighcorrelationusingboththefullandthesignificantHOPLSmodels,withthelatterprovidingbetteraccuracywithruntimesunderasecond.

Page 22: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND
Page 23: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

PreliminaryResultsOffline analysis of

Simultaneous EEG/fMRI ExptFull HOPLS forward model Significant HOPLS forward model

Correlation between deconvolved fMRI data and

that predicted from EEG0.76 ± 0.17 0.84 ± 0.13

Approximate run time for ‘prediction module’ in sec

1.4 0.8

Table.2 Prediction of deconvolved fMRI from simultaneously acquired EEG using offline analysis

Off line analysis of simultaneous

EEG/fMRI Expt

Original fMRI MVPA

fMRI predicted with significant

HOPLS + MVPA

fMRI predicted with full HOPLS

+ MVPA

SVM based on EEG tensors

(from sequential model)

SVM based on fMRI

tensors(from sequential model)

SVM based on ERP amplitude

and latency

Letter decoding accuracy

1 trial block

0.97±0.03 0.94 ± 0.04 0.93±0.05 0.84±0.10 0.86±0.12 0.68 ± 0.17

8 trial blocks

1 1 1 0.98±0.02 0.98±0.02 0.84 ± 0.11

Run time per letter decoded (sec)

0.9 1.8 2.4 0.13 0.24 0.08

Table.3 Letter decoding accuracy from post-hoc analysis of simultaneous EEG/fMRI data

Page 24: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

Preliminaryresults

Online analysis of EEG-only BCI dataParameters from same subject’s EEG/fMRI run

Parameters from random prior

subject’s EEG/fMRI run

Parameters learned from all prior subjects’ EEG/fMRI run

Subject-2 Subject-3 Subject-4

Letter decoding accuracy from fMRI predicted with significant

HOPLS + MVPA

1 trial block 0.93 ± 0.04 0.87 ± 0.11 0.86 0.91 0.93

8 trial blocks 1 0.94 ± 0.04 0.93 0.93 0.95

Table.4 Letter decoding accuracy from real-time analysis of EEG data using predicted fMRI (from significant HOPLS) as features for MVPA

In spite of these encouraging results, we stress the fact that they are derived from a small, homogeneous sample of 4 subjects. We need to do more trials to demonstrate more broad generalizability.

Page 25: A New Generation of Brain -Computer Interfaces Driven by ...webhome.auburn.edu/~lao0004/HOPLS_Brain_Oeding.pdfof Latent EEG -fMRI Linkages Using Tensor Decomposition HYPOTHESIS AND

(ExtraSlide) HigherOrderPartialLeastSquares• Thesubspacetransformationisoptimizedusingthefollowingobjectivefunction,yieldingthecommonlatentvariable𝑡* insteadof2latentvariables.

• 𝑚𝑖𝑛{¡ } ,¢ } } 𝑋 − [𝐺; 𝑡,𝑃7 ,𝑃 � ,𝑃 � ]

7+ 𝑌 − [𝐷;𝑡,𝑄 7 ,𝑄 � , 𝑄 � ]

7

suchthat 𝑃 T %𝑃 T = 𝐼¨}𝑎𝑛𝑑 𝑄R %𝑄 R = 𝐼ª«

• Simultaneousoptimizationofsubspacerepresentationsandlatentvariable𝑡*.SolutionscanbeobtainedbyMultilinearSingularValueDecomposition(MSVD)(see[Q.Zhao,etal.2011])• Minimizingtheerrorsisequivalenttomaximizingthenorms 𝐺 and 𝐷simultaneously(accountingforthecommonlatentvariable).Todothiswemaximizetheproduct 𝐺 7 ⋅ 𝐷 7.• Computethelatentvariables𝑡* asleadingleftsingularvectorsandthendeflate.Repeatuntilyoureachtheerrorboundsyouwant.