12
A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue, a,b Yu-Quan Feng b * and Seik Weng Ng c a State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China, b College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People’s Republic of China, and c Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: [email protected] Received 12 November 2014 Accepted 25 December 2014 In the linear coordination polymer catena -poly[[[aqua(1,10- phenanthroline- 2 N, N 0 )copper(II)]- -pyridine-2,6-di- carboxylato- 4 O 2 :O 2 0 ,N,O 6 -[(nitrato- 2 O,O 0 )bismuth(III)]-- pyridine-2,6-dicarboxylato- 4 O 2 ,N,O 6 :O 6 0 ] dihydrate], {[Bi III- Cu II (C 7 H 3 NO 4 ) 2 (NO 3 )(C 12 H 8 N 2 )(H 2 O)]2H 2 O} n , the Bi III cation is O,N,O 0 -chelated by the two pyridine-2,6-dicarboxyl- ate ligands and O,O 0 -chelated by the nitrate anion, the nine coordinating atoms conferring a tricapped trigonal prismatic environment on the metal centre. Each pyridine-2,6-di- carboxylate ligand uses one of its carboxylate O atoms to bind to an aqua(1,10-phenanthroline)copper(II) unit, the Cu—O dative bonds giving rise to the formation of a ribbon motif. The Cu II cation exhibits a square-pyramidal geometry. The ribbon motif propagates along the shortest axis of the triclinic unit cell and the solvent water molecules are hydrogen bonded to the same ribbon. Keywords: crystal structure; heterometallic coordination polymer; bismuth–copper; pyridine-2,6-dicarboxylic acid; one- dimensional coordination polymer. 1. Introduction For bismuth derivatives of pyridine-2,6-dicarboxylic acid, the anion, in addition to engaging in O,N,O 0 -chelation, can also serve as a bridge between adjacent metal centres. Because the metal is trivalent and the carboxylic acid diprotic, some compounds exist as salts; in these bismuthates, the negative charge is balanced by an ammonium counter-ion. Neutral compounds have also been isolated (Aghabozorg, Nemati et al., 2008; Aghabozorg, Ramezanipour et al., 2008; Aghabozorg et al., 2011; Anjaneyulu et al., 2010; Anjaneyulu & Kumara Swamy, 2011; Jeon et al., 2012; Ranjbar et al., 2003; Sharif et al. , 2007; Sheshmani et al., 2005; Soleimannejad & Gholizadeh, 2012; Sushrutha & Natarajan, 2013; Stavila et al., 2009; Thir- umurugan et al., 2012; Zevaco et al. , 1992; Zhang, Tian et al., 2013; Zhang, Wang et al., 2013). Charge balance in other bismuthate salts is maintained by suitable metal cations. In the cobalt and nickel salts, the hexaaquametallate(II) cation interacts with the dibismuthate anion through hydrogen-bonding interactions involving coor- dinated water molecules (Stavila et al., 2011). In the lithium derivative, the pyridine-2,6-dicarboxylate unit uses a carboxylate arm to bind to the metal centre (Thirumurugan et al., 2012). An attempt to synthesize a heterometallic bismuth pyri- dine-2,6-dicarboxylate (pydc 2 ) complex using a hydro- thermal method instead of a conventional solution method yielded the hydrated bis(2,2 0 -bipyridine)chloridocopper(II) research papers 100 # 2015 International Union of Crystallography doi:10.1107/S2053229614028125 Acta Cryst. (2015). C71, 100–102 Acta Crystallographica Section C Structural Chemistry ISSN 2053-2296 Table 1 Experimental details. Crystal data Chemical formula [BiCu(C 7 H 3 NO 4 ) 2 (NO 3 )(C 12 H 8 N 2 )- (H 2 O)]2H 2 O M r 898.99 Crystal system, space group Triclinic, P 1 Temperature (K) 296 a, b, c (A ˚ ) 9.1376 (8), 12.1229 (11), 13.4135 (12) , , ( ) 86.649 (2), 87.233 (2), 70.502 (1) V (A ˚ 3 ) 1397.6 (2) Z 2 Radiation type Mo K (mm 1 ) 7.13 Crystal size (mm) 0.26 0.22 0.18 Data collection Diffractometer Bruker SMART APEX CCD area- detector diffractometer Absorption correction Multi-scan (SADABS; Sheldrick, 1996) T min , T max 0.259, 0.360 No. of measured, independent and observed [I >2(I)] reflections 7803, 5656, 4523 R int 0.036 (sin /) max (A ˚ 1 ) 0.628 Refinement R[F 2 >2(F 2 )], wR(F 2 ), S 0.047, 0.119, 1.01 No. of reflections 5656 No. of parameters 424 H-atom treatment H-atom parameters constrained max , min (e A ˚ 3 ) 3.53, 2.65 Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and publCIF (Westrip, 2010).

A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

A linear heterometallic bismuth–copper coordination polymercontaining two types of organicligands

Zi-Long Yue,a,b Yu-Quan Fengb* and Seik Weng Ngc

aState Key Laboratory of Geological Processes and Mineral Resources, China

University of Geosciences (Beijing), Beijing 100083, People’s Republic of China,bCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University,

Nanyang 473061, People’s Republic of China, and cDepartment of Chemistry,

University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: [email protected]

Received 12 November 2014

Accepted 25 December 2014

In the linear coordination polymer catena-poly[[[aqua(1,10-

phenanthroline-�2N,N 0)copper(II)]-�-pyridine-2,6-di-

carboxylato-�4O2:O20,N,O6-[(nitrato-�2O,O0)bismuth(III)]-�-

pyridine-2,6-dicarboxylato-�4O2,N,O6:O60] dihydrate], {[BiIII-

CuII(C7H3NO4)2(NO3)(C12H8N2)(H2O)]�2H2O}n , the BiIII

cation is O,N,O0-chelated by the two pyridine-2,6-dicarboxyl-

ate ligands and O,O0-chelated by the nitrate anion, the nine

coordinating atoms conferring a tricapped trigonal prismatic

environment on the metal centre. Each pyridine-2,6-di-

carboxylate ligand uses one of its carboxylate O atoms to

bind to an aqua(1,10-phenanthroline)copper(II) unit, the

Cu—O dative bonds giving rise to the formation of a ribbon

motif. The CuII cation exhibits a square-pyramidal geometry.

The ribbon motif propagates along the shortest axis of the

triclinic unit cell and the solvent water molecules are hydrogen

bonded to the same ribbon.

Keywords: crystal structure; heterometallic coordinationpolymer; bismuth–copper; pyridine-2,6-dicarboxylic acid; one-dimensional coordination polymer.

1. Introduction

For bismuth derivatives of pyridine-2,6-dicarboxylic acid, the

anion, in addition to engaging in O,N,O0-chelation, can also

serve as a bridge between adjacent metal centres. Because the

metal is trivalent and the carboxylic acid diprotic, some

compounds exist as salts; in these bismuthates, the negative

charge is balanced by an ammonium counter-ion. Neutral

compounds have also been isolated (Aghabozorg, Nemati et

al., 2008; Aghabozorg, Ramezanipour et al., 2008; Aghabozorg

et al., 2011; Anjaneyulu et al., 2010; Anjaneyulu & Kumara

Swamy, 2011; Jeon et al., 2012; Ranjbar et al., 2003; Sharif et al.,

2007; Sheshmani et al., 2005; Soleimannejad & Gholizadeh,

2012; Sushrutha & Natarajan, 2013; Stavila et al., 2009; Thir-

umurugan et al., 2012; Zevaco et al., 1992; Zhang, Tian et al.,

2013; Zhang, Wang et al., 2013).

Charge balance in other bismuthate salts is maintained by

suitable metal cations. In the cobalt and nickel salts, the

hexaaquametallate(II) cation interacts with the dibismuthate

anion through hydrogen-bonding interactions involving coor-

dinated water molecules (Stavila et al., 2011). In the lithium

derivative, the pyridine-2,6-dicarboxylate unit uses a

carboxylate arm to bind to the metal centre (Thirumurugan et

al., 2012).

An attempt to synthesize a heterometallic bismuth pyri-

dine-2,6-dicarboxylate (pydc2�) complex using a hydro-

thermal method instead of a conventional solution method

yielded the hydrated bis(2,20-bipyridine)chloridocopper(II)

research papers

100 # 2015 International Union of Crystallography doi:10.1107/S2053229614028125 Acta Cryst. (2015). C71, 100–102

Acta Crystallographica Section C

Structural Chemistry

ISSN 2053-2296

Table 1Experimental details.

Crystal dataChemical formula [BiCu(C7H3NO4)2(NO3)(C12H8N2)-

(H2O)]�2H2OMr 898.99Crystal system, space group Triclinic, P1Temperature (K) 296a, b, c (A) 9.1376 (8), 12.1229 (11), 13.4135 (12)�, �, � (�) 86.649 (2), 87.233 (2), 70.502 (1)V (A3) 1397.6 (2)Z 2Radiation type Mo K�� (mm�1) 7.13Crystal size (mm) 0.26 � 0.22 � 0.18

Data collectionDiffractometer Bruker SMART APEX CCD area-

detector diffractometerAbsorption correction Multi-scan (SADABS; Sheldrick,

1996)Tmin, Tmax 0.259, 0.360No. of measured, independent and

observed [I > 2�(I)] reflections7803, 5656, 4523

Rint 0.036(sin �/)max (A�1) 0.628

RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.047, 0.119, 1.01No. of reflections 5656No. of parameters 424H-atom treatment H-atom parameters constrained�max, �min (e A�3) 3.53, �2.65

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97(Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and publCIF(Westrip, 2010).

Page 2: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

hemi[aquachloridobis(pyridine-2,6-dicarboxylato)bismuth-

ate(III)] salt (Wang et al., 2011). Interestingly, replacing

copper chloride with copper nitrate [as well as changing the

ligand from 2,20-bipyridine to 1,10-phenanthroline (phen)]

yielded the title heterometallic compound, {[BiIIICuII(pydc)2-

(NO3)(phen)(H2O)]�2H2O}n, (I), the structure of which is

reported here.

2. Experimental

2.1. Synthesis and crystallization

Bismuth nitrate pentahydrate (0.49 g, 1 mmol), copper

chloride dihydrate (0.26 g, 1.5 mmol), pyridine-2,6-dicarbox-

ylic acid (0.25 g, 1.5 mmol), 1,10-phenanthroline (0.09 g,

0.5 mmol), ethylene glycol (6 ml) and water (2 ml) were

placed in a 50 ml Teflon-lined Parr bomb. The Parr bomb was

maintained at 433 K for 7 d and then cooled to room

temperature at a rate of 10 K h�1. The solution was filtered

and slow evaporation over a period of 5 d yielded blue pris-

matic crystals in 40% yield (based on bismuth nitrate). The

crystals were collected and washed with water. Elemental

analysis calculated: C 34.74, H 2.24, N 7.79%; found: C 35.11,

H 1.90, N 8.07%.

2.2. Refinement

Crystal data, data collection and structure refinement

details are summarized in Table 1. C-bound H atoms were

placed in calculated positions, with C—H = 0.93 A, and were

included in the refinement in the riding-model approximation,

with Uiso(H) = 1.2–1.5Ueq(C). The water H atoms were placed

in chemically sensible positions on the basis of hydrogen-

bonding interactions, with O—H = 0.84 A and Uiso(H) =

1.5Ueq(O). The final difference Fourier map had a peak 0.90 A

from atom Bi1 and a hole 0.92 A from the same atom.

3. Results and discussion

The BiIII cation in (I) (Fig. 1) is O,N,O0-chelated by the pyri-

dine-2,6-dicarboxylate (pydc2�) ligands and O,O0-chelated by

the nitrate anion, the nine coordinating atoms leading to a

tricapped trigonal prismatic environment at the metal centre.

The two chelating pydc2� ligands are approximately perpen-

dicular; their planes are aligned at an angle of 83.3 (1)�. The

triangles of the trigonal prism are nearly parallel, these being

aligned at an angle of 16.1 (3)�. The BiIII cation lies

0.357 (3) A out of the plane that is made up of the atoms that

cap the squares; this large deviation arises from the somewhat

anisobidendate chelating nature of the nitrate ion (Fig. 2).

Each pydc2� ligand uses one of its carboxylate O atoms to

bind to a water-coordinated phen-chelated CuII cation. The

two chelating ligands are nearly coplanar, aligned at an angle

of 3.2 (2)�. This coplanarity allows for the formation of a

research papers

Acta Cryst. (2015). C71, 100–102 Yue et al. � [BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]�2H2O 101

Table 2Hydrogen-bond geometry (A, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O1W—H11� � �O2 0.84 1.79 2.59 (1) 159O1W—H12� � �O2W 0.84 1.87 2.65 (1) 153O2W—H21� � �O3W 0.84 1.82 2.66 (2) 172O2W—H22� � �O3W iii 0.84 2.28 2.95 (2) 138O3W—H31� � �O9iv 0.84 1.92 2.76 (2) 178

Symmetry codes: (iii) �xþ 1;�yþ 2;�zþ 1; (iv) �x;�yþ 2;�zþ 1.

Figure 1The molecular structure of (I), showing the atom-numbering scheme.Displacement ellipsoids are drawn at the 30% probability level.[Symmetry codes: (i) �x, �y + 2, �z; (ii) x + 1, y, z.]

Figure 2The nine-coordinate geometry of the BiIII cation in (I). The symmetrycode is as in Fig. 1.

Figure 3The five-coordinate geometry of the CuII cation in (I). The symmetrycode is as in Fig. 1.

Page 3: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

water–carboxylate O—H� � �O hydrogen bond that stabilizes

the ribbon motif. The CuII cation shows a square-pyramidal

geometry (Fig. 3). The ribbon motif propagates along the

shortest axis of the triclinic unit cell, and the solvent water

molecules are hydrogen bonded to the same ribbon (Fig. 4 and

Table 2).

The title compound is the first heterometallic system having

a bismuth carboxylate unit connected to a CuII cation whose

structure has been determined by X-ray crystallography.

There is only one other example of a copper carboxylate that

is connected to a BiIII cation; this system is a mixed-metal

metal–organic framework (MOF) displaying a two-dimen-

sional network that possesses catalytic activity (Shi et al.,

2013).

This work was supported financially by the China Geolo-

gical Survey (grant No. 12120113069900) and the Chinese

National Natural Science Fund Project (grant No. 40672045).

References

Aghabozorg, H., Kazemi, S., Agah, A. A., Mirzaei, M. & Notash, B. (2011).Acta Cryst. E67, m360–m361.

Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). ActaCryst. E64, m374.

Aghabozorg, H., Ramezanipour, F., Soleimannejad, S., Sharif, M. A.,Shokrollahi, A., Shamsipur, M., Moghimi, A., Gharamaleki, J. A., Lippolis,V. & Blake, A. J. (2008). Pol. J. Chem. 82, 487–507.

Anjaneyulu, O. & Kumara Swamy, K. C. (2011). J. Chem. Sci. 123, 131–137.

Anjaneyulu, O., Prasad, T. K. & Swamy, K. C. K. (2010). Dalton Trans. 39,1935–1940.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

USA.Jeon, H. R., Lee, D. W. & Ok, K. M. (2012). J. Solid State Chem. 187,

83–88.Ranjbar, M., Aghabozorg, H. & Moghimi, A. (2003). Z. Kristallogr. New Cryst.

Struct. 218, 432–433.Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–

m1601.Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Sheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick,

G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg.Chem. 631, 3058–3065.

Shi, F.-N., Silva, A. R., Yang, T.-H. & Rocha, J. (2013). CrystEngComm, 15,3776–3779.

Soleimannejad, J. & Gholizadeh, S. (2012). Acta Cryst. E68, m952–m953.Stavila, V., Bulimestru, I., Gulea, A., Colson, A. C. & Whitmire, K. H. (2011).

Acta Cryst. C67, m65–m68.Stavila, V., Whitmire, K. H. & Rusakova, I. (2009). Chem. Mater. 21, 5456–

5465.Sushrutha, S. & Natarajan, S. (2013). Cryst. Growth Des. 13, 1743–1751.Thirumurugan, A., Li, W. & Cheetham, A. K. (2012). Dalton Trans. 41, 4126–

4134.Wang, H.-W., Liu, W.-L. & Feng, Y.-Q. (2011). Acta Cryst. E67, m1651.Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.Zevaco, T., Postel, M. & Benali-Cherif, N. (1992). Main Group Met. Chem. 15,

217–224.Zhang, X.-P., Tian, H.-R., Yan, G.-F., Su, Y., Feng, Y.-L. & Cheng, J.-W. (2013).

Dalton Trans. 42, 1088–1093.Zhang, X.-P., Wang, D.-G., Su, Y., Tian, H.-R., Lin, J. J., Feng, Y. L. & Cheng,

J. W. (2013). Dalton Trans. 42, 10384–10387.

research papers

102 Yue et al. � [BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]�2H2O Acta Cryst. (2015). C71, 100–102

Figure 4The linear ribbon motif in (I).

Page 4: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-1Acta Cryst. (2015). C71, 100-102

supporting information

Acta Cryst. (2015). C71, 100-102 [doi:10.1107/S2053229614028125]

A linear heterometallic bismuth–copper coordination polymer containing two

types of organic ligands

Zi-Long Yue, Yu-Quan Feng and Seik Weng Ng

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008);

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97

(Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication:

publCIF (Westrip, 2010).

catena-Poly[[[aqua(1,10-phenanthroline-κ2N,N′)copper(II)]-µ-pyridine-2,6-dicarboxylato-

κ4O2:O2′,N,O6-[(nitrato-κ2O,O′)bismuth(III)]-µ-pyridine-2,6-dicarboxylato-κ4<O2,N,O6:O6′]] dihydrate]

Crystal data

[BiCu(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2OMr = 898.99Triclinic, P1Hall symbol: -P 1a = 9.1376 (8) Åb = 12.1229 (11) Åc = 13.4135 (12) Åα = 86.649 (2)°β = 87.233 (2)°γ = 70.502 (1)°V = 1397.6 (2) Å3

Z = 2F(000) = 870Dx = 2.136 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 3108 reflectionsθ = 2.4–26.5°µ = 7.13 mm−1

T = 296 KPrism, blue0.26 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tubeGraphite monochromatorω scansAbsorption correction: multi-scan

(SADABS; Sheldrick, 1996)Tmin = 0.259, Tmax = 0.360

7803 measured reflections5656 independent reflections4523 reflections with I > 2σ(I)Rint = 0.036θmax = 26.5°, θmin = 1.8°h = −11→11k = −14→15l = −12→16

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.047wR(F2) = 0.119S = 1.015656 reflections424 parameters

0 restraintsPrimary atom site location: structure-invariant

direct methodsSecondary atom site location: difference Fourier

mapHydrogen site location: inferred from

neighbouring sites

Page 5: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-2Acta Cryst. (2015). C71, 100-102

H-atom parameters constrainedw = 1/[σ2(Fo

2) + (0.0611P)2] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max = 0.001Δρmax = 3.53 e Å−3

Δρmin = −2.65 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Bi1 −0.02065 (3) 0.85438 (3) 0.09838 (2) 0.02660 (12)Cu1 0.52249 (12) 0.60313 (9) 0.35139 (8) 0.0333 (3)O1 0.4276 (6) 0.5682 (5) 0.2330 (5) 0.0326 (14)O2 0.2141 (7) 0.7270 (6) 0.2166 (5) 0.0421 (16)O3 −0.1075 (7) 0.8068 (5) −0.0390 (5) 0.0378 (14)O4 −0.1050 (8) 0.6804 (7) −0.1528 (6) 0.0534 (19)O5 −0.3263 (7) 0.6866 (6) 0.2597 (5) 0.0459 (17)O6 −0.1276 (6) 0.7210 (5) 0.1796 (5) 0.0350 (15)O7 −0.1487 (6) 1.0661 (5) 0.0272 (5) 0.0375 (15)O8 −0.3633 (8) 1.2232 (6) 0.0187 (8) 0.079 (3)O9 −0.1198 (11) 0.9311 (10) 0.2849 (8) 0.090 (3)O10 0.0815 (14) 0.9761 (9) 0.2612 (9) 0.104 (4)O11 −0.0129 (14) 0.9629 (9) 0.4110 (9) 0.106 (4)O1W 0.3405 (7) 0.7382 (6) 0.3830 (5) 0.0435 (16)H11 0.2814 0.7490 0.3347 0.065*H12 0.3613 0.8003 0.3866 0.065*O2W 0.3191 (12) 0.9533 (9) 0.4277 (9) 0.105 (4)H21 0.3448 0.9559 0.4866 0.158*H22 0.3768 0.9764 0.3871 0.158*O3W 0.3984 (18) 0.9817 (17) 0.6101 (12) 0.191 (9)H31 0.3147 1.0094 0.6430 0.286*H32 0.4512 0.9167 0.6362 0.286*N1 0.1397 (7) 0.6530 (5) 0.0496 (5) 0.0259 (15)N2 −0.3049 (7) 0.9379 (6) 0.1230 (5) 0.0301 (16)N3 0.6818 (8) 0.4442 (7) 0.3510 (6) 0.0365 (18)N4 0.6224 (10) 0.6074 (7) 0.4842 (6) 0.043 (2)N5 −0.0189 (12) 0.9561 (7) 0.3127 (8) 0.052 (2)C1 0.3048 (9) 0.6303 (7) 0.1887 (7) 0.0317 (19)C2 0.2644 (9) 0.5831 (7) 0.0960 (6) 0.0278 (18)C3 0.3495 (10) 0.4738 (7) 0.0625 (7) 0.038 (2)H3 0.4351 0.4253 0.0968 0.046*C4 0.3037 (10) 0.4387 (8) −0.0237 (7) 0.039 (2)H4 0.3607 0.3664 −0.0488 0.047*C5 0.1731 (11) 0.5106 (8) −0.0730 (8) 0.040 (2)H5 0.1402 0.4873 −0.1303 0.047*C6 0.0933 (9) 0.6189 (7) −0.0332 (7) 0.0294 (19)C7 −0.0498 (10) 0.7049 (8) −0.0805 (7) 0.034 (2)C8 −0.2708 (10) 0.7488 (7) 0.2063 (6) 0.0293 (19)C9 −0.3752 (9) 0.8694 (7) 0.1709 (6) 0.0286 (18)C10 −0.5334 (10) 0.9061 (8) 0.1866 (8) 0.043 (2)H10 −0.5825 0.8555 0.2149 0.052*

Page 6: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-3Acta Cryst. (2015). C71, 100-102

C11 −0.6183 (10) 1.0219 (8) 0.1586 (8) 0.045 (2)H11A −0.7254 1.0498 0.1700 0.054*C12 −0.5427 (10) 1.0959 (8) 0.1137 (7) 0.039 (2)H12A −0.5968 1.1741 0.0974 0.047*C13 −0.3843 (9) 1.0483 (7) 0.0941 (7) 0.0320 (19)C14 −0.2916 (10) 1.1200 (8) 0.0438 (8) 0.042 (2)C15 0.7806 (10) 0.4208 (8) 0.4282 (7) 0.039 (2)C16 0.7088 (11) 0.3632 (8) 0.2819 (8) 0.043 (2)H16 0.6435 0.3774 0.2281 0.052*C17 0.8334 (13) 0.2577 (9) 0.2892 (10) 0.059 (3)H17 0.8496 0.2030 0.2404 0.070*C18 0.9311 (13) 0.2345 (10) 0.3673 (10) 0.065 (3)H18 1.0129 0.1639 0.3713 0.078*C19 0.9094 (11) 0.3160 (8) 0.4419 (8) 0.047 (3)C20 0.9999 (14) 0.3015 (12) 0.5285 (11) 0.071 (4)H20 1.0836 0.2329 0.5380 0.085*C21 0.9679 (13) 0.3845 (11) 0.5974 (9) 0.060 (3)H21A 1.0304 0.3729 0.6524 0.071*C22 0.8377 (13) 0.4900 (11) 0.5857 (8) 0.053 (3)C23 0.7957 (15) 0.5801 (13) 0.6539 (9) 0.067 (4)H23 0.8531 0.5725 0.7108 0.080*C24 0.6716 (16) 0.6783 (12) 0.6369 (10) 0.068 (4)H24 0.6435 0.7379 0.6820 0.082*C25 0.5843 (13) 0.6891 (10) 0.5484 (8) 0.053 (3)H25 0.4988 0.7559 0.5369 0.064*C26 0.7464 (11) 0.5079 (9) 0.5014 (7) 0.042 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Bi1 0.02385 (16) 0.02133 (16) 0.0358 (2) −0.00949 (11) −0.00466 (12) 0.00475 (12)Cu1 0.0334 (5) 0.0340 (6) 0.0361 (7) −0.0163 (5) −0.0091 (4) 0.0052 (5)O1 0.027 (3) 0.029 (3) 0.042 (4) −0.007 (2) −0.016 (3) −0.001 (3)O2 0.042 (4) 0.036 (4) 0.044 (4) −0.006 (3) −0.011 (3) −0.003 (3)O3 0.035 (3) 0.037 (4) 0.039 (4) −0.009 (3) −0.014 (3) 0.000 (3)O4 0.047 (4) 0.060 (5) 0.053 (5) −0.014 (3) −0.023 (3) −0.013 (4)O5 0.042 (4) 0.038 (4) 0.060 (5) −0.021 (3) 0.002 (3) 0.017 (3)O6 0.030 (3) 0.023 (3) 0.050 (4) −0.010 (2) 0.005 (3) 0.016 (3)O7 0.025 (3) 0.030 (3) 0.055 (4) −0.008 (2) 0.003 (3) 0.013 (3)O8 0.038 (4) 0.027 (4) 0.155 (9) 0.001 (3) 0.024 (5) 0.032 (4)O9 0.070 (6) 0.110 (8) 0.094 (8) −0.031 (6) −0.002 (5) −0.021 (6)O10 0.121 (9) 0.082 (7) 0.119 (10) −0.047 (7) 0.027 (7) −0.036 (7)O11 0.153 (11) 0.098 (8) 0.091 (9) −0.071 (8) −0.026 (7) −0.006 (6)O1W 0.040 (4) 0.045 (4) 0.048 (4) −0.016 (3) −0.006 (3) −0.008 (3)O2W 0.120 (9) 0.078 (7) 0.121 (9) −0.031 (6) −0.033 (7) −0.027 (6)O3W 0.157 (13) 0.28 (2) 0.187 (15) −0.129 (14) 0.037 (11) −0.155 (15)N1 0.026 (3) 0.021 (3) 0.033 (4) −0.011 (3) −0.007 (3) 0.006 (3)N2 0.025 (3) 0.020 (3) 0.041 (5) −0.004 (3) −0.002 (3) 0.007 (3)

Page 7: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-4Acta Cryst. (2015). C71, 100-102

N3 0.034 (4) 0.037 (4) 0.042 (5) −0.018 (3) −0.014 (3) 0.013 (4)N4 0.061 (5) 0.054 (5) 0.027 (5) −0.035 (4) −0.006 (4) 0.002 (4)N5 0.056 (6) 0.037 (5) 0.065 (7) −0.019 (4) 0.008 (5) −0.006 (4)C1 0.029 (4) 0.030 (5) 0.039 (5) −0.015 (4) −0.004 (4) 0.005 (4)C2 0.022 (4) 0.023 (4) 0.037 (5) −0.007 (3) −0.002 (3) 0.008 (3)C3 0.033 (5) 0.026 (5) 0.055 (7) −0.009 (4) −0.010 (4) 0.011 (4)C4 0.041 (5) 0.026 (4) 0.046 (6) −0.005 (4) −0.006 (4) −0.005 (4)C5 0.044 (5) 0.030 (5) 0.046 (6) −0.014 (4) 0.001 (4) −0.003 (4)C6 0.021 (4) 0.030 (4) 0.036 (5) −0.008 (3) 0.001 (3) 0.002 (4)C7 0.030 (4) 0.038 (5) 0.035 (6) −0.012 (4) −0.001 (4) 0.004 (4)C8 0.038 (5) 0.028 (4) 0.028 (5) −0.020 (4) −0.002 (4) 0.005 (3)C9 0.028 (4) 0.030 (4) 0.028 (5) −0.011 (3) 0.001 (3) −0.001 (3)C10 0.028 (4) 0.044 (6) 0.060 (7) −0.016 (4) −0.006 (4) 0.018 (5)C11 0.022 (4) 0.044 (6) 0.064 (7) −0.008 (4) −0.002 (4) 0.017 (5)C12 0.026 (4) 0.032 (5) 0.055 (6) −0.005 (4) 0.000 (4) 0.008 (4)C13 0.025 (4) 0.025 (4) 0.047 (6) −0.010 (3) −0.007 (4) 0.010 (4)C14 0.031 (5) 0.026 (5) 0.066 (7) −0.007 (4) −0.005 (4) 0.015 (4)C15 0.036 (5) 0.042 (5) 0.047 (6) −0.025 (4) −0.008 (4) 0.013 (4)C16 0.049 (6) 0.036 (5) 0.044 (6) −0.013 (4) −0.010 (5) 0.005 (4)C17 0.057 (7) 0.038 (6) 0.078 (9) −0.010 (5) −0.013 (6) 0.000 (6)C18 0.052 (6) 0.038 (6) 0.101 (10) −0.010 (5) −0.024 (6) 0.022 (6)C19 0.047 (6) 0.036 (5) 0.063 (7) −0.023 (4) −0.013 (5) 0.019 (5)C20 0.056 (7) 0.076 (9) 0.089 (10) −0.037 (6) −0.045 (7) 0.053 (8)C21 0.061 (7) 0.071 (8) 0.061 (8) −0.045 (7) −0.039 (6) 0.037 (7)C22 0.065 (7) 0.073 (8) 0.039 (7) −0.048 (6) −0.003 (5) 0.010 (6)C23 0.074 (8) 0.101 (11) 0.046 (8) −0.059 (8) −0.020 (6) 0.022 (7)C24 0.083 (9) 0.079 (9) 0.062 (9) −0.052 (8) 0.001 (7) −0.014 (7)C25 0.062 (7) 0.052 (7) 0.049 (7) −0.023 (5) −0.007 (5) −0.003 (5)C26 0.043 (5) 0.055 (6) 0.038 (6) −0.031 (5) −0.014 (4) 0.024 (5)

Geometric parameters (Å, º)

Bi1—O2 2.708 (6) N4—C26 1.369 (13)Bi1—O3 2.220 (6) C1—C2 1.510 (13)Bi1—O6 2.346 (5) C2—C3 1.382 (12)Bi1—O9 2.727 (10) C3—C4 1.384 (14)Bi1—O7 2.586 (6) C3—H3 0.9300Bi1—O7i 2.591 (5) C4—C5 1.392 (13)Bi1—O10 3.052 (11) C4—H4 0.9300Bi1—N1 2.498 (6) C5—C6 1.395 (12)Bi1—N2 2.466 (6) C5—H5 0.9300Cu1—O1 1.977 (6) C6—C7 1.514 (12)Cu1—O5ii 2.251 (6) C8—C9 1.518 (12)Cu1—O1W 1.955 (6) C9—C10 1.372 (11)Cu1—N3 1.990 (8) C10—C11 1.397 (13)Cu1—N4 2.051 (8) C10—H10 0.9300O1—C1 1.276 (10) C11—C12 1.398 (12)O2—C1 1.254 (10) C11—H11A 0.9300

Page 8: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-5Acta Cryst. (2015). C71, 100-102

O3—C7 1.315 (11) C12—C13 1.386 (11)O4—C7 1.210 (11) C12—H12A 0.9300O5—C8 1.223 (9) C13—C14 1.515 (11)O5—Cu1iii 2.251 (6) C15—C19 1.425 (13)O6—C8 1.277 (9) C15—C26 1.432 (15)O7—C14 1.265 (10) C16—C17 1.402 (14)O7—Bi1i 2.591 (5) C16—H16 0.9300O8—C14 1.239 (11) C17—C18 1.364 (16)O9—N5 1.146 (12) C17—H17 0.9300O10—N5 1.202 (13) C18—C19 1.408 (17)O11—N5 1.331 (13) C18—H18 0.9300O1W—H11 0.8400 C19—C20 1.426 (16)O1W—H12 0.8400 C20—C21 1.356 (19)O2W—H21 0.8400 C20—H20 0.9300O2W—H22 0.8399 C21—C22 1.433 (16)O3W—H31 0.8400 C21—H21A 0.9300O3W—H32 0.8400 C22—C26 1.401 (14)N1—C2 1.328 (10) C22—C23 1.407 (18)N1—C6 1.342 (11) C23—C24 1.359 (18)N2—C9 1.329 (10) C23—H23 0.9300N2—C13 1.337 (10) C24—C25 1.438 (17)N3—C16 1.344 (13) C24—H24 0.9300N3—C15 1.361 (12) C25—H25 0.9300N4—C25 1.298 (13)

O3—Bi1—O6 84.5 (2) O2—C1—C2 117.4 (7)O3—Bi1—N2 77.4 (2) O1—C1—C2 117.4 (7)O6—Bi1—N2 67.5 (2) N1—C2—C3 122.2 (8)O3—Bi1—N1 68.9 (2) N1—C2—C1 115.4 (7)O6—Bi1—N1 71.9 (2) C3—C2—C1 122.4 (8)N2—Bi1—N1 128.8 (2) C2—C3—C4 118.0 (8)O3—Bi1—O7 83.5 (2) C2—C3—H3 121.0O6—Bi1—O7 131.46 (17) C4—C3—H3 121.0N2—Bi1—O7 64.00 (19) C3—C4—C5 120.5 (8)N1—Bi1—O7 142.7 (2) C3—C4—H4 119.7O3—Bi1—O7i 83.5 (2) C5—C4—H4 119.7O6—Bi1—O7i 159.0 (2) C4—C5—C6 117.5 (9)N2—Bi1—O7i 126.0 (2) C4—C5—H5 121.3N1—Bi1—O7i 87.68 (19) C6—C5—H5 121.3O7—Bi1—O7i 64.0 (2) N1—C6—C5 121.6 (8)O3—Bi1—O2 130.1 (2) N1—C6—C7 116.0 (7)O6—Bi1—O2 78.5 (2) C5—C6—C7 122.4 (8)N2—Bi1—O2 134.1 (2) O4—C7—O3 123.0 (8)N1—Bi1—O2 61.3 (2) O4—C7—C6 121.1 (8)O7—Bi1—O2 140.6 (2) O3—C7—C6 116.0 (8)O7i—Bi1—O2 96.25 (19) O5—C8—O6 124.4 (8)O3—Bi1—O9 140.9 (3) O5—C8—C9 119.2 (7)O6—Bi1—O9 72.3 (3) O6—C8—C9 116.3 (6)

Page 9: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-6Acta Cryst. (2015). C71, 100-102

N2—Bi1—O9 65.0 (3) N2—C9—C10 121.5 (8)N1—Bi1—O9 128.4 (3) N2—C9—C8 116.2 (7)O7—Bi1—O9 88.8 (3) C10—C9—C8 122.2 (7)O7i—Bi1—O9 126.7 (3) C9—C10—C11 118.1 (8)O2—Bi1—O9 76.1 (3) C9—C10—H10 121.0O3—Bi1—O10 166.4 (3) C11—C10—H10 121.0O6—Bi1—O10 106.8 (3) C10—C11—C12 120.1 (8)N2—Bi1—O10 99.8 (3) C10—C11—H11A 119.9N1—Bi1—O10 121.2 (3) C12—C11—H11A 119.9O7—Bi1—O10 83.4 (3) C13—C12—C11 117.6 (8)O7i—Bi1—O10 87.7 (3) C13—C12—H12A 121.2O2—Bi1—O10 61.1 (3) C11—C12—H12A 121.2O9—Bi1—O10 42.0 (3) N2—C13—C12 121.2 (7)O1W—Cu1—O1 93.2 (3) N2—C13—C14 116.8 (7)O1W—Cu1—N3 163.6 (3) C12—C13—C14 121.9 (7)O1—Cu1—N3 90.3 (3) O8—C14—O7 126.3 (8)O1W—Cu1—N4 92.3 (3) O8—C14—C13 117.4 (8)O1—Cu1—N4 168.9 (3) O7—C14—C13 116.2 (7)N3—Cu1—N4 81.8 (3) N3—C15—C19 124.8 (10)O1W—Cu1—O5ii 102.3 (3) N3—C15—C26 116.1 (9)O1—Cu1—O5ii 93.6 (3) C19—C15—C26 119.0 (9)N3—Cu1—O5ii 93.5 (3) N3—C16—C17 121.3 (10)N4—Cu1—O5ii 94.7 (3) N3—C16—H16 119.3C1—O1—Cu1 129.2 (6) C17—C16—H16 119.3C1—O2—Bi1 119.6 (6) C18—C17—C16 120.6 (12)C7—O3—Bi1 124.9 (5) C18—C17—H17 119.7C8—O5—Cu1iii 167.6 (6) C16—C17—H17 119.7C8—O6—Bi1 122.8 (5) C17—C18—C19 120.8 (10)C14—O7—Bi1 120.5 (5) C17—C18—H18 119.6C14—O7—Bi1i 122.8 (5) C19—C18—H18 119.6Bi1—O7—Bi1i 116.0 (2) C18—C19—C15 114.8 (9)N5—O9—Bi1 103.6 (8) C18—C19—C20 126.5 (11)N5—O10—Bi1 85.7 (8) C15—C19—C20 118.7 (11)Cu1—O1W—H11 106.0 C21—C20—C19 122.1 (12)Cu1—O1W—H12 113.1 C21—C20—H20 118.9H11—O1W—H12 106.3 C19—C20—H20 118.9H21—O2W—H22 110.3 C20—C21—C22 120.1 (10)H31—O3W—H32 109.9 C20—C21—H21A 120.0C2—N1—C6 120.1 (7) C22—C21—H21A 120.0C2—N1—Bi1 125.8 (6) C26—C22—C23 116.6 (11)C6—N1—Bi1 114.0 (5) C26—C22—C21 119.5 (11)C9—N2—C13 121.2 (7) C23—C22—C21 123.8 (11)C9—N2—Bi1 116.7 (5) C24—C23—C22 120.3 (11)C13—N2—Bi1 122.0 (5) C24—C23—H23 119.8C16—N3—C15 117.7 (8) C22—C23—H23 119.8C16—N3—Cu1 128.4 (6) C23—C24—C25 119.2 (12)C15—N3—Cu1 113.8 (7) C23—C24—H24 120.4C25—N4—C26 119.6 (9) C25—C24—H24 120.4

Page 10: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-7Acta Cryst. (2015). C71, 100-102

C25—N4—Cu1 129.1 (8) N4—C25—C24 121.4 (11)C26—N4—Cu1 111.3 (7) N4—C25—H25 119.3O9—N5—O10 126.0 (13) C24—C25—H25 119.3O9—N5—O11 116.6 (10) N4—C26—C22 122.9 (10)O10—N5—O11 117.5 (12) N4—C26—C15 116.7 (8)O2—C1—O1 125.2 (8) C22—C26—C15 120.5 (10)

O1W—Cu1—O1—C1 11.6 (7) O1W—Cu1—N4—C26 168.0 (6)N3—Cu1—O1—C1 175.5 (7) O1—Cu1—N4—C26 48.5 (18)N4—Cu1—O1—C1 131.0 (15) N3—Cu1—N4—C26 3.4 (6)O5ii—Cu1—O1—C1 −90.9 (7) O5ii—Cu1—N4—C26 −89.5 (6)O3—Bi1—O2—C1 9.5 (7) Bi1—O9—N5—O10 19.3 (14)O6—Bi1—O2—C1 82.1 (6) Bi1—O9—N5—O11 −160.3 (8)N2—Bi1—O2—C1 124.3 (6) Bi1—O10—N5—O9 −16.8 (13)N1—Bi1—O2—C1 6.6 (6) Bi1—O10—N5—O11 162.8 (9)O7—Bi1—O2—C1 −133.0 (6) Bi1—O2—C1—O1 172.9 (6)O7i—Bi1—O2—C1 −77.3 (6) Bi1—O2—C1—C2 −7.9 (10)O9—Bi1—O2—C1 156.4 (7) Cu1—O1—C1—O2 −3.8 (12)O10—Bi1—O2—C1 −161.1 (7) Cu1—O1—C1—C2 177.1 (5)O6—Bi1—O3—C7 −70.2 (7) C6—N1—C2—C3 −0.6 (11)N2—Bi1—O3—C7 −138.3 (7) Bi1—N1—C2—C3 −178.1 (6)N1—Bi1—O3—C7 2.5 (6) C6—N1—C2—C1 −179.6 (7)O7—Bi1—O3—C7 156.9 (7) Bi1—N1—C2—C1 2.9 (9)O7i—Bi1—O3—C7 92.5 (7) O2—C1—C2—N1 3.8 (11)O2—Bi1—O3—C7 −0.2 (8) O1—C1—C2—N1 −177.0 (7)O9—Bi1—O3—C7 −123.0 (7) O2—C1—C2—C3 −175.2 (8)O10—Bi1—O3—C7 142.6 (11) O1—C1—C2—C3 4.0 (12)O3—Bi1—O6—C8 −83.9 (7) N1—C2—C3—C4 1.5 (12)N2—Bi1—O6—C8 −5.3 (6) C1—C2—C3—C4 −179.6 (8)N1—Bi1—O6—C8 −153.5 (7) C2—C3—C4—C5 −1.7 (13)O7—Bi1—O6—C8 −7.6 (8) C3—C4—C5—C6 1.1 (13)O7i—Bi1—O6—C8 −139.4 (7) C2—N1—C6—C5 0.0 (12)O2—Bi1—O6—C8 143.2 (7) Bi1—N1—C6—C5 177.7 (6)O9—Bi1—O6—C8 64.3 (7) C2—N1—C6—C7 −179.9 (7)O10—Bi1—O6—C8 88.5 (7) Bi1—N1—C6—C7 −2.1 (9)O3—Bi1—O7—C14 85.3 (8) C4—C5—C6—N1 −0.2 (12)O6—Bi1—O7—C14 8.6 (9) C4—C5—C6—C7 179.7 (8)N2—Bi1—O7—C14 6.3 (7) Bi1—O3—C7—O4 176.4 (7)N1—Bi1—O7—C14 127.0 (7) Bi1—O3—C7—C6 −4.5 (10)O7i—Bi1—O7—C14 171.3 (9) N1—C6—C7—O4 −176.7 (8)O2—Bi1—O7—C14 −122.5 (7) C5—C6—C7—O4 3.4 (13)O9—Bi1—O7—C14 −56.3 (8) N1—C6—C7—O3 4.2 (11)O10—Bi1—O7—C14 −98.0 (8) C5—C6—C7—O3 −175.7 (8)O3—Bi1—O7—Bi1i −86.0 (3) Cu1iii—O5—C8—O6 −176 (3)O6—Bi1—O7—Bi1i −162.7 (2) Cu1iii—O5—C8—C9 6 (4)N2—Bi1—O7—Bi1i −165.0 (4) Bi1—O6—C8—O5 −170.2 (7)N1—Bi1—O7—Bi1i −44.3 (5) Bi1—O6—C8—C9 7.8 (10)O7i—Bi1—O7—Bi1i 0.0 C13—N2—C9—C10 4.7 (14)

Page 11: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-8Acta Cryst. (2015). C71, 100-102

O2—Bi1—O7—Bi1i 66.2 (4) Bi1—N2—C9—C10 −178.4 (7)O9—Bi1—O7—Bi1i 132.4 (3) C13—N2—C9—C8 −175.8 (8)O10—Bi1—O7—Bi1i 90.7 (3) Bi1—N2—C9—C8 1.1 (10)O3—Bi1—O9—N5 −168.6 (7) O5—C8—C9—N2 172.4 (8)O6—Bi1—O9—N5 135.0 (9) O6—C8—C9—N2 −5.6 (12)N2—Bi1—O9—N5 −152.1 (9) O5—C8—C9—C10 −8.0 (14)N1—Bi1—O9—N5 87.1 (9) O6—C8—C9—C10 173.9 (9)O7—Bi1—O9—N5 −90.4 (8) N2—C9—C10—C11 −5.7 (15)O7i—Bi1—O9—N5 −34.6 (10) C8—C9—C10—C11 174.8 (9)O2—Bi1—O9—N5 52.8 (8) C9—C10—C11—C12 1.7 (16)O10—Bi1—O9—N5 −9.1 (7) C10—C11—C12—C13 3.0 (16)O3—Bi1—O10—N5 118.5 (11) C9—N2—C13—C12 0.4 (14)O6—Bi1—O10—N5 −27.3 (8) Bi1—N2—C13—C12 −176.3 (7)N2—Bi1—O10—N5 42.0 (8) C9—N2—C13—C14 177.6 (8)N1—Bi1—O10—N5 −105.9 (7) Bi1—N2—C13—C14 0.9 (11)O7—Bi1—O10—N5 104.1 (8) C11—C12—C13—N2 −4.2 (15)O7i—Bi1—O10—N5 168.2 (8) C11—C12—C13—C14 178.8 (9)O2—Bi1—O10—N5 −93.4 (8) Bi1—O7—C14—O8 175.5 (10)O9—Bi1—O10—N5 8.4 (7) Bi1i—O7—C14—O8 −13.8 (16)O3—Bi1—N1—C2 177.7 (7) Bi1—O7—C14—C13 −8.1 (12)O6—Bi1—N1—C2 −91.3 (6) Bi1i—O7—C14—C13 162.5 (6)N2—Bi1—N1—C2 −130.0 (6) N2—C13—C14—O8 −178.4 (10)O7—Bi1—N1—C2 132.7 (6) C12—C13—C14—O8 −1.3 (16)O7i—Bi1—N1—C2 93.7 (6) N2—C13—C14—O7 4.9 (14)O2—Bi1—N1—C2 −4.7 (6) C12—C13—C14—O7 −177.9 (9)O9—Bi1—N1—C2 −43.2 (7) C16—N3—C15—C19 −1.0 (13)O10—Bi1—N1—C2 7.8 (7) Cu1—N3—C15—C19 −176.6 (7)O3—Bi1—N1—C6 0.1 (5) C16—N3—C15—C26 −178.7 (8)O6—Bi1—N1—C6 91.1 (5) Cu1—N3—C15—C26 5.6 (10)N2—Bi1—N1—C6 52.4 (6) C15—N3—C16—C17 0.6 (14)O7—Bi1—N1—C6 −44.9 (7) Cu1—N3—C16—C17 175.5 (7)O7i—Bi1—N1—C6 −83.9 (5) N3—C16—C17—C18 0.0 (17)O2—Bi1—N1—C6 177.7 (6) C16—C17—C18—C19 −0.3 (18)O9—Bi1—N1—C6 139.2 (5) C17—C18—C19—C15 −0.1 (16)O10—Bi1—N1—C6 −169.8 (5) C17—C18—C19—C20 178.2 (11)O3—Bi1—N2—C9 91.0 (6) N3—C15—C19—C18 0.7 (14)O6—Bi1—N2—C9 1.8 (6) C26—C15—C19—C18 178.4 (9)N1—Bi1—N2—C9 41.8 (7) N3—C15—C19—C20 −177.7 (9)O7—Bi1—N2—C9 179.9 (7) C26—C15—C19—C20 0.0 (13)O7i—Bi1—N2—C9 163.2 (6) C18—C19—C20—C21 −178.6 (11)O2—Bi1—N2—C9 −43.7 (7) C15—C19—C20—C21 −0.5 (16)O9—Bi1—N2—C9 −78.4 (7) C19—C20—C21—C22 1.3 (17)O10—Bi1—N2—C9 −102.5 (6) C20—C21—C22—C26 −1.6 (15)O3—Bi1—N2—C13 −92.2 (7) C20—C21—C22—C23 179.6 (10)O6—Bi1—N2—C13 178.6 (7) C26—C22—C23—C24 0.4 (15)N1—Bi1—N2—C13 −141.4 (6) C21—C22—C23—C24 179.2 (10)O7—Bi1—N2—C13 −3.3 (6) C22—C23—C24—C25 −0.2 (17)O7i—Bi1—N2—C13 −20.0 (8) C26—N4—C25—C24 1.2 (15)

Page 12: A linear heterometallic bismuth-copper coordination ... · A linear heterometallic bismuth– copper coordination polymer containing two types of organic ligands Zi-Long Yue,a,b Yu-Quan

supporting information

sup-9Acta Cryst. (2015). C71, 100-102

O2—Bi1—N2—C13 133.2 (7) Cu1—N4—C25—C24 −178.0 (8)O9—Bi1—N2—C13 98.4 (7) C23—C24—C25—N4 −0.6 (17)O10—Bi1—N2—C13 74.3 (7) C25—N4—C26—C22 −1.0 (14)O1W—Cu1—N3—C16 110.1 (12) Cu1—N4—C26—C22 178.3 (7)O1—Cu1—N3—C16 7.8 (8) C25—N4—C26—C15 179.2 (9)N4—Cu1—N3—C16 179.9 (8) Cu1—N4—C26—C15 −1.5 (10)O5ii—Cu1—N3—C16 −85.8 (8) C23—C22—C26—N4 0.3 (14)O1W—Cu1—N3—C15 −74.7 (12) C21—C22—C26—N4 −178.6 (8)O1—Cu1—N3—C15 −177.1 (6) C23—C22—C26—C15 180.0 (9)N4—Cu1—N3—C15 −4.9 (6) C21—C22—C26—C15 1.1 (13)O5ii—Cu1—N3—C15 89.3 (6) N3—C15—C26—N4 −2.7 (12)O1W—Cu1—N4—C25 −12.7 (9) C19—C15—C26—N4 179.4 (8)O1—Cu1—N4—C25 −132.2 (14) N3—C15—C26—C22 177.5 (8)N3—Cu1—N4—C25 −177.3 (9) C19—C15—C26—C22 −0.3 (13)O5ii—Cu1—N4—C25 89.8 (9)

Symmetry codes: (i) −x, −y+2, −z; (ii) x+1, y, z; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H11···O2 0.84 1.79 2.59 (1) 159O1W—H12···O2W 0.84 1.87 2.65 (1) 153O2W—H21···O3W 0.84 1.82 2.66 (2) 172O2W—H22···O3Wiv 0.84 2.28 2.95 (2) 138O3W—H31···O9v 0.84 1.92 2.76 (2) 178

Symmetry codes: (iv) −x+1, −y+2, −z+1; (v) −x, −y+2, −z+1.