76
A domain decomposition approach to exponential methods for PDEs Luca Bonaventura MOX - Politecnico di Milano Boulder, 8.04.2014 L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 1 / 16

A domain decomposition approach to exponential methods …

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A domain decomposition approach to exponential methods …

A domain decomposition approachto exponential methods for PDEs

Luca Bonaventura

MOX - Politecnico di Milano

Boulder, 8.04.2014

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 1 / 16

Page 2: A domain decomposition approach to exponential methods …

Outline of the talk

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 3: A domain decomposition approach to exponential methods …

Outline of the talk

◮ Short review of exponential integrators

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 4: A domain decomposition approach to exponential methods …

Outline of the talk

◮ Short review of exponential integrators

◮ An accuracy and efficiency assessment of simple approaches totheir application

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 5: A domain decomposition approach to exponential methods …

Outline of the talk

◮ Short review of exponential integrators

◮ An accuracy and efficiency assessment of simple approaches totheir application

◮ Local Exponential Methods:a domain decomposition approach to exponential methods

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 6: A domain decomposition approach to exponential methods …

Outline of the talk

◮ Short review of exponential integrators

◮ An accuracy and efficiency assessment of simple approaches totheir application

◮ Local Exponential Methods:a domain decomposition approach to exponential methods

◮ Some preliminary numerical results

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 7: A domain decomposition approach to exponential methods …

Outline of the talk

◮ Short review of exponential integrators

◮ An accuracy and efficiency assessment of simple approaches totheir application

◮ Local Exponential Methods:a domain decomposition approach to exponential methods

◮ Some preliminary numerical results

◮ Conclusions and perspectives for atmospheric modelling

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 2 / 16

Page 8: A domain decomposition approach to exponential methods …

Basic idea of exponential methods

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 3 / 16

Page 9: A domain decomposition approach to exponential methods …

Basic idea of exponential methods

◮ Cauchy problem for nonhomogeneous linear ODE system:

du

dt= Au+ g(t) u(0) = u0

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 3 / 16

Page 10: A domain decomposition approach to exponential methods …

Basic idea of exponential methods

◮ Cauchy problem for nonhomogeneous linear ODE system:

du

dt= Au+ g(t) u(0) = u0

◮ Representation formula for the exact solution:

u(t) = exp (At)u0 +

∫ t

0exp (A(t − s))g(s) ds

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 3 / 16

Page 11: A domain decomposition approach to exponential methods …

Basic idea of exponential methods

◮ Cauchy problem for nonhomogeneous linear ODE system:

du

dt= Au+ g(t) u(0) = u0

◮ Representation formula for the exact solution:

u(t) = exp (At)u0 +

∫ t

0exp (A(t − s))g(s) ds

◮ Exponential methods: turn this into a numerical method witherrors indepentent of ∆t for linear problems

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 3 / 16

Page 12: A domain decomposition approach to exponential methods …

Basic idea of exponential methods

◮ Cauchy problem for nonhomogeneous linear ODE system:

du

dt= Au+ g(t) u(0) = u0

◮ Representation formula for the exact solution:

u(t) = exp (At)u0 +

∫ t

0exp (A(t − s))g(s) ds

◮ Exponential methods: turn this into a numerical method witherrors indepentent of ∆t for linear problems

◮ Various extensions to nonlinear problems are available

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 3 / 16

Page 13: A domain decomposition approach to exponential methods …

Exponential Euler Rosenbrock methods

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 4 / 16

Page 14: A domain decomposition approach to exponential methods …

Exponential Euler Rosenbrock methods

◮ Linearize around initial datum at each timestep

du

dt= f(u) = f(un) + Jn(u− un) + R(u) t ∈ [tn, tn+1]

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 4 / 16

Page 15: A domain decomposition approach to exponential methods …

Exponential Euler Rosenbrock methods

◮ Linearize around initial datum at each timestep

du

dt= f(u) = f(un) + Jn(u− un) + R(u) t ∈ [tn, tn+1]

◮ Freezing nonlinear terms yields

un+1 = un +∆tφ(

Jn∆t)

f(un) φ(z) =exp (z)− 1

z

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 4 / 16

Page 16: A domain decomposition approach to exponential methods …

Exponential Euler Rosenbrock methods

◮ Linearize around initial datum at each timestep

du

dt= f(u) = f(un) + Jn(u− un) + R(u) t ∈ [tn, tn+1]

◮ Freezing nonlinear terms yields

un+1 = un +∆tφ(

Jn∆t)

f(un) φ(z) =exp (z)− 1

z

◮ Essentially exact for linear, constant coefficient problems,unconditionally A-stable, second order for nonlinear problems,higher order variants available (Hochbruck et al 1997)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 4 / 16

Page 17: A domain decomposition approach to exponential methods …

Exponential Euler Rosenbrock methods

◮ Linearize around initial datum at each timestep

du

dt= f(u) = f(un) + Jn(u− un) + R(u) t ∈ [tn, tn+1]

◮ Freezing nonlinear terms yields

un+1 = un +∆tφ(

Jn∆t)

f(un) φ(z) =exp (z)− 1

z

◮ Essentially exact for linear, constant coefficient problems,unconditionally A-stable, second order for nonlinear problems,higher order variants available (Hochbruck et al 1997)

◮ Stiff one step, one stage second order solver with oneevaluation of RHS: think of the physics...

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 4 / 16

Page 18: A domain decomposition approach to exponential methods …

Main computational problems and solutions

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 5 / 16

Page 19: A domain decomposition approach to exponential methods …

Main computational problems and solutions

◮ Exponential matrix cannot be stored for realistic PDE problems

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 5 / 16

Page 20: A domain decomposition approach to exponential methods …

Main computational problems and solutions

◮ Exponential matrix cannot be stored for realistic PDE problems

◮ exp (∆tA)v can be approximated by the same Krylov spacetechniques employed in GMRES (Saad 1992)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 5 / 16

Page 21: A domain decomposition approach to exponential methods …

Main computational problems and solutions

◮ Exponential matrix cannot be stored for realistic PDE problems

◮ exp (∆tA)v can be approximated by the same Krylov spacetechniques employed in GMRES (Saad 1992)

◮ Krylov space dimension (and cost of time step) depend on theCourant number

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 5 / 16

Page 22: A domain decomposition approach to exponential methods …

Main computational problems and solutions

◮ Exponential matrix cannot be stored for realistic PDE problems

◮ exp (∆tA)v can be approximated by the same Krylov spacetechniques employed in GMRES (Saad 1992)

◮ Krylov space dimension (and cost of time step) depend on theCourant number

◮ Alternative techniques imply similar costs for large scaleproblems

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 5 / 16

Page 23: A domain decomposition approach to exponential methods …

Some numerical results

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 6 / 16

Page 24: A domain decomposition approach to exponential methods …

Some numerical results

◮ NUMA model (courtesy of F.X.Giraldo, NPS), spatialdiscretization employing CG with fifth order polynomials

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 6 / 16

Page 25: A domain decomposition approach to exponential methods …

Some numerical results

◮ NUMA model (courtesy of F.X.Giraldo, NPS), spatialdiscretization employing CG with fifth order polynomials

◮ Klemp-Skamarock test, Courant number approx. 23, densityfields computed by second order exponential method and BDF2at t = 400 s.

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 6 / 16

Page 26: A domain decomposition approach to exponential methods …

Some numerical results

◮ NUMA model (courtesy of F.X.Giraldo, NPS), spatialdiscretization employing CG with fifth order polynomials

◮ Klemp-Skamarock test, Courant number approx. 23, densityfields computed by second order exponential method and BDF2at t = 400 s.

x

z

0 0.5 1 1.5 2 2.5 3

x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−1 −0.5 0 0.5 1 1.5

x 10−6

x

z

0 0.5 1 1.5 2 2.5 3

x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−6

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 6 / 16

Page 27: A domain decomposition approach to exponential methods …

Some numerical results

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 28: A domain decomposition approach to exponential methods …

Some numerical results

◮ ICON shallow water model, low order mimetic spatialdiscretization

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 29: A domain decomposition approach to exponential methods …

Some numerical results

◮ ICON shallow water model, low order mimetic spatialdiscretization

◮ Test case 5 t = 360 h, ∆x ≈ 80 km, ∆t = 1 h, C ≈ 10

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 30: A domain decomposition approach to exponential methods …

Some numerical results

◮ ICON shallow water model, low order mimetic spatialdiscretization

◮ Test case 5 t = 360 h, ∆x ≈ 80 km, ∆t = 1 h, C ≈ 10

◮ Test case 6 at t = 240 h, ∆x ≈ 80 km, ∆t = 0.5 h C ≈ 10

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 31: A domain decomposition approach to exponential methods …

Some numerical results

◮ ICON shallow water model, low order mimetic spatialdiscretization

◮ Test case 5 t = 360 h, ∆x ≈ 80 km, ∆t = 1 h, C ≈ 10

◮ Test case 6 at t = 240 h, ∆x ≈ 80 km, ∆t = 0.5 h C ≈ 10

◮ Reference solution computed by explicit Runge Kutta methodof order 4 with ∆t = 180 s

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 32: A domain decomposition approach to exponential methods …

Some numerical results

◮ ICON shallow water model, low order mimetic spatialdiscretization

◮ Test case 5 t = 360 h, ∆x ≈ 80 km, ∆t = 1 h, C ≈ 10

◮ Test case 6 at t = 240 h, ∆x ≈ 80 km, ∆t = 0.5 h C ≈ 10

◮ Reference solution computed by explicit Runge Kutta methodof order 4 with ∆t = 180 s

h error

LP CN EX2 EX3

Test 5 1.2e-2 9.1e-3 1.2e-3 1.1e-3

Test 6 5.9e-2 1.7e-2 3.8e-4 4.0e-4

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 7 / 16

Page 33: A domain decomposition approach to exponential methods …

A cost benefit analysis

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 8 / 16

Page 34: A domain decomposition approach to exponential methods …

A cost benefit analysis

◮ Exponential vs highorder IMEX methods

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 8 / 16

Page 35: A domain decomposition approach to exponential methods …

A cost benefit analysis

◮ Exponential vs highorder IMEX methods

◮ Spectral discretizationof incompressible NS -Boussinesq in sphericalgeometry (Ferran, B.,et al, JCP 2014)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 8 / 16

Page 36: A domain decomposition approach to exponential methods …

A cost benefit analysis

◮ Exponential vs highorder IMEX methods

◮ Spectral discretizationof incompressible NS -Boussinesq in sphericalgeometry (Ferran, B.,et al, JCP 2014)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 8 / 16

Page 37: A domain decomposition approach to exponential methods …

A cost benefit analysis

◮ Exponential vs highorder IMEX methods

◮ Spectral discretizationof incompressible NS -Boussinesq in sphericalgeometry (Ferran, B.,et al, JCP 2014)

10-13

10-11

10-9

10-7

10-5

10-3

10-1

10-7 10-6 10-5 10-4

ε (u)

h

a) ETDC2

ETDR2

ETDR3

ETDR4

BDF2

BDF3 BDF4

BDF5

10-13

10-11

10-9

10-7

10-5

10-3

10-1

103 104 105

ε (u)

rt

b)

ETDC2 ETDR2

ETDR3

ETDR4

BDF2 BDF3

BDF4

BDF5

BDF-VSVO

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 8 / 16

Page 38: A domain decomposition approach to exponential methods …

A more local approach

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 9 / 16

Page 39: A domain decomposition approach to exponential methods …

A more local approach

◮ PDEs of interest are local in space: physical and numericaldomain of dependence are finite

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 9 / 16

Page 40: A domain decomposition approach to exponential methods …

A more local approach

◮ PDEs of interest are local in space: physical and numericaldomain of dependence are finite

◮ Local problems discretized by FD, FV, FE methods yield sparsematrices

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 9 / 16

Page 41: A domain decomposition approach to exponential methods …

A more local approach

◮ PDEs of interest are local in space: physical and numericaldomain of dependence are finite

◮ Local problems discretized by FD, FV, FE methods yield sparsematrices

◮ Exponential of a sparse matrix is almost sparse (Iserles 2001)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 9 / 16

Page 42: A domain decomposition approach to exponential methods …

A more local approach

◮ PDEs of interest are local in space: physical and numericaldomain of dependence are finite

◮ Local problems discretized by FD, FV, FE methods yield sparsematrices

◮ Exponential of a sparse matrix is almost sparse (Iserles 2001)

◮ For s−banded A = (ai ,j) with |ai ,j | ≤ ρ, let exp(A) = (ei ,j).

|ei ,j | ≤( ρs

|i − j |

)

|i−j|s[

e|i−j|s −

|i−j |−1∑

k=0

(|i − j/s|)k

k!

]

≈( ρs

|i − j |

)

|i−j|s (|i − j |/s)|i−j |

|i − j |!

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 9 / 16

Page 43: A domain decomposition approach to exponential methods …

Application to PDE problems

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 10 / 16

Page 44: A domain decomposition approach to exponential methods …

Application to PDE problems

◮ Advection diffusion problem: entries of matrix ∆tA scale as

u∆t

∆x+

µ∆t

∆x2

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 10 / 16

Page 45: A domain decomposition approach to exponential methods …

Application to PDE problems

◮ Advection diffusion problem: entries of matrix ∆tA scale as

u∆t

∆x+

µ∆t

∆x2

◮ Example: exp(∆tA) for 1D centered finite difference advectionat Courant numbers 0.5, 5, 20

020

4060

80100

020

4060

80100

−0.4

−0.2

0

0.2

0.4

0.6

0.8

020

4060

80100

020

4060

80100

−1

−0.5

0

0.5

1

0

20

40

60

80100

020

4060

80100

−0.5

0

0.5

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 10 / 16

Page 46: A domain decomposition approach to exponential methods …

Application to PDE problems

◮ Advection diffusion problem: entries of matrix ∆tA scale as

u∆t

∆x+

µ∆t

∆x2

◮ Example: exp(∆tA) for 1D centered finite difference advectionat Courant numbers 0.5, 5, 20

020

4060

80100

020

4060

80100

−0.4

−0.2

0

0.2

0.4

0.6

0.8

020

4060

80100

020

4060

80100

−1

−0.5

0

0.5

1

0

20

40

60

80100

020

4060

80100

−0.5

0

0.5

◮ There is no real need to compute a global exponential matrix:Local Exponential Methods (LEM)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 10 / 16

Page 47: A domain decomposition approach to exponential methods …

LEM: a domain decomposition approach

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 11 / 16

Page 48: A domain decomposition approach to exponential methods …

LEM: a domain decomposition approach

◮ Decompose mesh in overlapping regions

M =

N⋃

i=1

Mi Mi = Di ∪ Bi

where Di non overlapping, Bi boundary buffer zones whose sizedepends on the Courant number

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 11 / 16

Page 49: A domain decomposition approach to exponential methods …

LEM: a domain decomposition approach

◮ Decompose mesh in overlapping regions

M =

N⋃

i=1

Mi Mi = Di ∪ Bi

where Di non overlapping, Bi boundary buffer zones whose sizedepends on the Courant number

◮ For i = 1, . . . ,N, solve local problem restricted to Mi by a localexponential method

un+1Mi

= unMi+∆tφ

(

JnMi∆t

)

f(unMi)Mi

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 11 / 16

Page 50: A domain decomposition approach to exponential methods …

LEM: a domain decomposition approach

◮ Decompose mesh in overlapping regions

M =

N⋃

i=1

Mi Mi = Di ∪ Bi

where Di non overlapping, Bi boundary buffer zones whose sizedepends on the Courant number

◮ For i = 1, . . . ,N, solve local problem restricted to Mi by a localexponential method

un+1Mi

= unMi+∆tφ

(

JnMi∆t

)

f(unMi)Mi

◮ Overwrite degrees of freedom belonging to Bi

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 11 / 16

Page 51: A domain decomposition approach to exponential methods …

LEM: cons and pros

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 12 / 16

Page 52: A domain decomposition approach to exponential methods …

LEM: cons and pros

◮ Overhead increases with Courant number, both forcomputation and communication...

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 12 / 16

Page 53: A domain decomposition approach to exponential methods …

LEM: cons and pros

◮ Overhead increases with Courant number, both forcomputation and communication...

◮ ...but should not too bad for high order methods, anisotropicmeshes and heavy physics

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 12 / 16

Page 54: A domain decomposition approach to exponential methods …

LEM: cons and pros

◮ Overhead increases with Courant number, both forcomputation and communication...

◮ ...but should not too bad for high order methods, anisotropicmeshes and heavy physics

◮ No global matrix to be computed, local problems can beparallelized trivially

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 12 / 16

Page 55: A domain decomposition approach to exponential methods …

LEM: cons and pros

◮ Overhead increases with Courant number, both forcomputation and communication...

◮ ...but should not too bad for high order methods, anisotropicmeshes and heavy physics

◮ No global matrix to be computed, local problems can beparallelized trivially

◮ For small enough Di local matrices can be stored:computational gain if Jacobian is frozen every few time stepsand in the limit of large number of advected species

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 12 / 16

Page 56: A domain decomposition approach to exponential methods …

A 1D numerical example

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 13 / 16

Page 57: A domain decomposition approach to exponential methods …

A 1D numerical example

◮ Viscous Burgers equation with periodic boundary conditions,exact solution via Cole-Hopf transformation

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 13 / 16

Page 58: A domain decomposition approach to exponential methods …

A 1D numerical example

◮ Viscous Burgers equation with periodic boundary conditions,exact solution via Cole-Hopf transformation

◮ Fourth order finite differences for advection, second order finitedifferences for diffusion, Courant number 15

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 13 / 16

Page 59: A domain decomposition approach to exponential methods …

A 1D numerical example

◮ Viscous Burgers equation with periodic boundary conditions,exact solution via Cole-Hopf transformation

◮ Fourth order finite differences for advection, second order finitedifferences for diffusion, Courant number 15

◮ Second order exponential Rosenbrock method, stored localmatrices computed without Krylov spaces

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 13 / 16

Page 60: A domain decomposition approach to exponential methods …

A 1D numerical example

◮ Viscous Burgers equation with periodic boundary conditions,exact solution via Cole-Hopf transformation

◮ Fourth order finite differences for advection, second order finitedifferences for diffusion, Courant number 15

◮ Second order exponential Rosenbrock method, stored localmatrices computed without Krylov spaces

0 1 2 3 4 5 6 7−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 13 / 16

Page 61: A domain decomposition approach to exponential methods …

A 2D numerical example

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 14 / 16

Page 62: A domain decomposition approach to exponential methods …

A 2D numerical example

◮ Advection-diffusion equation with rotational velocity field

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 14 / 16

Page 63: A domain decomposition approach to exponential methods …

A 2D numerical example

◮ Advection-diffusion equation with rotational velocity field

◮ Monotonic finite volume method for advection, second orderfinite volume method for diffusion, Courant number 4

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 14 / 16

Page 64: A domain decomposition approach to exponential methods …

A 2D numerical example

◮ Advection-diffusion equation with rotational velocity field

◮ Monotonic finite volume method for advection, second orderfinite volume method for diffusion, Courant number 4

◮ Second order exponential Rosenbrock method with localmatrices computed by Krylov space techniques

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 14 / 16

Page 65: A domain decomposition approach to exponential methods …

A 2D numerical example

◮ Advection-diffusion equation with rotational velocity field

◮ Monotonic finite volume method for advection, second orderfinite volume method for diffusion, Courant number 4

◮ Second order exponential Rosenbrock method with localmatrices computed by Krylov space techniques

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 14 / 16

Page 66: A domain decomposition approach to exponential methods …

A 2D nonlinear example

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 15 / 16

Page 67: A domain decomposition approach to exponential methods …

A 2D nonlinear example

◮ Viscous Burgers equation

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 15 / 16

Page 68: A domain decomposition approach to exponential methods …

A 2D nonlinear example

◮ Viscous Burgers equation

◮ Centered finite volume method for advection, second orderfinite volume method for diffusion, anisotropic mesh withCourant number 6 in the vertical

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 15 / 16

Page 69: A domain decomposition approach to exponential methods …

A 2D nonlinear example

◮ Viscous Burgers equation

◮ Centered finite volume method for advection, second orderfinite volume method for diffusion, anisotropic mesh withCourant number 6 in the vertical

◮ Second order exponential Rosenbrock method with localmatrices computed by Krylov space techniques

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 15 / 16

Page 70: A domain decomposition approach to exponential methods …

A 2D nonlinear example

◮ Viscous Burgers equation

◮ Centered finite volume method for advection, second orderfinite volume method for diffusion, anisotropic mesh withCourant number 6 in the vertical

◮ Second order exponential Rosenbrock method with localmatrices computed by Krylov space techniques

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 15 / 16

Page 71: A domain decomposition approach to exponential methods …

Conclusions and perspectives

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16

Page 72: A domain decomposition approach to exponential methods …

Conclusions and perspectives

◮ Straightforward implementation of exponential methods leadsto very accurate but very costly solutions

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16

Page 73: A domain decomposition approach to exponential methods …

Conclusions and perspectives

◮ Straightforward implementation of exponential methods leadsto very accurate but very costly solutions

◮ For standard PDE problems, a local approximation ofexp (∆tA)v is feasible

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16

Page 74: A domain decomposition approach to exponential methods …

Conclusions and perspectives

◮ Straightforward implementation of exponential methods leadsto very accurate but very costly solutions

◮ For standard PDE problems, a local approximation ofexp (∆tA)v is feasible

◮ Computation of exponential matrix becomes trivially parallel

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16

Page 75: A domain decomposition approach to exponential methods …

Conclusions and perspectives

◮ Straightforward implementation of exponential methods leadsto very accurate but very costly solutions

◮ For standard PDE problems, a local approximation ofexp (∆tA)v is feasible

◮ Computation of exponential matrix becomes trivially parallel

◮ Computational overhead due to boundary buffer regions islimited in the case of anisotropic meshes and high order finiteelements

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16

Page 76: A domain decomposition approach to exponential methods …

Conclusions and perspectives

◮ Straightforward implementation of exponential methods leadsto very accurate but very costly solutions

◮ For standard PDE problems, a local approximation ofexp (∆tA)v is feasible

◮ Computation of exponential matrix becomes trivially parallel

◮ Computational overhead due to boundary buffer regions islimited in the case of anisotropic meshes and high order finiteelements

◮ Next on the to do list: use Local Exponential Methods in ahigh order FE framework and with complex forcing terms(multiple ARD with chemistry)

L. Bonaventura (MOX) Exponential methods Boulder, 8.04.2014 16 / 16