28
1 1 Yi-Fang Wang Institute of High Energy Physics A high luminosity experiment at tau-charm region --- BEPCII/BESIII upgrade program Beijing e + e - collider(BEPC) consists of Linac, Storage Ring, Spectrometer(BES) and Synchrotron Radiation Facility(BSRF) It started construction in 1984 and completed in 1988

A high luminosity experiment at tau-charm region · 1 1 Yi-Fang Wang Institute of High Energy Physics A high luminosity experiment at tau-charm region --- BEPCII/BESIII upgrade program

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    1

    Yi-Fang Wang

    Institute of High Energy Physics

    A high luminosity experiment at tau-charm region

    --- BEPCII/BESIII upgrade program

    Beijing e+e- collider(BEPC) consists of Linac, Storage Ring, Spectrometer(BES) and Synchrotron Radiation Facility(BSRF)It started construction in 1984 and completed in 1988

  • 2

    3

    Beam Energy: 1 Beam Energy: 1 –– 2.8 2.8 GeVGeV LuminosityLuminosity:: 10103131cmcm--22ss--11 @ 1.89 @ 1.89 GeVGeV

    ColliderCollider physicsphysics::5 months5 months;;SRSR::3 months3 months;;machine studymachine study::2 months2 months

    4

    Korea (3)Korea University

    Seoul National University Chonbuk National University

    Japan (4)

    Nikow UniversityTokyo Institute of Technology

    Miyazaki UniversityKEK

    USA (4)University of Hawaii

    University of Texas at DallasColorado State University

    Stanford Linear Accelerator Center

    UK (1)Queen Mary University

    China (15)IHEP of CAS

    Univ. of Sci. and Tech. of ChinaShandong Univ., Zhejiang Univ.

    Huazhong Normal Univ.Shanghai Jiaotong Univ. Peking Univ., CCAST

    Wuhan Univ., Nankai Univ.Henan Normal Univ.

    Hunan Univ., Liaoning Univ. Tsinghua Univ., Sichuan Univ.

  • 3

    5

    BESII Detector BESII Detector ((19951995--1997 upgrade1997 upgrade))

    VC: σxy = 100 µm TOF: σT = 180 ps µ counter: σrφ= 3 cm MDC: σxy = 200 µm BSC: ∆E/√E= 22 % σz = 5.5 cm

    σdE/dx= 8.4 % σφ = 7.9 mr B field: 0.4 T∆p/p=1.8√(1+p2) σz = 2.3 cm Dead time/event: 10 ms

    6

    Main results: R value measurement

    1

    2

    3

    4

    5

    6

    2 3 4 5

    (a)

    Ecm (GeV)

    R V

    alu

    e

    Gamma2MarkIpluto

    BESII (1998)BESII (1999)

    2

    3

    4

    5

    3.8 4 4.2 4.4 4.6

    (b)

    Ecm (GeV)

    R V

    alu

    e

    )ee()hadronsee(R −+−+

    −+

    →→

    =µµσ

    σ

    Before BES, the most probable

    mass of Higgs is about 60 GeV

  • 4

    7

    Tau mass measurement

    mτ = 1776.9 ±0.2 MeV+0.4

    -0.5

    BES results reduced the error

    by a factor 8, and shifted the

    central value by 3σ, improved

    lepton universality(2.4σ 1.5σ)

    8

    An enhancement near pp threshold

    M=1859 MeV/c2

    Γ < 30 MeV/c2 (90% CL)

    J/ψ γpp

    M(pp)-2mp (GeV)0 0.1 0.2 0.3

    3-body phase spaceacceptance

    χ2/dof=56/56

    fitted peak location

    acceptance weighted BW +3 +5

    −10 −25

    BESII

  • 5

    9

    The need for upgrade• Interesting physics limited by statistics:

    glueball/hybrid searches, CKM matrix elements DDbar mixing, ρπ puzzle, non-pQCD…

    • Systematic error is also large due to poor resolution

    • Detector is aging• Multi-bunch mode

    10

    On Feb. 10, 2003, the chinese government, the state council, approved officially the BEPCII/BESIII u p g r a d e p r o j e c t

  • 6

    11

    BEPC II Storage ringBEPC II Storage ring:: Large angle, double-ring

    e

    RFRF SR

    e

    IP

    22 m

    rad

    2. 5m8ns

    1.5cm

    0 . 1 c m

    12

    Double ring installation Double ring installation –– Wood modelWood model

    No spacing problems No spacing problems

  • 7

    13

    BEPCII Design goalBEPCII Design goal

    Energy range 1 – 2 GeV

    Optimum energy 1.89 GeV

    Luminosity 1 x 10 33 cm-2s-1 @ 1.89 GeV

    Injection Full energy injection: 1.55 − 1.89 GeV Positron injection speed > 50 mA/min

    Synchrotron mode 250 mA @ 2.5 GeV

    14

    BEPCII BEPCII main parametersmain parameters

    1.0Luminosity(1033cm-2s-1) L04.5×1012Particle number Nt

    0.04/0.04Beam-beam parameter ξx/ ξy9.8Bunch current Ib(mA)

    2.4Bunch spacing Sb(m) 93Bunch number Nb

    0.435Piwinski angle Φ(rad)110SR Power P(kW)

    ±11Crossing angle φ(mrad) 0.91Total current/beam I(A)

    1.3Natural bunch length σz0(cm) 25/25/12.5Damping time τx/τy/τz(ms) -11.9/-25.4Chromaticitiesν’x/ν’y121Energy loss/turn U0(keV)

    6.57/7.6/0.034Tunes νx/νy/νz1.5RF Voltage Vrf(MV)

    1/0.015β*x /β*y(m) 499.8RF frequency frf(MHz)

    0.0235Momentum compact αp396Harmonic number h

    144/2.2Emittance εx/εy(nm)237.53Circumference C(m)

    5.16Energy spread(10-4) σe1.89Energy E(GeV)

  • 8

    15The BESIII The BESIII DetectorDetector

    工工

    16

    Main drift chamber• Inner diameter: 63mm; Outer diameter: 810mm; length: 2400 mm• Inner cylinder: 1 mm Carbon fiber, outer cylinder: 10 mm CF

    with 8 windows• End flange: 18 mm thick Al 7075 ( 6 steps) • 7000 Signal wires : 25(3% Rhenium) µm gold-plated tungsten • 22000 Field wires: 110 µm gold-plated Aluminum • Small cell: inner---6*6 mm2, outer--- 8.2 *8.2 mm2,• Gas: He + C3H8 (60/40)• Momentum resolution@1GeV:

    • dE/dX resolution: 6-7%.

    %37.0%32.0 ⊕=t

    P

    Pt

    σ

  • 9

    17

    85μm

    18

    EMC: CsI(Tl) crystals• 6300 crystals, (5.2x 5.2 – 6.4 x 6.4) x 28cm3

    • PD readout, noise ~1100 ENC• Energy resolution: 2.5%@1GeV • Position resolution: 5mm@1GeV• Tiled angle: theta ~ 1-3o, phi ~ 1.5o

    • Minimum materials between crystals

  • 10

    19

    no partition wall Mechanical support structure

    20

  • 11

    21

    Super-conducting magnet• Al stabilized NbTi/Cu conductor from Hitachi• 1.0 T,

  • 12

    23

    Test beam resultsEff. Atten. Length(cm):

    East WestBC404-5cm 333.3 333.3BC408-5cm 243.9 227.2BC408-4cm 196.1 178.5BC408-6cm 250 227.3

    BC408 5cm

    y = 5225.5e0.0041x

    y = 3937.3e-0.0044x

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    -100 -50 0 50 100 150

    Z in cm

    A

    A1

    A2

    指数 (A1)

    指数 (A2)

    BC404 5cm

    y = 4302.6e-0.003x

    y = 5987.1e0.003x

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    -100 -50 0 50 100 150

    Z in cm

    A

    A1

    A2

    指数 (A2)

    指数 (A1)

    BC408 4cm

    y = 4951.8e0.0051x

    y = 3363.2e-0.0056x

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    -100 -50 0 50 100 150

    Z in cm

    A

    A1

    A2

    指数 (A1)

    指数 (A2)

    BC408 6

    y = 4396.8e-0.0044x

    y = 4856.8e0.004x

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    -100 -50 0 50 100 150

    A1

    A2

    指数 (A2)

    指数 (A1)

    24

    0

    50

    100

    150

    200

    250

    300

    350

    50 100 150 200 250 300

    resolution(ps)

    80

    100

    120

    140

    160

    180

    200

    60 100 140 180 220 260 300Z

    resolution(ps)

    BC408 5*6 BC404 5*6 BC408 4*6 BC408 6*6

    BC404-5cm

    Errors from T0

    and electronics

    not subtracted

    BC408

  • 13

    25

    µ system : RPC• 9 layer, 2000 m2

    • Bakelites and glass, no lineseed oil • 4cm strips, 10000 channels• Tens of prototypes (up to 1*0.6 m2 )• Noise less than 0.2 Hz/cm2

    26

    • Bakelites and glass, no lineseed oil • 4cm strips, 10000 channels• Tens of prototypes (up to 1*0.6 m2 )• Noise less than 0.2 Hz/cm2

    RPC Det ect i on Ef f i ci ency

    0. 00%

    10. 00%

    20. 00%

    30. 00%

    40. 00%

    50. 00%

    60. 00%

    70. 00%

    80. 00%

    90. 00%

    100. 00%

    5500 6000 6500 7000 7500 8000 8500 9000

    Hi gh Vol t age ( V )

    Det

    ectio

    n Ef

    ficie

    ncy

    0r ad

    5000r ad

    10000r ad

    20000r ad

    50000r ad

    100000r ad

    RPC Count i ng Rat e

    0

    0. 02

    0. 04

    0. 06

    0. 08

    0. 1

    0. 12

    0. 14

    0. 16

    0. 18

    0. 2

    0. 22

    0. 24

    5500 6000 6500 7000 7500 8000 8500 9000

    Hi gh Vol t age ( V )

    Coun

    ting

    Rat

    e (H

    z/cm

    2 )

    0r ad

    5000r ad

    10000r ad20000r ad

    50000r ad

    100000r ad

    RPC Count i ng Rat e Rever si on

    0

    0. 02

    0. 04

    0. 06

    0. 08

    0. 1

    0. 12

    0. 14

    0. 16

    0. 18

    0. 2

    0. 22

    0. 24

    5500 6000 6500 7000 7500 8000 8500 9000Hi gh Vol t age ( V )

    Coun

    ting

    Rate

    (µA

    /m2 )

    0 hour 20 hour s 30 hour s 50 hour s80 hour s 190 hour s 320 hour s 0r ad

  • 14

    27

    Other systems• Electronics design have been almost finished, several

    prototypes have been successfully tested• Trigger system largely based on FPGA technology have been

    designed, prototypes underway• DAQ system based on VME/PowerPC and PC farm have

    been designed, mini-version setup, software underway• Offline computing environment based on a large scale PC

    farm is under study• MC based on GEANT4, first reconstruction framework

    released, sub-detector reconstruction code underway

    28

    Beam background: a serious issue1.89 GeV @ 1 Amp

    All Cu surfaces

  • 15

    29

    Direct SR photons on Be pipe/LUMI/MDC elec.

    • Normal case on Be pipe: 1.6 W, worst case 20 W• All have Ec < 1 KeV, No masks possible• Dose < 100 rad/year@MDC electronics• Rate < 20 KHz/wire

    30

    Bremsstrahlung

    Coulomb

    A total of 6 pairs of masks

    [email protected], 5nT vacuum

  • 16

    31

    Beam-Gas background

    • Total dose near the interaction region ~ 150 MeV/µs• < 20 rad/year @ CsI crystals• < 20 rad/year @ MDC electronics• < 1 rad/year @ TOF • OK for safety

    MDC < 20 KHz/wire TOF < 5 KHz/ch @E>500 KeVEMC < 2 KHz/ch @E>100 KeV

    32

    Schedule• 7/2004: BESII detector shutdown • 11/2004: supporting structure/york installation• 3/2005: muon chamber installation• 5/2005: magnet installation• 10/2005: magnetic field mapping• 2/2006: EMC installation• 3/2006: MDC/TOF installation• 6/2006: Cosmic-ray run• 9/2006: BESIII detector in place• 12/2006: tuning of detector/machine

  • 17

    33

    Physics at BEPCII/BESIII

    • Precision measurement of CKM matrix• Precision test of Standard Model• QCD and hadron production• Light hadron spectroscopy• Charmonium physics• Search for new physics

    34

    We are unique

    • In a regime of transition between pQCD and non-pQCD

    • Provide calibrations and tests for LQCD• Rich spectra of light hadrons for Quark model

    test• Threshold production of tau-charm

  • 18

    35

    Event statistics at BESIII

    1.2×1071.03.67τ

    2.0×1060.64.14Ds

    1.0×1060.64.03Ds

    2.5×1071.03.77D

    3.0 ×1091.03.686ψ’

    1.0×10100.63.097J/ψ

    Events/yearLuminosity(1033 cm–2s –1)

    Energy (GeV)

    Physics Channel

    *CLEO took 10 nb D production cross section while we took 5 nb

    36

    Precision measurement of CKM:Branching rations of charm mesons

    • Vcd /Vcs: Leptonic and semi-leptonic decays • Vcb: Hadronic decays• Vtd /Vts: fD and fDs from Leptonic decays • Vub: Form factors of semi-leptonic

    decays • Unitarity Test of CKM matrix

  • 19

    37

    Semi-leptonic decays

    Vcs

    Vcd

    Vcs

    CKM Elements

    3.7%1.6%

    6.7%8.5%

    44.3%D0 π-µ+νµ1.6%

    62.2%0.4%

    D0 π-e+νe

    30.5%D0 K-µ+νµ0.6 %

    54.6%3.4%

    D0 K-e+νe

    Statistics Errors

    DetectionEfficiency

    Input

    Br(%)

    Decay Mode

    µ++ νµ→ 0KD

    e0eKD ν→ ++

    ∆Vcs /Vcs = 1.6%,

    ∆Vcd /Vcd = 1.8% Emissing-Pmissing

    38

    Pure Leptonic decays

    2.5%0.1%1.8%1.7%fDsD+s→µ+ν

    3.0%1.8%1.2%2.4%fDD+→µ+ν

    Precision of decay constants

    CKM Elements

    Life time

    Branching ratios

    Decay

    Constant

    Decay Modes

  • 20

    39

    Absolute Br measurement: clear D tagging

    beam energy spread important

    40

    Non-leptonic decays

    ~ 1.2%60.0%~3.0D+s→ φπ+22.5%~5.07.9%~8.69.2%~5.612.5%2.8

    ~ 0.6%

    52.0%~7.732.0%~12.034.0%~7.8 ~ 0.4%72.2%3.7

    Statistics Error (∆B/B)

    Detection efficiency

    InputBr(%)

    Decay Mode

    +−π→ KD0

    −++− πππ→ KD000 KD ππ→ +−

    ++−+ ππ→ KD++ π→ 0KD

    0KD πππ→ ++−+

    −+++ πππ→ 0KD00KD ππ→ ++

  • 21

    41

    CKM matrix elements measurement

    5%39%Vts

    5%36%Vtd

    3%5%Vcb

    1%16%Vcs

    1%7%Vcd

    5%25%Vub

    BESIII Current

    42

    Precision test of SMand Search for new Physics

    • DD mixing• Lepton universality• CP violation• Rare decays

    FCNC, Lepton no. violation, ...

  • 22

    43

    DDbar Mixing at BESIII

    • DDbar mixing in SM ~ 10 –3 - 10 –10

    • DDbar mixing sensitive to “new physics”• Our sensitivity : ~ 10-4

    • D0 D0 (K-π+) (Κ+π−) Acceptance: ~ 40% Background: ~ 10-4

    44

    QCD and hadron production

    • R-value measurement• pQCD and non-pQCD boundary• Measurement of αs at low energies• Hadron production at J/ψ, ψ’, and continium• Multiplicity and other topology of hadron event • BEC, correlations, form factors, resonance, etc.

  • 23

    45

    R-value measurement

    1

    2

    3

    4

    5

    6

    2 3 4 5

    (a)

    Ecm (GeV)

    R Va

    lue

    Gamma2MarkIpluto

    BESII (1998)BESII (1999)

    2

    3

    4

    5

    3.8 4 4.2 4.4 4.6

    (b)

    Ecm (GeV)

    R Va

    lue

    0.02761 ±0.000292%0.02761 ±0.00030 3%0.02761 ±0.000365.9%∆α(5)had (MZ2)Error on R R-value below 2GeV

    is important,

    via rediative returns

    46

    Errors on R at BESIII

    --2.5Statistics

    2 - 36 – 7 Total

    1 – 22 - 3Hadron decay model11 - 2 Radiative corrections

    0.50.5Trigger efficiency1 - 23 - 4Detection efficiency

    12 - 3Luminosity

    BESIII (%)BESII (%)Error sources

  • 24

    47

    Light hadron spectroscopy

    • Baryon spectroscopy• Charmonium spectroscopy• Glueball searches• Search for non-qqbar states• Search for 1P1

    1010 J/ψ events is probably enough to pin down most of problems of light hadron spectroscopy

    48

    Excited Baryons from J/ψ and ψ(2s) Decays

    • Test of QCD and confinement

    • Reveal the quark-gluon structure of matter

    • Only 10% excited baryons(N*, Λ*, Σ* and Ξ*) observed

    • Complementary to CEBAF, GRAAL and SPRING8

  • 25

    49

    Search for glueballs• no place in nonet• enhanced in J/ψ decays• branching ratios incom-

    patible with SU(3) predictions

    • reduced γγ couplings

    Candidates: f0(1500), f0(1700),ξ(2230), ….

    50

    Good energy/mass resolution

    J/ψ −> γξ(2230)−>γηη’--> γγγγγπ+π−

  • 26

    51

    Non qqbar exotic 1-+ state

    • J/ψ ρ0ηπ0

    Well identifiedρ(1390) ρ(2300)

    via partial waveanalysis 0

    10000

    20000

    30000

    40000

    50000

    0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4M η π0 (Gev / c

    2)

    30

    Mev

    /bin

    52

    Search for 1P1Βr = (1.2 – 3.3)×10-6

    450-1200 evts/year

    ψ(2S) π0 1 P 1 γγγ ηc γγγ 4ΚΒackground: ψ(2S) γ χc1, γχc2,, ηψ,π0π0ψ

  • 27

    53

    Event Statistics: BESIII vs CLEO-c

    0.0015

    0.03 *——

    1.0

    CLEOBEPCIICLEOBEPCII

    0.50

    0.50

    0.300.300.300.15

    0.0121.03.67τ

    0.0020.64.14Ds

    0.0010.64.03Ds

    0.0251.03.77D3.0 1.03.686ψ’

    10.00.63.097J/ψ

    Events/year(109)

    Luminosity(1033 cm–2s –1)

    Energy (GeV)

    Physics Channel

    *CLEO took 10 nb D production cross section while we took 5 nb

    54

    ~2%~1.5%7%Vcd

    ~1.5%~1%16%Vcs

    ~2.5%~2%6-9%fDs

    ~3%~2%>10 %fD

    ~ 2%

  • 28

    55

    International collaborationIHEP, BeijingBeijing University , BeijingTsinghua University , BeijingUSTC, HefeiNational Central University, TaipeiKEK, Tokyo University, Tokyo

    Hawaii University, Honolulu

    Washington University, Seattle

    Welcome more collaborators

    56

    Summary• The BEPCII/BESIII has been approved officially

    by the Chinese government• The BESIII detector design is finished,

    prototyping is underway, some of the mass production have been started

    • Rich physics after CLEO-c(upgrade of BEPCII to 3*1033 cm-2s-1 is possible)