45
UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval 1 A Modular Design for a Parallel Multifrontal Mesh Generator J.P. Boufflet, P. Breitkopf, C. Longeau, A. Rassineux, P. Villon Université de Technologie de Compiègne UMR CNRS 6599 HeuDiaSyC (department of computer science) UMR CNRS 6066 Roberval (department of computational mechanics)

A M odular D esign for a P arallel M ultifrontal M esh G enerator

  • Upload
    anja

  • View
    27

  • Download
    0

Embed Size (px)

DESCRIPTION

A M odular D esign for a P arallel M ultifrontal M esh G enerator. J.P. Boufflet, P. Breitkopf, C. Longeau, A. Rassineux, P. Villon. Université de Technologie de Compiègne. UMR CNRS 6599 HeuDiaSyC (department of computer science) - PowerPoint PPT Presentation

Citation preview

Page 1: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

1

A Modular Design for a Parallel Multifrontal

Mesh Generator

J.P. Boufflet, P. Breitkopf, C. Longeau, A. Rassineux, P. Villon

Université de Technologie de Compiègne

UMR CNRS 6599 HeuDiaSyC (department of computer science)UMR CNRS 6066 Roberval (department of computational mechanics)

Page 2: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

2

Parallel volume mesh generator:

• parallelize a mesh generation code

• decompose the data

Re-use of an existing sequential volume mesh generator

Two strategies are possible:

Page 3: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

3

The sequential volume mesh generator used

•the initial data: a triangular surface mesh•needs a closed envelope•generates the internal tetrahedrons •less initial data than generated data

Page 4: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

4

Splitting of a closed envelope (1)

•based on a Moving Least Square technique•updating the cutting plane

position and direction•by using an attenuation function only the points « close enough » to the

current cutting plane are taken into account•balance the number of surface node

Page 5: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

5

Splitting of a closed envelope (2)

We obtain a cutting plane splitting the initial triangular surface mesh into two parts havingroughly the same number of nodes

Page 6: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

6

geometric decomposition

Triangular surface mesh(the domain envelope)

Module 1

Page 7: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

7

Interface mesh generation (1)

•define the interface surface nodes close to •with this boundary area define a border line C•project the surface nodes of C to •generate a surface mesh using this geometry with a standard 2D mesh generator•fit this new surface mesh to initials coordinates of the interface surface nodes

Page 8: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

8

Interface mesh generation (2)define the interface surface nodes close to

(1)

We obtain two open subdomains and a boundary area near the cutting plane

S1 the triangular finite elements on one side of

S2 the triangular finite elements on the other side of

S3 the triangular finite elements near

distance criterion the boundary area

Page 9: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

9

Interface mesh generation (3)define the interface surface nodes close to

(2)

We assign the triangular finite elements of the boundary area

“crown”

Page 10: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

10

Interface mesh generation (4)define the interface surface nodes close to

(3)

That defines a border line C composed of interface surface nodes splitting the initial triangular surface mesh into two open subdomains

C

Page 11: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

11

Interface mesh generation (4)•project the surface nodes of C to •generate a surface mesh using this geometry with a standard 2D mesh generator

We obtain a new plane surface mesh

Page 12: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

12

Interface mesh generation (5)fit this new surface mesh to the initial

coordinates of the interface surface nodes

Merge this new surface mesh with the two open subdomains

By restoring the initial coordinates of the surface nodes of C

Page 13: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

13

Interface mesh generation (6)

We obtain two new triangular surface meshescorresponding to two closed envelopes compatiblewith the sequential volume mesh generator used

Page 14: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

14

geometric decomposition

interface mesh generator

Triangular surface mesh(the domain envelope)

Module 2

Page 15: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

15

Sequential volume mesh generator

We apply the sequential volumemesh generator on each closed envelope of each subdomain

We obtain two volume meshes

Page 16: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

16

geometric decomposition

interface mesh generator

sequential volume mesh generator

Triangular surface mesh(the domain envelope)

Module 3

Page 17: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

17

Volume mesh merging

The interface surface mesh is the same

Page 18: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

18

geometric decomposition

3D volume mesh

interface mesh generator

sequential volume mesh generator

volume mesh merging

Triangular surface mesh(the domain envelope)

Module 4

Page 19: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

19

Page 20: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

20

Page 21: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

21

Page 22: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

22

Page 23: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

23

Page 24: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

24

Page 25: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

25

Page 26: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

26

Page 27: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

27

Page 28: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

28

Page 29: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

29

Page 30: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

30

geometric decomposition

3D volume mesh

interface mesh generator

sequential volume mesh generator

volume mesh merging

scheduler

Triangular surface mesh(the domain envelope)

n=2 h

Module 5

Page 31: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

31

Complex geometry

Page 32: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

32

Complex geometry

Page 33: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

33

Complex geometry

Page 34: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

34

More complex geometry

•Multiple contour•Contour with hole inside

•we know where is the material•detection of the connected components•re-assigning strategy for small parts

(intersection with

Page 35: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

35

re-assigning strategy for small parts

Page 36: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

36

Two examples of interface mesh generatedwith two different

Page 37: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

37

geometric decomposition

3D volume mesh

interface mesh generator

sequential volume mesh generator

volume mesh merging

scheduler

Triangular surface mesh(the domain envelope)

Page 38: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

38

Conclusion• the preliminary results have to be confirmed on other benchmarks• the results have to be compared with the meshes computed with the sequential volume mesh generator alone • several issues have to be addressed :

• piloting strategy for the cutting plane according to the attenuation function and the shape of the initial surface mesh• the behavior of each module has to be studied

Page 39: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

39

Future works

• design of the scheduler• coupling the parallel volume mesh generation with a solver

Page 40: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

40

Questions ?

Page 41: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

41

Clue (1.0) piloting strategy for the cutting plane according to the

attenuation function and the shape of the initial surface mesh

X the first center of gravity

the first cutting plane

material Two boundary areas the first normal vector

Page 42: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

42

Clue (1.1)

We compute the weight: wi=wref(distance(h(Xi),X)/r)

Where : • h(Xi) is the projection of surface nodeXi to the normal of

• r is a radius (area of influence)• wref(d) is an attenuation function where :

wref(d) = 0.5 (1+cos(d)) if d [0,1] and 0 otherwise

Page 43: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

43

Clue (1.2)

• detect the two boundary area• for each, compute a new center of gravity• for each boundary area, adjust a new quantity r according to each local geometry• run the partitioning algorithm on each part

Page 44: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

44

Clue (1.3)

X1

X2r1 r2

Page 45: A M odular  D esign for a   P arallel   M ultifrontal M esh  G enerator

UMR CNRS 6599 HeuDiaSyC, UMR CNRS 6066 Roberval

45

Clue (1.4)

X1

X2

r1

r2