28
A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems , Brown University K. Ide, Atmospheric Sciences, UCLA

A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

Page 1: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

A method for the assimilation of Lagrangian data

C.K.R.T. Jones and L. Kuznetsov,

Lefschetz Center for Dynamical Systems , Brown University

K. Ide, Atmospheric Sciences, UCLA

Page 2: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Data assimilation

0 0Initial condition: ,x y

1 1 1Predicted state: , ,b b bx y P

1 1True state: ,t tx y

1 1State estimate: ,a ax y

1 1Measurement: o tx x

Page 3: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Discrete ocean model

t = i t

x = k x, k=1,n

y = l y, l=1,m

t = t i

kx

lyk

l

k

i

Model state vector x = {v, T, S, ,…}

x R (N = 5 n m)

i

N

Ocean model:

M – model’s dynamics operator

b b1 [ ]i i iM x x

Page 4: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Observations

True ocean:

o t

b b1

t

o

observation operator

observation error

state vector of the true ocean

typically

y [ ]

y

]

]

]

[

[

[

,

i i i i

i

i

i i i i

Ti i i

i

Li

Ti i i

N L

H

H

E

M

E

x x η

Q η η

x ε

ε

x

R

R ε ε

Covariance of the model residual:

Covariance of the observation error:

Page 5: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Extended Kalman Filter

b b t b t b b1

Keep track of the state vector error covariance matrix

using TLM:

linearized model operator

Combine model and observations into new state

[( )( ) ]

/ :

T Ti i i i i i i i i i

i i

E

M

P x x x x P M P M Q

M x

x

a b o b

a

b

a

b

1b

a

in a way that minimizes

: linearized observation function

: updated st

( )

tr :

/

i i i i i

i i

i i i i

i i i

T Ti i i i i i i

H

H

x x K d d y x

K P H H P H

P

H x

I K

R

P H P ate error covariance matrix

Page 6: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Ocean vs Atmosphere

Ocean:Drifters/floatsSlow (weeks) Horizontal coverage

Atmosphere:Balloons Fast (days) Vertical structure

Difference in scales and cost($drifters & floats>>$balloons)

Page 7: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Lagrangian information

y i-1,1

Lagrangian observations from drifters and floats do not give the data in terms of model variables. They are rarely used for assimilation into ocean models

Solution: Include drifter coordinates into the model

y i-1,2

y i,1

y i,2

Page 8: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Methodology

1 1

drifters "read" velocity information,

correlat

, ; [ ]; [ , ];

0

ions bet

0 0

wee n

F D F F F D D D Fi i i i i i i

FF FF DFi i i

i iDF DD DF DDi i i i

DF DFi

M M

M

M M

M

x x x x x x x x

P PM P

P P

P

x

1 1b b

( )= , = ,

and appear.

Observation of drifter po

sitions:DF

T T DDii i i i i i i i iDD

D F

i

H

PK P

x

x Hx H 0 I

H H P H R P RP

Page 9: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Point vortex systems

• Point vortex systems provide a rough model of 2d flows dominated by strong coherent vortices

• Simple dynamics (small number of degrees of freedom) makes them an attractive testing ground

• We consider flows due to N vortices. L tracer particles are observed. Tracers do not influence the flow.

Page 10: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

b bb * b* b*

t tt

b*1,

* t * t * t *1

1

, 1

b

, 2 2

, , ,

, 2 2

State vector: vortices: tracers:

Th

e error:

N L

N Nj j

m m m m Ni j m im j m

N Nj j

m mi j m im j m j

j

i iz

z

i iz

z

z

z

z

z

x z ζ z C ζ C

x x

*

2* b* b* * * *

* *

t *1 2

1 2* *2 1

, , 22

, 0, ,

; TLM: ( )

jDFmj

m j

T T

FF

T TDF DD i

AFF T Tz

DF DD

T

A 0

ηη ηηA A

A QA 0 η η η η

A A

x x P x x P x x

P PP

P P

0

0

P AP AP Q

2

( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) , , 0x y x x y y x yi

0 I

I 0

η η η η η η η η η

Page 11: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

*2

* * *

o t t

o oa

a a

= , 2

*b1 2

b b * b1 1 2 2

b

2 1

b

1 1 2

Observation of tracer positions:

Update:

,

y

y

y

T T

T T

i i i

i i i i i i i

i i

i ii ii

i i

εε εε 0 I0 IH R

I 00 I ε ε ε ε

00

x K K

I K HP K HP K

Hx ε ζ ε

x ζ

P HP KP

ζ

H

1 1

b*1

2b

b b1 1

2

a a

b* *

1

and are used as initial conditions to forecast and

;i iT Ti i i

i i

i

ii ii

K KK P H HP H R

K K

PP xx

P

Page 12: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Two point vortices

21,2 1 2

2

1/ 2

Deterministic model: vortices rotate around the origin:

( ) / 2, /(2 ), | |

Rescaling: 2 / , [( / 2 ) /( / 4)] 2 , 2

( / 2 ) , 2 /

When the noise is present

i tz t e z z

z z t t

t b 3/ 2 2

the system drifts away from the model:

| | where is shear at vortex location:

We take =0.01 0.05; deterministic model completely

loses track of the system in 1-3 motion periods.

z z t

Page 13: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Simple example: N=1, L=1

b b1

t t1

i i

i i

z z

z z

b t1 1i i

bi

oiy

* 21 1 2 =0i iz z

2

a b t b2 2i i i iz z z z

ai

ti

aiz

Page 14: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Two vortices, N=2, one tracer, L=1

1 2

1,2

1, 1

2

1

0.04

0.6 0.3

0 . 2 0

z

i

z

T

z 1 z 2

It works!

Page 15: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Two vortices, N=2, one tracer, L=1

1 2

1,2

1, 1

2

0.04

0.6 0.3

0

5

.

2

1

.0

i

z z

T

z 1 z 2

Or does it?

Page 16: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

The overall performance of EKF is represented by tr P

Efficiency of tracking of individual vortices is measured by |z|

a

0.02 =0.02 1 0.05 =0.05 T

Page 17: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

N=2, L=2

Page 18: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Assessment of method

• When does the assimilation works and when does it not?

• How does the filter fail?

• What is the role of Lagrangian structures

• Compare with the assimilation of velocity data directly

0, , , T

Page 19: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

N=2, L=1 (Ne =100 noise realizations)

0.75 1.0 1.25 1.5 1.75 2.0

0 0 2 2 8 18

0.09 0.10 0.12 0.19 0.35 0.51

0 1 7 19 22 29

0.12 0.13 0.22 0.40 0.43 0.67

4 7 16 25 - -

0.20 0.29 0.51 0.78 - -

σ=0.02

ρ=0.02

σ=0.02

ρ=0.05

σ=0.03

ρ=0.02

T

fN

d

fN

d

fN

d

Tracer launch location: (0) 0.6 0.3 in all experimentsi

Page 20: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Ensembles of different system noise realizations, N=2, L=1

1 0.02 0.02 1.5 T T

2fN 0fN

Page 21: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Divergence of the filterCorotating reference frame

1 2

1,2

1, 1

2

0.04

0.6 0.3

0

5

.

2

1

.0

i

z z

T

Exponential separation of trajectories near the saddle causes the divergence of the filter

Page 22: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Ocean Atmosphere

Drifters/floats Balloons

Launching strategy Targeted observations

Page 23: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Dependence on initial tracer location

1 2 2 0.3-0.6i 1-0.6i 1-i 2.4-2.4i -1.75i

0.5 55.5 0.5 15 0

0.12 1.90 0.11 0.29 0.11

(%)fN

d

0.02,

0.04,

1T

Page 24: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Vortices of different strength

1 23 3 0.02, 0.04, 1T

Page 25: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Four vortices, N=4

Vortices: (-4,-1), (-4,1), (4,-1), (4,1) (regular motion)

(5.24,3.61),(-2.12,0),(2.12,0),(0,-3) (chaotic motion)

Tracers: (-0.5,1) and (0.5,0), L =2

T=0.5, = 0.005, = 0.02

z 5

z 2 z 3

z 4

z 1

z 6

z 5z 2

z 3z 1

z 6

z 4

Page 26: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

N=4, L=2

Regular Chaotic

Page 27: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Comparison with assimilation of velocity

o o1

1/ 2 21 1

Velocity from consecutive drifter observations:

( ) /

- error resulting from position observation error ,

model noise and finite

( )/ ( ) 2 /( )

i i i

i i i

T

T

T T T

v y y

R R

/ T Q

0.4 0.5 0.6 0.7 0.8

0 4 6 46 76

0.18 0.24 0.31 0.58 0.71

f

T

N

d

o o o

1 2Second order: (3 4 ) /(2 ) : gives some improvement

For same , our scheme worked up to 1.0

i i i iT

T

v y y y

σ=0.02

ρ=0.02

Page 28: A method for the assimilation of Lagrangian data C.K.R.T. Jones and L. Kuznetsov, Lefschetz Center for Dynamical Systems, Brown University K. Ide, Atmospheric

Conclusions

• Assimilation of the tracer data into the point vortex system affords successful tracking of the flow (N ~ L, both small)

• EKF fails for large T, , : TLM is not a good approximation

• Passage next to (Lagrangian) saddle can cause filter divergence – efficiency of the method depends on the launch location relative to the Lagrangian flow structures

• Basis for launch strategies of floats and/or drifters

• Extend to layered models

• Future work: analyze filter behavior near the saddle; move to gridded ocean models increase N use other methods for model error propagation