25
1 M. Cai Estimation of Tensile Strength and Hoek-Brown Strength Parameter m i of Brittle Rocks Ming Cai Geomechanics Research Chair Bharti School of Engineering, Laurentian University, Canada MIRARCO – Mining Innovation, Canada 2016 1 M. Cai Rock mass Intact rock + Discontinuities = Rock Mass Joints Intact rock 3 M. Cai Kannagawa powerhouse cavern 4 powermag.com Overburden 490 m Rock mass with multi-geological zones

A method for tensile strength and mi determination

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

1

M. Cai

Estimation of Tensile Strength and Hoek-Brown Strength Parameter mi of Brittle Rocks

Ming Cai

Geomechanics Research ChairBharti School of Engineering, Laurentian University, Canada

MIRARCO – Mining Innovation, Canada

20161

M. Cai

Rock mass

Intact rock + Discontinuities = Rock Mass

Joints

Intact rock

3

M. Cai

Kannagawa powerhouse cavern

4

powermag.com

Overburden 490 mRock mass with multi-geological zones

2

M. Cai

Design analysis

3.5 m

5

M. Cai

Mohr-Coulomb failure criterion• The Mohr-Coulomb failure criterion in two forms

1

3

c

t

tension cut-off

sin1

sin1

K

sin1

cos2

cc

– friction anglec – cohesion – normal stress on failure plane

tan c

c

tension cut-off

elastic

impossibleAt failure

c

6

M. Cai

Hoek-Brown failure criterion

• The Hoek-Brown failure criterion is defined as

05.0

331

sm

cic

wheremi – rock friction strength parameters – rock cohesion strength parameter (s = 1 for intact rocks)c - UCS

It was an empirical failure criterion based on data fitting

t/c 7

3

M. Cai

Influence of mi value on rock strength

8

M. Cai

Generalized Hoek-Brown criterion and GSI system

a

cbc sm

3

31

D

GSImm ib 1428

100exp

D

GSIs

39

100exp

3/2015/

6

15.0 eea GSI

To use this criterion, one has to know DGSImic and , , ,

where

9

Hoek et al. (2002)

M. Cai

Quantitative GSI chartCai et al. (2004)

321

3210

sinsinsin sss

Vb

A

RC J

JJ

,ln0253.0ln0151.01

ln9.0ln79.85.26,

bc

bccb VJ

VJJVGSI

10

Cai and Kaiser (2006)

Hoel et al. (1995)

4

M. Cai

How do we determine these model input parameters?

Tensile strength?

mb (mi) parameter?

11

M. Cai

Focus of this talk

• Tensile strength (t) of brittle rocks

• Hoek-Brown strength parameter mi

D

GSImb 1428

100expim

12

M. Cai

Approaches

• Tensile strength of brittle rocks – Direct tensile test– Brazilian test– Database

• Hoek-Brown strength parameter mi

– Triaxial test– Database

Traditional approach

• Tensile strength of brittle rocks – Uniaxial compressive test

• Hoek-Brown strength parameter mi – Uniaxial compressive test

An alternative approach

13

5

M. Cai

Tensile strength of rocks

Data from Sheorey (1997)

10t

cR

14

M. Cai

Tensile strength testing

• Direct tensile strength test

A

Ft

F – failure loadA – failure plane area

F

F

F

F

15

M. Cai

Tensile strength testing

• Indirect tensile strength test – Brazilian test

Rt

Ft

F – failure loadR – disk radiust – specimen thickness

Indirect tension

F

F

16

6

M. Cai

Tensile strength testing

• Indirect tensile strength test – Beam bending test

2

5.1

bh

LFt F

F – failure loadL – beam lengthb – beam thicknessh – beam heightL

h

17

M. Cai

Hoek-Brown strength parameter mi

Hoek (2007) 18

M. Cai

Hoek-Brown strength parameter mi

• Triaxial compression test

Wawersik and Fairhurst (1970)

Tennessee Marble

1

3

2 3

Triaxial loading

19

7

M. Cai

Stress–strain relation under compression

20

Cai et al. (2004)

M. Cai

Griffith Theory

• Griffith proposed in 1920 that the strength of brittle materials is governed by the initial presence of small cracks.

• Failure occurs when the most vulnerably oriented crack in a population of randomly oriented cracks begins to extend under applied stress.

A.A. Griffith (1893-1963)

21

M. Cai

Griffith Theory – uniaxial tension• For a material to break in tension owing

to the presence of an existing microcrack, sufficient energy must be released to provide the necessary new surface energy as the crack propagates.

• In uniaxial tension, the energy criterion predicts failure at the stress of

c

Et

'2

21'

EE

E is the Young’s modulus, is Poisson's ratio, is the specific surface energy, c is the half crack length- plane strain problems

E’= E - plane stress problems

2c

22

8

M. Cai

Griffith’s strength criterion • Under uniaxial and biaxial compression, assuming

that elliptical cracks will propagate from the points of maximum tensile stress concentration, Griffith (1924) derived a stress criterion.

• It predicts a strength ratio of RG = c/ t = 8

08 312

31 t

• 3D version of the Griffith’s strength criterion was developed by Murrell (1963)

• It predicts a strength ratio of RM = c/ t = 12

024 3212

132

322

31 t

23

M. Cai

Griffith’s strength criterion

• The Griffith’s compressive strength to tensile strength ratio (8) is smaller than generally observed for rocks.

• Crack closure is not significantly affecting the strength ratio.

• The reason? The Griffith’s theory deals only with the initiation of failure (crack initiation). – Under tensile conditions, the crack initiation is often

equivalent to final failure

– Under compressive conditions, crack initiation happens at a stress level normally much lower than the peak stress

24

M. Cai

Stress-strain curves under uniaxial tension

Norite

Bieniawski (1967)

ttcd

ttci

965.0)(

945.0)(

25

9

M. Cai

Rock fracturing in tension

Crack initiation stress (ci)t

Tensile strength t

Stress

Strain

ttci )(

×

26

M. Cai

Simulation results

Cai and Kaiser (2004)

27

M. Cai

Micro-cracking mechanism under compression• Microscopic observations

indicate that newly generated cracks are tensile in nature, generated by extension strain, and mostly aligned in the same direction as the maximum compressive stress.

• After crack initiation, the propagation of the

microcracks is a stable process, which means that the cracks only extend by limited amounts in response to given increments in stress.

Pore or inclusionGriffith crack

Indentation

28

10

M. Cai

Griffith’s crack simulationvideo

(a) (b) (c) (d)

Axial loading

Cai (2003)

29

0.27 c 0.976 c 0.979 c Post-peak

M. Cai

Crack initiation in compression

Grain boundary cracks in rock

Bieniawski (1967)

30

M. Cai

Rock fracturing in compression

Crack initiation stress ci

UCSc

cci

31

Gap

11

M. Cai

The proposed method – Strength ratio, Tensile strength

• Crack initiation in tension often means tensile fracture is imminent.

• Crack initiation in compression is stable and it is only linked to a lower stress compared with the peak compressive strength.

• When both crack initiation and peak strength are considered the same (e.g. Griffith’s approach), it leads to an c/t ratio of RG = 8.

• In compression, additional loading is required to bring the stress level from ci to c.

• A better strength ratio R can be obtained by modifying RG by ci/c

8cic

t R

Tensile strength

ci

c

ci

cGRR

8

Cai (2010) 32

M. Cai

The proposed method – mi

• It can be shown from Hoek-Brown failure criterion that

1

11

2

2

RRm

t

c

c

ti

• When R is high (e.g. ≥ 8), we have

ci

ci Rm

8

2D Griffith cracking mechanism rock fracturing under tensile and low confinement conditions

Initial (pre-existing) crack

Wing

Direction of unstable growth

Rock mass

Excavation surface

Cai (2010)

33

M. Cai

The proposed method – mi

Dyskin et al. (1999)

ci

c

ci

cMcii Rmm

12

• Under high confining stress (3 > 5 MPa), microcrack initiation from most pre-existing defects will follow the stress state defined by 3D Griffith ellipsoidal cracks.

• In such a case, Murrell’s strength ratio RM, instead of Griffith’s strength ratio RG, is considered more appropriate for the estimation of mi.

mi in the high confinement zone is 1.5 times large than mi in the low confinement zone Cai (2010)

34

12

M. Cai

Typical values

Coarsegrained rocks

Medium grained rocks

Fine grained rocks

ci/c 0.3 – 0.4 0.4 – 0.5 0.5 – 0.7Strength ratio 20 - 27 16 - 20 11 - 16

mi (low confinement) 20 - 27 16 - 20 11 - 16

mi (high confinement) 30 - 40 24 - 30 16.5 - 24

ci

cR

8

ci

cim

12

ci

cim

8

35

M. Cai

Example – Westerly granite

• c = 214 MPa

• mi to fit the test data well in the tensile zone is 16.

• mi to fit the test data well in the compression zone is 26.7.

• 26.7/16 = 1.67

• 12/8 = 1.5Cai (2010)

36

M. Cai

Example – Medium to coarse grained granite from the Mine-by tunnel

• c = 21320 MPa

• Crack initiation stress ci 70 to 80 MPa

Predicted tensile strengtht ci / 8 = (70 to 80) / 8 = 8.75 to 10 MPa, average: 9.4 MPa

Tensile strength from Brazilian test8.91 MPa

Predicted mi (high confinement zone, average)mi = 12×213/75 = 34

mi from triaxial test30.8 ~ 34.8

37

13

M. Cai

Example – Äspö diorite

• c = 210 MPa

• Crack initiation stress ci = 121 MPa

Predicted tensile strengtht ci / 8 = 121/8 = 15.1 MPa

Tensile strength from Brazilian test14.3 MPa

Predicted mi (high confinement zone)mi = 12×210/121= 21

mi from Hoek (2007)255

38

M. Cai

Example – A mine site in Canada

39

Cai (2010)

M. Cai

Ratio of direct tensile strength to Brazilian tensile strength

40

Nicksiar and Martin (2013)

14

M. Cai

Example – Forsmark metagranodiorite

41ci / t

Nicksiar and Martin (2013)

t = ci / 7.76

8ci

t

M. Cai

Spalling limit

• Low confinement zone, 2D cracking mechanism

• High confinement zone, 3D cracking mechanism

• Transition zone spalling limit

ci

cim

8

ci

cim

12

Cai (2010)

42

M. Cai

Summary

• Perform UCS test; measure axial and lateral strains or AE.

• Identify the crack initiation stress ci and the peak strength c.

8ci

t

Tensile strength t

milow confinement zone

ci

cim

8

miHigh confinement zone

ci

cim

12 Simple and yet effective approach

43

15

M. Cai

Weak rocks

Cai (2010)

• Opalinus Clay: c = 16 MPa, t = 5 MPa c / t ratio = 3.2.

• Why not = 8?

44

M. Cai

Generalized form

• and depend on – rock texture (e.g. grain size and shape)

– mineral content (e.g. clay and/or calcite content)

– crack initiation mechanism (e.g. Griffith cracks = 12 > , pore inclusions < )

• 2D – Griffith crack = 8, circular hole = 3

• 3D – Griffith crack = 12, elliptical hole = 5,

spherical hole = 4.

,

,

,

,

ci

cci

ci

cti

cit

ci

c

m

m

R

Cai (2010)

45

M. Cai

Strong vs weak rocks

Cai (2010)

Strong rocks Weak rocks

46

16

M. Cai 47

Carrara marble

mi = 8.25

Ramsey and Chester (2004)Hoek and Martin (2015)

M. Cai

Methods of determining ci

• Strain-based methods– Axial strain-based

– Volumetric strain-based

– Volumetric stiffness method

– Instantaneous Poisson's ratio method

– Lateral strain response (LSR) method

• Wave velocity method

• AE-based methods

48

Use of the proposed method depends on accurate determination of ci

No ISRM Suggested Method for ci determination yet.

M. Cai

Axial strain-based method

Martin (1993)

σci

49

17

M. Cai

Lateral strain-based method 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350

40

80

120

160

200

240

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Lateral strain (%) Axial strain (%)

Axial strain (%)

Axial stress (MPa)

Lateral strain (%)

Axi

al s

trai

n (%

)

V

olum

etric

str

ain

(%)

-0.20 -0.15 -0.10 -0.05 0.000.0

0.1

0.2

0.3

0.4

Volumetric strain method(Brace et al. 1966)

Lateral strain method(Lajtai 1974)

Extensional strain method(Stacey 1981)

σci

σci

σci

σci

σcc

σcc

σcd

σcd

σcc

σcc

Crack volumetric strain method(Martin and Chandler 1994)

Zhao et al. (2015)

Beishan granite

50

M. Cai

Brace et al. (1966)

σci

Volumetric strain-based method

Bieniawski (1967)

σci

Quartzite

51

M. Cai

Crack volumetric strain methodσci

Martin and Chandler (1994)

52

18

M. Cai

Volumetric stiffness method

Eberhardt (1998)

σci

53

M. Cai

Instantaneous Poisson's ratio method

 

Tan

gent

ial s

trai

n ra

tio

Axial stress (MPa)

80 120 160 200 2400.0

0.2

0.4

0.6

0.8

1.0

Diederichs (2007)

σci

54

M. Cai

σcd

σcd

A polynomial fitting equation

Lateral strain response (LSR) method

Nicksiar and Martin (2012)

55

19

M. Cai

Wave velocity method

56

Paterson and Wong (2005)

Turichshev and Hadjigeorgiou (2016)

M. Cai

Wave velocity method

57

σci

Turichshev and Hadjigeorgiou (2016)

M. Cai

AE-based method

58

Thompson et al. (2006)

20

M. Cai

AE-based method

0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

Axial strain (%)

Rin

gdo

wn

cou

nts

(10

3 )

r

Rise time

Ringdown counts

Threshold

Peak amplitude

Event duration

Energy

σci

(Eberhardt 1998)

Zhao et al. (2015)

59

M. Cai

AE-based method

60

Eberhardt et al. (1998)

σci

M. Cai

AE-based method

Zhao et al. (2015)

 

-0.2 -0.1 0.0 0.1 0.2 0.30

20

40

60

80

100

120

140

160

Cumulative AE hits

Axial strain (%)

Axial stress (MPa) Volumetric strain

Cum

ula

tive

AE

hits

(1

05 )

Lateral strain (%)

cd

0.0

0.2

0.4

0.6

0.8

1.0

σci

?

61

21

M. Cai

The cumulative AE hit (CAEH) method

Beijing Research Institute of Uranium Geology

 

0 20 40 60 80 100 120 140 1600

2

4

6

8

10Peak stress

Axial stress (MPa)

Cu

mu

lativ

e A

E h

its (

104 )

Initial point

Minimum slope Upper bound

 

0 20 40 60 80 100 120 1400.9

1.2

1.5

1.8

2.1

Axial stress (MPa)

Cum

ulat

ive

AE

hits

(10

4 )

 

0 20 40 60 80 100 120 1400.9

1.2

1.5

1.8

2.1

Axial stress (MPa)

Cum

ulat

ive

AE

hits

(10

4 )

Initial pointUpper bound

Minimum slope

Lower bound 

40 50 60 70 80 90 100 110 1201.4

1.5

1.6

1.7

1.8

1.9

Axial stress (MPa)

Cu

mul

ativ

e A

E h

its (

104)

Upper bound

Lower bound

Reference line

AE hit Difference

 

40 50 60 70 80 90 100 110 1200.0

0.1

0.2

0.3

0.4

0.5

0.6

Axial stress (MPa)

Cum

ulat

ive

AE

hit

diffe

renc

e (1

03)

Lower bound

Upper bound

σci

AE-based methodZhao et al. (2015)

Objective method

62

M. Cai

AE-based method

Zhao et al. (2015)

63

M. Cai

 

120 135 150 165 180 195 210 225 2400

40

80

120

160

200 BS06 BS16 BS18 BS19 TH01 TH02-1 TH02-2 YM01

Cra

ck in

itiat

ion

stre

ss (

MP

a)

Uniaxial compressive strength (MPa)

0.48 UCS

Relation between the UCS and the σci

Zhao et al. (2015)

64

22

M. Cai

 

0

30

60

90

120

150

Crack volume strainmethod (Martin and Chandler 1994)

Lateral strain method (Lajtai 1974)

Volumetric strain method (Brace et al. 1966)

Individual Mean

Cra

ck in

itiat

ion

stre

ss (

MP

a)

Method

CAEH method

Comparison

Zhao et al. (2015)

65

M. Cai

Advantage of AE-based method

• Objective (CAEH method)

• Minimal additional effortAxialextensometer

Lateralextensometer

AE sensor

Rubber band

66

M. Cai

Methods of determining ci

• Strain-based methods– Axial strain-based

– Volumetric strain-based

– Volumetric stiffness method

– Instantaneous Poisson's ratio method

– Lateral strain response (LSR) method

• Wave velocity method

• AE-based methods – Traditional AE method

– CAEH method

Subjective methoddepend on user’s judgment

Objective method

67

23

M. Cai

Factors affecting σc – Size effect

The tested compressive peakstrength is not an intrinsicproperty. Intrinsic material properties do not depend on the specimen geometry or the loading conditions used in the test.

Hoek and Brown (1980)68

M. Cai

Factors affecting σc – Shape effect

• Elastic modulus is basically unaffected by specimen shape, but strength and ductility increase as the ratio of sample diameter to length increases

• Reason: Effect of loading platens

Hudson and Harrison (1997)

69

M. Cai

Factors affecting rock strength – Strain rate

• The post-peak part of the force-displacement curve is more sensitive to strain rate than that in the pre-peak

Peng (1973)

70

24

M. Cai

True material property?

• σc depends on many factors– Specimen shape

– Loading platens

– Specimen size

– Loading rate

– Loading machine

– …

• σci is not affected by specimen shape, loading platens or loading machine. It is awonderful parameter to have.

71

mi is also affected by these factors

M. Cai

Lau and Gorski (1992)

Lac du Bonnet granite

Influence of σ3 on σci

72

igneous rocks

metamorphic rocksNicksiar and Martin (2013)

M. Cai

Effect of directional anisotropy on crack initiation and peak stresses

73

Nicksiar and Martin (2013)

Crack initiation stress

Peak stress

25

M. Cai

σci potentially as the ultimate long-term strength

74

Damjanac and Fairhurst (2010)

σci

M. Cai

Conclusions

• Tensile strength σt can be estimated from

• mi can be estimated from

• Accurate determination of σci is important– Lateral strain-based LSR method

– AE-based CAEH method

• Best for preliminary design

8ci

t

ci

cim

8

ci

cim

12

75

M. Cai

Reading list

• Griffith, A.A. 1921. The phenomena of rupture and flow in solids. Phil. Trans. Royal Soc. London. 221A: 163-198.

• Bieniawski, Z.T. 1967. Mechanism of brittle fracture of rock: Part I, II, III. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 4(4): 395-406.

• Hoek, E. (2007): Practical Rock Engineering. Available online: www.rocscience.com, 342.

• Cai, M. (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech. Rock Engng, 43(2), 167-184.

• Zhao, X.G., Cai, M., Wang, J., Li, P.F., Ma, L.K. (2015) Objective determination of crack initiation stress of brittle rocks under compression using AE measurement, Rock Mech. Rock Engng, 48(6), 2473-2484.

76