28
Biological Journal of the Linnean Society, 2007, 91, 161–188. With 4 figures © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188 161 Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2007 The Linnean Society of London? 2007 91? 161188 Original Articles BUMBLE BEE PHYLOGENY S. A. CAMERON ET AL . *Corresponding author. E-mail: [email protected] A comprehensive phylogeny of the bumble bees ( Bombus) S. A. CAMERON 1 *, H. M. HINES 1 and P. H. WILLIAMS 2 1 Department of Entomology, 320 Morrill Hall, 505 S. Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA 2 Department of Entomology, Natural History Museum, South Kensington, London SW7 5BD, UK Received 24 March 2006; accepted for publication 10 August 2006 Bumble bees (Bombus Latreille) occupy a wide diversity of habitats, from alpine meadows to lowland tropical forest, yet they appear to be similar in morphology throughout their range, suggesting that behavioural adaptations play a more important role in colonizing diverse habitats. Notwithstanding their structural homogeneity, bumble bees exhibit striking inter- and intraspecific variation in colour pattern, purportedly the outcome of mimetic evolution. A robust phylogeny of Bombus would provide the framework for elucidating the history of their wide biogeographical distribution and the evolution of behavioural and morphological adaptations, including colour pattern. However, morphological studies of bumble bees have discovered too few phylogenetically informative characters to reconstruct a robust phylogeny. Using DNA sequence data, we report the first nearly complete species phylogeny of bumble bees, including most of the 250 known species from the 38 currently recognized subgenera. Bayesian analysis of nuclear (opsin, EF-1α, arginine kinase, PEPCK) and mitochondrial (16S) sequences results in a highly resolved and strongly supported phylogeny from base to tips, with clear-cut support for monophyly of most of the conventional morphology- based subgenera. Most subgenera fall into two distinct clades (short-faced and long-faced) associated broadly with differences in head morphology. Within the short-faced clade is a diverse New World clade, which includes nearly one- quarter of the currently recognized subgenera, many of which are restricted to higher elevations of Central and South America. The comprehensive phylogeny provides a firm foundation for reclassification and for evaluating character evolution in the bumble bees. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188. ADDITIONAL KEYWORDS: classification – corbiculate bees – nuclear genes. INTRODUCTION Bumble bees (Bombus Latreille) are among the more familiar creatures inhabiting meadows, gardens and grasslands of the temperate world (Darwin, 1859: notes 1854–1861, translated by Freeman, 1968; Sladen, 1912). Robust and vividly coloured, they emerge from hibernation in early Spring in far northerly latitudes, feeding from the earliest willow blossoms before the snows have fully melted. Ther- moregulatory mechanisms maintain their body tem- perature high above ambient in cold to freezing weather (Heinrich, 2004), allowing them full activity under conditions too extreme for other bees. Although they are most abundant in alpine and high-elevation grassland habitats of the northern temperate zone, they range widely from Greenland to the Amazon Basin, from sea level to altitudes of 5800 m in the Himalayas (Williams, 1985). Thus, bumble bees exploit a wide diversity of habitats, from alpine meadows to lowland tropical forest (Sakagami, 1976). Nonetheless, they appear similar in morphology throughout their range (Michener, 1990; Williams, 1998), suggesting that ecological opportunity and behavioural adaptations play an important role in col- onizing diverse habitats (Sakagami, 1976; Cameron & Whitfield, 1996; Dornhaus & Cameron, 2003; Dorn- haus & Chittka, 2004). For example, temperate spe- cies initiate colonies annually from a single queen, whereas the tropical species appear at least faculta- tively perennial (Sakagami, Akahira & Zucchi, 1967; Olesen, 1989) and even exhibit polygyny (Zucchi, 1973; Cameron & Jost, 1998).

A comprehensive phylogeny of the bumble bees ( Bombus

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A comprehensive phylogeny of the bumble bees ( Bombus

Biological Journal of the Linnean Society

, 2007,

91

, 161–188. With 4 figures

© 2007 The Linnean Society of London,

Biological Journal of the Linnean Society,

2007,

91

, 161–188

161

Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2007 The Linnean Society of London? 200791?161188Original Articles

BUMBLE BEE PHYLOGENYS. A. CAMERON

ET AL

.

*Corresponding author. E-mail: [email protected]

A comprehensive phylogeny of the bumble bees (

Bombus

)

S. A. CAMERON

1

*, H. M. HINES

1

and P. H. WILLIAMS

2

1

Department of Entomology, 320 Morrill Hall, 505 S. Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA

2

Department of Entomology, Natural History Museum, South Kensington, London SW7 5BD, UK

Received 24 March 2006; accepted for publication 10 August 2006

Bumble bees (

Bombus

Latreille) occupy a wide diversity of habitats, from alpine meadows to lowland tropical forest,yet they appear to be similar in morphology throughout their range, suggesting that behavioural adaptations playa more important role in colonizing diverse habitats. Notwithstanding their structural homogeneity, bumble beesexhibit striking inter- and intraspecific variation in colour pattern, purportedly the outcome of mimetic evolution. Arobust phylogeny of

Bombus

would provide the framework for elucidating the history of their wide biogeographicaldistribution and the evolution of behavioural and morphological adaptations, including colour pattern. However,morphological studies of bumble bees have discovered too few phylogenetically informative characters to reconstructa robust phylogeny. Using DNA sequence data, we report the first nearly complete species phylogeny of bumble bees,including most of the 250 known species from the 38 currently recognized subgenera. Bayesian analysis of nuclear(opsin, EF-1

α

, arginine kinase, PEPCK) and mitochondrial (16S) sequences results in a highly resolved and stronglysupported phylogeny from base to tips, with clear-cut support for monophyly of most of the conventional morphology-based subgenera. Most subgenera fall into two distinct clades (

short-faced

and

long-faced

) associated broadly withdifferences in head morphology. Within the

short-faced

clade is a diverse

New World

clade, which includes nearly one-quarter of the currently recognized subgenera, many of which are restricted to higher elevations of Central andSouth America. The comprehensive phylogeny provides a firm foundation for reclassification and for evaluatingcharacter evolution in the bumble bees. © 2007 The Linnean Society of London,

Biological Journal of the LinneanSociety

, 2007,

91

, 161–188.

ADDITIONAL KEYWORDS:

classification – corbiculate bees – nuclear genes.

INTRODUCTION

Bumble bees (

Bombus

Latreille) are among the morefamiliar creatures inhabiting meadows, gardensand grasslands of the temperate world (Darwin, 1859:notes 1854–1861, translated by Freeman, 1968;Sladen, 1912). Robust and vividly coloured, theyemerge from hibernation in early Spring in farnortherly latitudes, feeding from the earliest willowblossoms before the snows have fully melted. Ther-moregulatory mechanisms maintain their body tem-perature high above ambient in cold to freezingweather (Heinrich, 2004), allowing them full activityunder conditions too extreme for other bees. Althoughthey are most abundant in alpine and high-elevation

grassland habitats of the northern temperate zone,they range widely from Greenland to the AmazonBasin, from sea level to altitudes of 5800 m in theHimalayas (Williams, 1985). Thus, bumble beesexploit a wide diversity of habitats, from alpinemeadows to lowland tropical forest (Sakagami, 1976).Nonetheless, they appear similar in morphologythroughout their range (Michener, 1990; Williams,1998), suggesting that ecological opportunity andbehavioural adaptations play an important role in col-onizing diverse habitats (Sakagami, 1976; Cameron &Whitfield, 1996; Dornhaus & Cameron, 2003; Dorn-haus & Chittka, 2004). For example, temperate spe-cies initiate colonies annually from a single queen,whereas the tropical species appear at least faculta-tively perennial (Sakagami, Akahira & Zucchi, 1967;Olesen, 1989) and even exhibit polygyny (Zucchi,1973; Cameron & Jost, 1998).

Page 2: A comprehensive phylogeny of the bumble bees ( Bombus

162

S. A. CAMERON

ET AL

.

© 2007 The Linnean Society of London,

Biological Journal of the Linnean Society,

2007,

91

, 161–188

Despite the apparent constraint on structural diver-sity, bumble bees display striking inter- and intraspe-cific variation in colour pattern across their range(Sladen, 1912; Skorikov, 1931; Reinig, 1935, 1939;Tkalc , 1968, 1974, 1989; Williams, 1991, 1998), pur-portedly the outcome of mimetic evolution (Plowright& Owen, 1980). Not only are

Bombus

predisposed toconverge sympatrically on similar colour patterns(Williams, 2007), but other insects mimic the

Bombus

patterns (Evans & Waldbauer, 1982), thus providingexcellent opportunities to examine the influence ofnatural selection on the generation of variation amongMüllerian (Plowright & Owen, 1980) and Batesian(Waldbauer, Sternberg & Maier, 1977; Evans & Wald-bauer, 1982) mimics. Elucidating the evolution ofdiversity requires knowledge of the historical patternof variation, which, in turn, provides unique insightsinto evolutionary processes underlying the pattern ofvariation. A robust phylogeny of

Bombus

, the goal ofour research, is essential for inferring the history oftheir wide geographical distribution and for testinghypotheses of behavioural and mimetic adaptations.

C

LASSIFICATION

AND

CURRENT

STATUS

OF

B

OMBUS

PHYLOGENY

Bombus

comprises the monotypic tribe Bombini,which together with Apini (honey bees), Meliponini(stingless bees), and Euglossini (orchid bees), consti-tutes the corbiculate bees, distinguished by the pollen-carrying structure (corbicula) on the hindleg. Theirclosest relatives, estimated from DNA sequences ofmultiple genes, are the stingless bees (Cameron, 1993,2003; Mardulyn & Cameron, 1999; Cameron &Mardulyn, 2001, 2003; Lockhart & Cameron, 2001;Thompson & Oldroyd, 2004), although some morpho-logical data (Roig-Alsina & Michener, 1993; Schultz,Engel & Ascher, 2001) place them as sister to honeybees

+

stingless bees.Subsequent to Linnaeus (1758), approximately

2800 formal names, including synonyms, have beenassigned to

Bombus

species and lower-ranking taxa(Williams, 1998). Today, we recognize approximately250 species (Williams, 1998) assigned to 38 subgenera,primarily on the basis of male genitalia (Radosz-kowski, 1884; Krüger, 1917; Skorikov, 1922; Richards,1968). Many of the subgenera are monotypic (Rich-ards, 1968; Williams, 1998) as a result of the distinct-ness of the male genitalia. The inflated number ofspecies names was often the result of distinguishingspecies (and later, subspecies) by colour pattern.Numerous alternative classifications have been pro-posed (Milliron, 1961, 1971, 1973a, b; Tkalc , 1972)but largely disregarded.

Previous research on bumble bee phylogeny wasrestricted in scope and utility by either: (1) the appli-

uo

uo

cation of phenetic methods to infer phylogenetic rela-tionships; (2) relatively sparse species sampling; or (3)insufficient numbers of informative characters. Exam-ples of phenetic applications include the investigationby Ito (1985) of male genitalia and analyses of allo-zymes in regional taxa (Pekkarinen, 1979; Pekkarinen,Varvio-Aho & Pamilo, 1979; Obrecht & Scholl, 1981;Pamilo, Pekkarinen & Varvio, 1987). Williams (1985,1994) applied parsimony to morphological data toaddress the higher-level relationships among subgen-era, but the available characters led to considerablelack of subgeneric resolution. DNA analyses of rela-tionships have been restricted to regional fauna (anal-yses of European taxa: Pedersen, 1996, 2002) or haveincluded few species (assessment of

Pyrobombus

monophyly, 10–12 species overall: Koulianos, 1999;analysis of subgenera based on 19 species: Koulianos& Schmid-Hempel, 2000). Kawakita

et al

. (2003, 2004)estimated relationships among many of the subgenerausing sequence data, but their sampling of only 76species limits their ability to draw robust conclusionsabout the monophyly of groups and the evolution oftraits.

Comprehensive molecular studies include examina-tion of relationships within the large New Worldsubgenus

Fervidobombus

, including DNA sequencesand morphology, by Cameron & Williams (2003) andsequence analysis of 37 of the 43 recognized

Pyrobom-bus

species by Hines, Cameron & Williams (2006). Inthe present study, we report on the full hierarchy of

Bombus

relationships for most of the world fauna,including rare and potentially endangered speciessuch as

Bombus franklini

and

Bombus occidentalis

(Thorp, 2005), exploiting the large number of charac-ters available from DNA sequences collected frommultiple genes.

MATERIAL AND METHODS

T

AXA

EXAMINED

A total of 218

Bombus

taxa, representing most of thespecies from all 38 subgenera listed by Williams(1998), was sampled for analysis and their locality,collector, and voucher numbers recorded (Table 1).Intraspecific variants and taxa of controversial speciesstatus (Williams, 1998) were included when possible(Table 1). Outgroups were represented by exemplarsselected from each of the other tribes of corbiculatebees (Table 1). Identification of taxa received fromother collectors was verified by the authors beforesequencing. Voucher specimens for all taxa used in themolecular investigation are deposited at the IllinoisNatural History Survey, Urbana, Illinois. Additionalvouchers from the morphological character examina-tion are maintained by PHW at the Natural HistoryMuseum, London.

Page 3: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY

163

© 2007 The Linnean Society of London,

Biological Journal of the Linnean Society,

2007,

91

, 161–188

Tab

le 1

.

Bom

bus

an

d ou

tgro

up

taxa

exa

min

ed,

thei

r co

llec

tor,

coll

ecti

on l

ocal

itie

s, v

ouch

er n

um

bers

, an

d G

enB

ank

acce

ssio

n n

um

bers

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1

α

Ops

inA

rgK

PE

PC

K

Ag

Alp

igen

obom

bus

S

kori

kov

(6/5

)

brev

icep

s

Sm

ith

Ch

ian

g M

ai, T

hai

lan

dN

. War

rit

190

DQ

7879

83D

Q78

8165

DQ

7883

20D

Q78

8408

EF

0509

15

grah

ami

(F

riso

n)

Mei

gu, S

ich

uan

, Ch

ina

T. Y

a27

3E

F03

2347

EF

0323

7E

F03

2389

EF

0324

08E

F05

0916

kash

mir

ensi

s

Fri

ese

Hon

gyu

an, S

ich

uan

, Ch

ina

SC

et a

l

. 12

1D

Q78

8040

DQ

7882

15D

Q78

8342

DQ

7884

47E

F05

0913

nob

ilis

Fri

ese

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et a

l

. 09

8D

Q78

8071

DQ

7882

45A

Y73

9485

H

DQ

7884

73E

F05

0912

wu

rflen

ii

Rad

oszk

owsk

iO

berg

urg

l, A

ust

ria

SC

, JW

001

DQ

7881

37D

Q78

8305

AF

4930

07

K

AF

4928

73

K

EF

0509

14

Al

Alp

inob

ombu

s

S

kori

kov

(5/5

)

alpi

nu

s

(L

inn

aeu

s)G

urg

ltal

, Au

stri

aS

C, J

W02

9D

Q78

7963

DQ

7881

46A

Y73

9452

H

DQ

7883

93E

F05

0871

balt

eatu

s

Dah

lbom

Lap

plan

d C

o., S

wed

enB

. Ced

erbe

rg03

9D

Q78

7974

DQ

7881

57A

Y73

9455

H

DQ

7884

02E

F05

0870

hyp

erbo

reu

s

Sch

önh

err

Dal

arn

a C

o., S

wed

enB

. Ced

erbe

rg07

0D

Q78

8028

DQ

7882

04A

Y73

9470

H

DQ

7884

40E

F05

0868

neo

bore

us

Sla

den

Ala

ska,

US

AA

. Sch

oll

188

DQ

7880

68D

Q78

8242

AY

7394

84

H

DQ

7884

70E

F05

0869

pola

ris

Cu

rtis

Lap

plan

d C

o., S

wed

enH

. Elm

quis

t22

3D

Q78

8083

AF

4929

70

K

AF

4930

37

K

AF

4929

03

K

EF

0508

72

Bi

Bom

bias

Rob

erts

on

(2/2

)

auri

com

us

(R

ober

tson

)Il

lin

ois,

US

AH

. Hin

es06

2D

Q78

7972

DQ

7881

54A

Y73

9454

H

AF

4928

92

K

EF

0510

14

nev

aden

sis

Cre

sson

Alb

erta

, Can

ada

S. C

amer

on13

9D

Q78

8069

DQ

7882

43D

Q78

8352

DQ

7884

71E

F05

1015

Bo

Bom

bus

Lat

reil

le

(10/

10)

affi

nis

Cre

sson

Illi

noi

s, U

SA

H. H

ines

167

DQ

7879

61D

Q78

8144

AY

7394

51

H

DQ

7883

91E

F05

0860

cryp

taru

m

(Fa

bric

ius)

*E

rzin

can

Pro

v., T

urk

eyP

R

et a

l

. 12

7D

Q78

7995

DQ

7881

75A

Y73

9461

H

DQ

7884

16E

F05

0855

fran

klin

i

(F

riso

n)

Ore

gon

, US

AR

. Th

orp

256

EF

0323

45E

F03

2366

EF

0323

85E

F03

2403

EF

0508

61

hyp

ocri

ta

Pér

ezK

yush

u, J

apan

S. H

uan

g12

3D

Q78

8030

DQ

7882

06A

F49

3023

K

AF

4928

89

K

EF

0508

64

ign

itu

s

Sm

ith

Bei

jin

g, C

hin

aS

C

et a

l

. 09

6D

Q78

8031

DQ

7882

07A

F49

3032

K

AF

4928

98

K

EF

0508

66

luco

rum

(L

inn

aeu

s)

E

. Pyr

enee

s, F

ran

ceH

H, P

R21

7D

Q78

8051

DQ

7882

25A

F49

3021

K

AF

4928

87

K

EF

0508

62

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et a

l

. 18

4D

Q78

8050

DQ

7882

24A

Y73

9479

H

DQ

7884

56E

F05

0863

mod

erat

us

Cre

sson

*A

lber

ta, C

anad

aS.

Cam

eron

163

DQ

7880

62D

Q78

8236

AY

7394

81

H

DQ

7884

64E

F05

0856

occi

den

tali

s

Gre

ene*

New

Mex

ico,

US

AS

C, J

W02

5D

Q78

8476

EF

0508

58M

onta

na,

US

AS.

Gar

ner

026

DQ

7880

74D

Q78

8248

AY

7394

86

H

pata

giat

us

Nyl

ande

rH

ongy

uan

, Sic

hu

an, C

hin

aS

C

et a

l

. 11

1D

Q78

8078

DQ

7882

52A

F49

3020

K

AF

4928

86

K

EF

0508

57

spor

adic

us

Nyl

ande

rL

appl

and

Co.

, Sw

eden

B. C

eder

berg

193

DQ

7881

08D

Q78

8279

AY

7394

91

H

DQ

7885

01E

F05

0867

terr

estr

is

(L

inn

aeu

s)

San

Qu

íric

o, I

taly

SC

, JW

003

DQ

7881

18D

Q78

8288

AF

4930

22

K

AF

4928

88

K

EF

0508

65

terr

icol

a

Kir

by

�O

nta

rio,

Can

ada

J. W

hit

fiel

d20

5D

Q78

8119

DQ

7882

89A

F49

3019

KA

F49

2885

KE

F05

0859

tun

icat

us

Sm

ith

�U

ttar

anch

al, I

ndi

aM

.Sai

ni

248

DQ

7881

24

Br

Bra

chyc

eph

alib

ombu

sW

illi

ams

(2/1

)br

ach

ycep

hal

us

Han

dlir

sch

Jali

sco,

Mex

ico

F. N

ogu

era

030

DQ

7879

82G

uer

rero

, Mex

ico

H. H

ines

230

DQ

7881

63D

Q78

8319

DQ

7884

07E

F05

0889

Cc

Coc

cin

eobo

mbu

s S

kori

kov

(2/2

)ba

eri

Vac

hal

�P

un

o, P

eru

J. A

rcas

174

DQ

7879

73D

Q78

8156

DQ

7883

17D

Q78

8401

EF

0508

86co

ccin

eus

Fri

ese

Hu

aroc

hir

i, P

eru

C. R

asm

uss

en13

7D

Q78

7991

DQ

7881

72D

Q78

8323

DQ

7884

13E

F05

0885

Cf

Con

fusi

bom

bus

Bal

l (1

/1)

con

fusu

s S

chen

ck �

Dor

res,

Fra

nce

HH

, PR

083

DQ

7879

92D

Q78

8173

DQ

7883

24D

Q78

8414

EF

0510

16

Cr

Cro

tch

iibo

mbu

s F

ran

klin

(1/

1)cr

otch

ii C

ress

onC

alif

orn

ia, U

SA

D. Z

un

gri

071

DQ

7879

94A

F49

2973

AF

4930

40K

AF

4929

06K

EF

0508

82

Page 4: A comprehensive phylogeny of the bumble bees ( Bombus

164 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Cu

Cu

llu

man

obom

bus

Vog

t (4

/3)

apol

lin

eus

Sko

riko

v*E

rzu

rum

Pro

v., T

urk

eyP

R e

t al

. 08

4D

Q78

7964

DQ

7881

47D

Q78

8313

DQ

7883

94E

F05

0890

rufo

cin

ctu

s C

ress

onA

lber

ta, C

anad

aA

. Sch

oll

186

DQ

7880

97D

Q78

8268

AF

4930

34K

AF

4929

00K

EF

0508

92se

men

ovie

llu

s S

kori

kov

Bra

nde

nbu

rg, G

erm

any

B. C

eder

berg

236

DQ

7881

01D

Q78

8271

DQ

7883

69D

Q78

8494

EF

0508

91

Ds

Das

ybom

bus

Lab

ougl

e &

Aya

la (

2/2)

mac

greg

ori

Lab

ougl

e &

Aya

laG

uer

rero

, Mex

ico

R. A

yala

231

DQ

7880

53D

Q78

8226

DQ

7883

47D

Q78

8457

EF

0508

81h

and

lirs

chi

Fri

ese

Pas

co, P

eru

D. T

akiy

a13

2D

Q78

8021

DQ

7881

97D

Q78

8336

DQ

7884

35E

F05

0887

Dv

Div

erso

bom

bus

Sko

riko

v (4

/4)

div

ersu

s S

mit

hK

yush

u, J

apan

S. H

uan

g12

0D

Q78

8000

AF

4929

61K

AF

4930

28K

AF

4928

94K

EF

0510

10lo

ngi

pes

Fri

ese

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

194

DQ

7880

49D

Q78

8223

DQ

7883

46D

Q78

8455

EF

0510

09tr

ifas

ciat

us

Sm

ith

Him

ach

al P

rade

sh, I

ndi

aD

. Joh

nso

n01

5D

Q78

8122

AF

4929

18K

AF

4929

85K

AF

4928

51K

EF

0510

07u

ssu

ren

sis

Rad

oszk

owsk

iS.

Kor

ea, M

ula

n V

alle

yP.

Tri

poti

n13

0A

F36

4829

BA

F49

2919

KA

F49

2986

KA

F49

2852

KE

F05

1008

wil

eman

i C

ocke

rell

*M

eifa

ng,

Tai

wan

H. T

own

es18

2D

Q78

8135

Ev

Eve

rsm

ann

ibom

bus

Sko

riko

v (1

/1)

pers

icu

s R

ados

zkow

ski

Kar

s P

rov.

, Tu

rkey

PR

et

al.

054

DQ

7880

80D

Q78

8255

DQ

7883

58D

Q78

8480

EF

0509

35

Ex

Exi

lobo

mbu

s S

kori

kov

(1/1

)ex

il (

Sko

riko

v)H

övsg

öl N

uu

r, M

ongo

lia

NH

M23

2D

Q78

8004

DQ

7881

85D

Q78

8330

DQ

7884

25E

F05

0962

Fv

Fer

vid

obom

bus

Sko

riko

v (1

9/18

)at

ratu

s F

ran

klin

Rib

eirã

o P

reto

, Bra

zil

R. Z

ucc

hi

305

AY

2683

98C

DQ

7881

52A

Y26

8376

CD

Q78

8398

EF

0509

43be

llic

osu

s S

mit

h �

Bu

enos

Air

es, A

rgen

tin

aA

. Roi

g22

1A

Y26

8399

CD

Q78

8159

AY

2683

77C

DQ

7884

04E

F05

0956

bras

ilie

nsi

s L

epel

etie

rP

aran

á, B

razi

lL

a R

oca

219

AY

2684

00C

DQ

7881

64A

Y26

8378

CE

F05

0950

cali

forn

icu

s S

mit

h*

Alb

erta

, Can

ada

R. O

wen

306

AY

2684

01C

DQ

7881

67A

Y26

8379

CD

Q78

8410

EF

0509

57d

ahlb

omii

Gu

érin

-Mén

evil

leA

rau

co P

rov.

, Ch

ile

C. C

arlt

on01

6D

Q78

7996

AF

4929

31K

AF

4929

98K

AF

4928

64K

EF

0509

40d

igre

ssu

s (M

illi

ron

)R

. Gra

nde

de

Oro

sí, M

exic

oR

. Del

gado

307

AY

2684

03C

DQ

7881

78A

Y26

8381

CD

Q78

8418

EF

0509

59d

ilig

ens

Sm

ith

Jali

sco,

Mex

ico

F. N

ogu

era

171

AY

2684

04C

DQ

7881

79A

Y26

8382

CD

Q78

8419

EF

0509

55ex

cell

ens

Sm

ith

Ara

gua,

Ven

ezu

ela

J. G

arc’

a30

8A

Y26

8405

CD

Q78

8184

AY

2683

83C

DQ

7884

24E

F05

0942

ferv

idu

s (F

abri

ciu

s)M

isso

uri

, US

AS.

Cam

eron

309

AY

2684

06C

AF

4929

30K

AF

4929

97K

AF

4928

63K

EF

0509

58m

ediu

s C

ress

onC

hia

pas,

Mex

ico

RA

, RB

222

AY

2684

07C

DQ

7882

28A

Y26

8385

CD

Q78

8459

EF

0509

51m

exic

anu

s C

ress

onC

hia

pas,

Mex

ico

RA

, RB

220

AY

2684

08C

DQ

7882

32A

Y26

8386

CD

Q78

8461

EF

0509

52m

orio

(S

wed

eru

s)P

orto

Ale

gre,

Arg

enti

na

D. W

ittm

an31

0A

Y26

8409

CD

Q78

8239

AY

2683

87C

DQ

7884

67E

F05

0941

opif

ex S

mit

hP

un

o, P

eru

J. A

rcas

175

DQ

7880

75D

Q78

8249

DQ

7883

56D

Q78

8477

EF

0509

54pe

nsy

lvan

icu

s (D

eGee

r)M

isso

uri

, US

AS.

Cam

eron

317

EF

0323

52E

F03

2374

EF

0323

92E

F03

2411

EF

0509

48M

isso

uri

, US

AS.

Cam

eron

311

EF

0323

51E

F03

2375

EF

0323

93E

F03

2412

EF

0509

49pu

llat

us

Fra

nkl

inP

itil

la, C

osta

Ric

aS.

Cam

eron

312

AY

2684

11C

DQ

7882

61A

Y26

8389

CD

Q78

8486

EF

0509

45so

nor

us

Say

*A

rizo

na,

US

AT.

Gri

swol

d05

1D

Q82

2475

DQ

7882

77E

F03

2394

DQ

7885

00E

F05

0946

Mex

ico

S. C

amer

on31

8A

Y26

8412

CE

F03

2376

AY

2683

90C

EF

0324

10E

F05

0947

stei

nd

ach

ner

i H

andl

irsc

hM

orel

os, M

exic

oR

. Aya

la31

3A

Y26

8413

CD

Q78

8280

AY

2683

91C

DQ

7885

02E

F05

0953

tran

sver

sali

s (O

livi

er)

Mad

re d

e D

ios,

Per

uS.

Cam

eron

314

AY

2684

14C

DQ

7882

91A

Y26

8392

CD

Q78

8510

EF

0509

44tr

inom

inat

us

Dal

la T

orre

Oax

aca,

Mex

ico

H. H

ines

229

DQ

7881

23D

Q78

8292

DQ

7883

79D

Q78

8511

EF

0509

60w

eisi

Fri

ese

Jali

sco,

Mex

ico

F. N

ogu

era

315

AY

2684

15C

DQ

7883

03A

Y26

8393

CD

Q78

8520

EF

0509

61

Fs

Fes

tivo

bom

bus

Tka

lck

(1

/1)

fest

ivu

s S

mit

hG

uiz

hou

Pro

v., C

hin

aM

. Yu

n03

2D

Q78

8007

DQ

7881

87Q

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 10

4A

Y73

9465

HD

Q78

8427

EF

0509

10

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Tab

le 1

.C

onti

nu

ed

Page 5: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 165

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Fr

Fra

tern

obom

bus

Sko

riko

v (1

/1)

frat

ern

us

(Sm

ith

)Il

lin

ois,

US

AH

. Hin

es18

3D

Q78

8013

AF

4929

74K

AF

4930

41K

AF

4929

07K

EF

0508

84

Fn

Fu

neb

ribo

mbu

s S

kori

kov

(1/1

)fu

neb

ris

Sm

ith

Aba

nca

y, P

eru

C. R

asm

uss

en12

8D

Q78

8016

DQ

7881

94D

Q78

8334

DQ

7884

33E

F05

0883

Kl

Kal

lobo

mbu

s D

alla

T

orre

(1/

1)so

roee

nsi

s (F

abri

ciu

s)E

. Pyr

enee

s, F

ran

ceH

H, P

R13

6D

Q78

8107

DQ

7882

78A

F49

3008

KA

F49

2874

KE

F05

1013

Ls

Lae

sobo

mbu

s K

rüge

r (1

/1)

laes

us

Mor

awit

zK

ars

Pro

v., T

urk

eyP

R e

t al

. 05

2D

Q78

8044

DQ

7882

18D

Q78

8344

DQ

7884

51E

F05

0936

Mg

Meg

abom

bus

Dal

la

Tor

re (

14/1

2)ar

gill

aceu

s (S

copo

li)

Kay

seri

Pro

v., T

urk

eyP

R e

t al

. 05

8D

Q78

7967

DQ

7881

50A

Y73

9453

HD

Q78

8396

EF

0510

01co

nso

brin

us

Dah

lbom

�A

ltai

Mts

, Kaz

akh

stan

P. M

ardu

lyn

261

EF

0323

54E

F03

2379

AY

2671

50K

AY

2671

66K

EF

0509

94ge

rsta

ecke

ri M

oraw

itz

E. P

yren

ees,

Fra

nce

HH

, PR

065

DQ

7880

17D

Q78

8195

DQ

7883

35D

Q78

8434

EF

0510

03h

orto

rum

(L

inn

aeu

s)T

osca

na,

Ita

lyP

R e

t al

. 00

5D

Q78

8024

DQ

7882

00A

F49

2987

KA

F49

2853

KE

F05

0999

kore

anu

s (S

kori

kov)

Kan

gwon

do, S

. Kor

eaP.

Tri

poti

n27

7E

F03

2355

AF

4929

69K

AF

4930

36K

AF

4929

02K

EF

0509

95po

rtch

insk

y R

ados

zkow

ski

Art

vin

Pro

v., T

urk

eyP

R e

t al

. 07

2D

Q78

8085

DQ

7882

59D

Q78

8361

DQ

7884

84E

F05

1000

reli

gios

us

(Fri

son

)Q

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 14

1D

Q78

8091

DQ

7882

64D

Q78

8364

DQ

7884

89E

F05

0998

rud

erat

us

(Fab

rici

us)

Val

divi

a P

rov.

, Ch

ile

C. C

arlt

on01

8D

Q78

8096

AF

4929

77K

AF

4930

44K

AF

4929

10K

EF

0510

02se

curu

s (F

riso

n)

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

142

DQ

7881

00D

Q78

8270

DQ

7883

68D

Q78

8493

EF

0509

97su

prem

us

Mor

awit

zQ

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 10

1D

Q78

8112

DQ

7882

84D

Q78

8375

DQ

7885

05E

F05

1004

sush

kin

i (S

kori

kov)

Hon

gyu

an, S

ich

uan

, Ch

ina

SC

et

al.

143

DQ

7881

13A

F49

2921

KA

F49

2988

KA

F49

2854

KE

F05

0996

tich

enko

i (S

kori

kov)

AF

4929

22K

AF

4929

89K

AF

4928

55K

Ml

Mel

anob

ombu

s D

alla

T

orre

(14

/10)

alag

esia

nu

s R

ein

ig*

Art

vin

Pro

v., T

urk

eyP

R e

t al

. 08

5D

Q78

7962

DQ

7881

45D

Q78

8312

DQ

7883

92E

F05

0903

erzu

rum

ensi

s (Ö

zbek

)*A

rtvi

n P

rov.

, Tu

rkey

PR

et

al.

126

DQ

7880

03D

Q78

8183

AY

7394

63H

DQ

7884

23E

F05

0899

form

osel

lus

(Fri

son

)A

F49

2939

KA

F49

3006

KA

F49

2872

K

fris

ean

us

Sko

riko

vQ

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 10

5D

Q78

8015

DQ

7881

93A

Y73

9467

HD

Q78

8432

EF

0509

06in

cert

us

Mor

awit

zE

rzu

rum

Pro

v., T

urk

eyP

R e

t al

. 08

6D

Q78

8035

DQ

7882

11D

Q78

8341

DQ

7884

43E

F05

0901

keri

ensi

s M

oraw

itz

Hon

gyu

an, S

ich

uan

, Ch

ina

SC

et

al.

114

DQ

7880

41D

Q78

8216

AY

7394

74H

DQ

7884

48E

F05

0904

lad

akh

ensi

s R

ich

ards

Aba

, Sic

hu

an, C

hin

aS

C e

t al

. 15

8D

Q78

8043

AY

7395

75H

AY

7394

75H

DQ

7884

50E

F05

0905

lapi

dar

ius

(Lin

nae

us)

�S

an Q

uír

ico,

Ita

lyS

C, J

W00

6D

Q78

8045

DQ

7882

19A

F49

3005

KA

F49

2871

KE

F05

0902

min

iatu

s B

ingh

amH

imac

hal

Pra

desh

, In

dia

M. S

ain

i24

4D

Q78

8059

DQ

7882

33D

Q78

8348

DQ

7884

62E

F05

0908

rufo

fasc

iatu

s S

mit

hH

ongy

uan

, Sic

hu

an, C

hin

aS

C e

t al

. 13

3D

Q78

8098

DQ

7882

69A

Y73

9489

HD

Q78

8492

EF

0509

07si

chel

ii R

ados

zkow

ski

Obe

rgu

rgl,

Au

stri

aS

C, J

W03

4D

Q78

8103

DQ

7882

73D

Q78

8371

DQ

7884

96E

F05

0900

sim

illi

mu

s S

mit

h �

Him

ach

al P

rade

sh, I

ndi

aM

. Sai

ni

243

DQ

7881

04D

Q78

8274

DQ

7883

72D

Q78

8497

EF

0509

09

Md

Men

dac

ibom

bus

Sko

riko

v (1

2/7)

avin

ovie

llu

s (S

kori

kov)

�H

imac

hal

Pra

desh

, In

dia

M. S

ain

i24

2A

Y26

8416

CD

Q78

8155

AY

2684

16C

DQ

7884

00E

F05

1020

con

vexu

s W

ang

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

109

DQ

7879

93D

Q78

8174

DQ

7883

25D

Q78

8415

EF

0510

21d

efec

tor

Sko

riko

vA

F49

2958

KA

F49

3025

KA

F49

2891

K

han

dli

rsch

ian

us

Vog

tA

rtvi

n P

rov.

, Tu

rkey

PR

et

al.

087

DQ

7880

22D

Q78

8198

DQ

7883

37D

Q78

8436

EF

0510

17m

end

ax G

erst

aeck

erG

urg

ltal

, Au

stri

aS

C, J

W01

9D

Q78

8057

AY

7395

84H

AF

4930

24K

AF

4928

90K

EF

0510

19sh

apos

hn

ikov

i S

kori

kov

Art

vin

Pro

v., T

urk

eyP

R e

t al

. 09

9D

Q78

8102

DQ

7882

72D

Q78

8370

DQ

7884

95E

F05

1018

wal

ton

i C

ocke

rell

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

102

DQ

7881

34D

Q78

8302

DQ

7883

85D

Q78

8519

EF

0510

22

Mc

Mu

cid

obom

bus

Krü

ger

(1/1

)m

uci

du

s K

rüge

rE

. Pyr

enee

s, F

ran

ceP

R e

t al

. 05

9D

Q78

8066

AF

4929

35K

AF

4930

02K

AF

4928

68K

EF

0509

34

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Page 6: A comprehensive phylogeny of the bumble bees ( Bombus

166 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Ob

Obe

rtob

ombu

s R

ein

ig

(2/1

)ob

erti

Mor

awit

zM

t. K

aila

s, T

ibet

T. B

arde

ll23

4D

Q78

8073

DQ

7882

47D

Q78

8355

DQ

7884

75E

F05

0898

Or

Ori

enta

libo

mbu

s R

ich

ards

(3/

2)fu

ner

ariu

s S

mit

hL

uoj

ish

an, S

ich

uan

, Ch

ina

P. W

illi

ams

270

EF

0323

56E

F03

2378

EF

0323

96E

F03

2415

EF

0510

12h

aem

orrh

oid

alis

Sm

ith

Ch

ian

g M

ai P

rov.

, Th

aila

nd

N. W

arri

t19

1D

Q78

8020

AF

4929

35K

AF

4930

02K

AF

4928

68K

EF

0510

11

Pe

Pre

ssib

ombu

s F

riso

n

(1/1

)pr

essu

s (F

riso

n)

Utt

aran

chal

, In

dia

M. S

ain

i23

9D

Q78

8088

EF

0323

68E

F05

0837

Ps

Psi

thyr

us

Lep

elet

ier

(29/

21)

ash

ton

i (C

ress

on)

�O

ttaw

a, C

anad

aJ.

Wh

itfi

eld

164

DQ

7879

69A

F49

2983

KA

F49

3050

KA

F49

2916

KE

F05

0978

barb

ute

llu

s (K

irby

) �

Upp

lan

d C

o., S

wed

enB

. Ced

erbe

rg07

3D

Q78

7975

DQ

7881

58D

Q78

8318

DQ

7884

03E

F05

0972

boh

emic

us

(Sei

dl)

�E

. Pyr

enee

s, F

ran

ceP

R e

t al

. 05

5D

Q78

7980

AF

4929

25K

AF

4929

92K

AF

4928

58K

EF

0509

79ca

mpe

stri

s (P

anze

r)D

alar

na

Co.

, Sw

eden

B. C

eder

berg

040

DQ

7879

86A

F49

2927

KA

F49

2994

KA

F49

2860

KE

F05

0974

chin

ensi

s (M

oraw

itz)

�Q

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 15

2D

Q78

7988

DQ

7881

70D

Q78

8321

DQ

7884

12E

F05

0982

citr

inu

s (S

mit

h)

�V

irgi

nia

, US

AA

. Dea

ns

170

DQ

7879

90D

Q78

8171

DQ

7883

22A

Y26

7169

KE

F05

0975

core

anu

s (Y

asu

mat

su)

AF

3648

30B

corn

utu

s (F

riso

n)

�N

ingn

an, S

ich

uan

, Ch

ina

T. Y

a27

1E

F03

2353

EF

0323

77E

F03

2395

EF

0324

13E

F05

0984

fern

ald

ae (

Fra

nkl

in)

�N

ew M

exic

o, U

SA

SC

, JW

088

DQ

7880

06A

F49

2926

KA

F49

2993

KA

F49

2859

KE

F05

0969

flav

idu

s E

vers

man

n �

Lap

plan

d C

o., S

wed

enB

. Ced

erbe

rg04

1D

Q78

8010

DQ

7881

89D

Q78

8332

DQ

7884

29E

F05

0970

insu

lari

s (S

mit

h)

Cal

ifor

nia

, US

AH

. Hin

es16

2D

Q78

8038

AF

4929

75K

AF

4930

42K

AF

4929

08K

EF

0509

76m

axil

losu

s K

lug

�K

ayse

ri P

rov.

, Tu

rkey

PR

et

al.

074

DQ

7880

54D

Q78

8227

AY

7394

80H

DQ

7884

58E

F05

0973

nor

vegi

cus

(Spa

rre-

Sch

nei

der)

Dal

arn

a C

o., S

wed

enB

. Ced

erbe

rg08

9D

Q78

8072

DQ

7882

46D

Q78

8354

DQ

7884

74E

F05

0971

quad

rico

lor

(Lep

elet

ier)

�U

ppla

nd

Co.

, Sw

eden

B. C

eder

berg

090

DQ

7880

90D

Q78

8263

DQ

7883

63D

Q78

8488

EF

0509

66ru

pest

ris

(Fab

rici

us)

Upp

lan

d C

o., S

wed

enB

. Ced

erbe

rg00

9D

Q78

8099

AF

4929

28K

AF

4929

95K

AF

4928

61K

EF

0509

83sk

orik

ovi

(Pop

ov)

�A

ba, S

ich

uan

, Ch

ina

SC

et

al.

159

DQ

7881

06D

Q78

8276

DQ

7883

73D

Q78

8499

EF

0509

68su

ckle

yi G

reen

eC

olor

ado,

US

AS

C, J

W09

1D

Q78

8110

DQ

7882

82D

Q78

8374

DQ

7885

03E

F05

0981

sylv

estr

is (

Lep

elet

ier)

Upp

lan

d C

o., S

wed

enB

. Ced

erbe

rg02

0D

Q78

8115

DQ

7882

86D

Q78

8377

DQ

7885

07E

F05

0967

tibe

tan

us

(Mor

awit

z) �

Min

Sh

an, S

ich

uan

, Ch

ina

SC

et

al.

134

DQ

7881

20D

Q78

8290

DQ

7883

78D

Q78

8509

EF

0509

85va

riab

ilis

(C

ress

on)

�M

isso

uri

, US

AS.

Cam

eron

316

AY

2684

19C

DQ

7882

95A

Y26

8397

CD

Q78

8513

EF

0509

77ve

stal

is (

Geo

ffro

y) �

Ken

t, E

ngl

and

P. W

illi

ams

169

DQ

7881

28D

Q78

8297

AY

7394

95H

DQ

7885

15E

F05

0980

Pr

Pyr

obom

bus

Dal

laal

boan

alis

Fra

nkl

in*

Ala

ska,

US

AS

AC

, JB

W25

7E

F03

2343

EF

0323

60E

F03

2380

EF

0323

98E

F05

0813

Tor

re (

43/4

0)ar

den

s S

mit

h �

Dae

-Don

g, S

. Kor

eaD

. Kim

131

DQ

7879

66D

Q78

8149

AF

4930

31K

AF

4928

97K

EF

0508

23av

anu

s (S

kori

kov)

*L

uoj

ish

an, S

ich

uan

, Ch

ina

P. W

illi

ams

272

EF

0323

44E

F03

2365

EF

0323

84E

F03

2402

EF

0508

30be

atic

ola

(Tka

lck

)A

F49

2963

KA

F49

3030

KA

F49

2896

K

bifa

riu

s C

ress

onN

ew M

exic

o, U

SA

M. H

ause

r20

8D

Q78

7977

DQ

7881

60A

F49

3010

KA

F49

2876

KE

F05

0838

bim

acu

latu

s C

ress

onA

rkan

sas,

US

AS.

Cam

eron

218

DQ

7879

78D

Q78

8161

AY

7394

56H

DQ

7884

05E

F05

0847

biro

i V

ogt

Ket

men

Mts

., K

azak

hst

anM

. Hau

ser

210

DQ

7879

79D

Q78

8162

AY

7394

57H

DQ

7884

06E

F05

0825

brod

man

nic

us

Vog

tA

rtvi

n P

rov.

, Tu

rkey

PR

et

al.

077

DQ

7879

84D

Q78

8166

AY

7394

58C

DQ

7884

09E

F05

0818

cali

gin

osu

s (F

riso

n)

Cal

ifor

nia

, US

AH

. Hin

es15

0D

Q78

7985

DQ

7881

68A

F49

3035

KA

F49

2901

KE

F05

0853

cen

tral

is C

ress

onW

ash

ingt

on, U

SA

J. W

hit

fiel

d14

6D

Q78

7987

DQ

7881

69A

Y73

9459

CD

Q78

8411

EF

0508

52

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Tab

le 1

.C

onti

nu

ed

Page 7: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 167

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

cin

gula

tus

Wah

lber

gL

appi

, Fin

lan

dP.

Ras

mon

t21

2D

Q78

7989

AF

4929

48K

AF

4930

15K

AF

4928

81K

EF

0508

12ep

hip

piat

us

Say

Oax

aca,

Mex

ico

R. A

yala

042

DQ

7880

02C

hia

pas,

Mex

ico

M. G

uzm

an19

8D

Q78

8182

AY

7394

62H

DQ

7884

22E

F05

0844

flav

esce

ns

(Sm

ith

)M

ei-f

ang,

Tai

wan

H. T

own

es18

1D

Q78

8009

AF

4929

50K

AF

4930

17K

AF

4928

83K

EF

0508

24fl

avif

ron

s C

ress

on �

Cal

ifor

nia

, US

AJ.

Wh

itfi

eld

095

DQ

7880

11D

Q78

8190

AF

4930

16K

AF

4928

82K

EF

0508

50fr

igid

us

Sm

ith

Ala

ska,

US

AA

. Sch

oll

185

DQ

7880

14D

Q78

8192

AY

7394

66H

DQ

7884

31E

F05

0811

hae

mat

uru

s K

riec

hba

um

er �

Tra

bzon

Pro

v., T

urk

eyP.

Ras

mon

t21

1D

Q78

8019

EF

0323

64E

F05

0829

hu

nti

i G

reen

eW

ash

ingt

on, U

SA

J. W

hit

fiel

d15

1D

Q78

8027

DQ

7882

03A

F49

3045

KA

F49

2911

KE

F05

0840

hyp

nor

um

(L

inn

aeu

s)K

löst

erle

, Au

stri

aS

C, J

W07

8D

Q78

8029

DQ

7882

05A

F49

3013

KA

F49

2879

KE

F05

0826

Qio

ngl

ai S

h, S

ich

uan

,Ch

ina

SC

et

al.

207

EF

0323

59E

F03

2363

EF

0323

83E

F03

2401

EF

0508

27im

pati

ens

Cre

sson

Illi

noi

s, U

SA

H. H

ines

060

DQ

7880

33D

Q78

8209

AF

4930

09K

AF

4928

75K

EF

0508

42in

firm

us

(Tka

lck

) �

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

157

DQ

7880

36D

Q78

8212

AY

7394

71H

DQ

7884

44E

F05

0836

infr

equ

ens

(Tka

lck

)*Q

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 14

0D

Q78

8037

DQ

7882

13A

Y73

9472

HD

Q78

8445

EF

0508

31jo

nel

lus

(Kir

by)

Lap

plan

d C

o., S

wed

enB

. Ced

erbe

rg07

9D

Q78

8039

DQ

7882

14A

Y73

9473

HD

Q78

8446

EF

0508

14la

ppon

icu

s (F

abri

ciu

s)L

appl

and

Co.

, Sw

eden

B. C

eder

berg

103

DQ

7880

46D

Q78

8220

DQ

7883

45D

Q78

8452

EF

0508

45le

mn

isca

tus

Sko

riko

vQ

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 16

1D

Q78

8047

DQ

7882

21A

Y73

9477

HD

Q78

8453

EF

0508

34le

pid

us

Sko

riko

vQ

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 15

5D

Q78

8048

DQ

7882

22A

Y73

9478

HD

Q78

8454

EF

0508

35lu

teip

es R

ich

ards

Pok

har

a, N

epal

S. M

arti

n19

5D

Q78

8052

mel

anop

ygu

s N

ylan

der

Cal

ifor

nia

, US

AH

. Hin

es21

5D

Q78

8055

DQ

7882

29A

F49

3011

KA

F49

2877

KE

F05

0849

mix

tus

Cre

sson

Was

hin

gton

, US

AS

C, J

W02

4D

Q78

8060

DQ

7882

34A

F49

3014

KA

F49

2880

KE

F05

0816

mod

estu

s E

vers

man

nA

ba, S

ich

uan

, Ch

ina

SC

et

al.

160

DQ

7880

63D

Q78

8237

AY

7394

82H

DQ

7884

65E

F05

0820

�S.

Alt

ai, K

azak

hst

anP.

Mar

duly

n23

8E

F03

2358

EF

0323

62E

F03

2382

EF

0324

00E

F05

0821

mon

tico

la S

mit

hE

. Pyr

enee

s, F

ran

ceP

R e

t al

. 17

6D

Q78

8064

DQ

7882

38A

Y73

9483

HD

Q78

8466

EF

0508

48pa

rth

eniu

s R

ich

ards

Him

ach

al P

rade

sh, I

ndi

aM

. Sai

ni

241

DQ

7880

76D

Q78

8250

DQ

7883

57D

Q78

8478

EF

0508

32pe

rple

xus

Cre

sson

Ott

awa,

Can

ada

J. W

hit

fiel

d16

6D

Q78

8079

DQ

7882

54A

F49

3012

KA

F49

2878

KE

F05

0828

pici

pes

Ric

har

dsQ

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 18

0D

Q78

8082

DQ

7882

57A

Y73

9487

HD

Q78

8482

EF

0508

33pr

ator

um

(L

inn

aeu

s)K

löst

erle

, Au

stri

aS

C, J

W07

5D

Q78

8087

AF

4929

66K

AF

4930

33K

AF

4928

99K

EF

0508

19py

ren

aeu

s P

érez

Gu

rglt

al, A

ust

ria

SC

, JW

035

DQ

7880

89D

Q78

8262

AY

7394

88H

DQ

7884

87E

F05

0822

san

der

son

i F

ran

klin

Isle

au

Hau

t, M

ain

e, U

SA

SC

, JW

255

EF

0323

46E

F03

2361

EF

0323

81E

F03

2399

EF

0508

15si

tken

sis

Nyl

ande

rC

alif

orn

ia, U

SA

H. H

ines

144

DQ

7881

05D

Q78

8275

AY

7394

90H

DQ

7884

98E

F05

0817

son

ani

(Fri

son

)*A

F49

2951

KA

F49

3018

KA

F49

2884

K

sylv

icol

a K

irby

�*

New

Mex

ico,

US

AS

C, J

W10

8D

Q78

8116

DQ

7882

87A

Y73

9493

HD

Q78

8508

EF

0508

47te

rnar

ius

Say

Nov

a S

coti

a, C

anad

aS

C, J

W11

6D

Q78

8117

AF

4929

79K

AF

4930

46K

AF

4929

12K

EF

0508

39va

gan

s S

mit

hW

isco

nsi

n, U

SA

J. W

hit

fiel

d04

4D

Q78

8125

DQ

7882

93D

Q78

8380

DQ

7885

12E

F05

0854

van

dyk

ei (

Fri

son

)W

ash

ingt

on, U

SA

J. W

hit

fiel

d14

9D

Q78

8126

DQ

7882

94A

F49

3049

KA

F49

2915

KE

F05

0851

vosn

esen

skii

Rad

oszk

owsk

i �

Was

hin

gton

, US

AJ.

Wh

itfi

eld

112

DQ

7881

33D

Q78

8301

AF

4930

47K

AF

4929

13K

EF

0508

41w

ilm

atta

e C

ocke

rell

*C

hia

pas,

Mex

ico

R. V

anda

me

199

DQ

7881

36D

Q78

8304

AY

7394

96H

DQ

7885

21E

F05

0843

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Page 8: A comprehensive phylogeny of the bumble bees ( Bombus

168 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Rh

Rh

odob

ombu

s D

alla

T

orre

(3/

3)ar

men

iacu

s R

ados

zkow

ski

Kay

seri

Pro

v., T

urk

eyP

R e

t al

. 08

0D

Q78

7968

DQ

7881

51D

Q78

8315

DQ

7883

97E

F05

0937

mes

omel

as (

Ger

stae

cker

)S

wit

zerl

and

C. G

erla

ch03

7D

Q78

8058

DQ

7882

31E

F03

2390

EF

0324

14E

F05

0938

pom

oru

m (

Pan

zer)

�E

rzin

can

Pro

v., T

urk

eyP

R e

t al

. 05

3D

Q78

8084

DQ

7882

58D

Q78

8360

DQ

7884

83E

F05

0939

Rb

Rob

ust

obom

bus

Sko

riko

v (7

/7)

ecu

ador

ius

Meu

nie

r �

Aba

nca

y, P

eru

C. R

asm

uss

en13

5D

Q78

8001

DQ

7881

81D

Q78

8329

DQ

7884

21E

F05

0874

hor

tula

nu

s F

ries

e �

Mag

dale

na,

Col

ombi

aJ.

Can

till

o20

0D

Q78

8025

DQ

7882

01A

Y73

9468

HD

Q78

8438

EF

0508

75m

elal

eucu

s H

andl

irsc

hO

xapa

mpa

, Per

uC

. Ras

mu

ssen

173

DQ

7879

60D

Q78

8143

DQ

7883

11D

Q78

8460

EF

0508

76ro

bust

us

Sm

ith

Boy

acá,

Col

ombi

aS.

Cam

eron

050

DQ

7880

93D

Q78

8266

DQ

7883

66E

F03

2405

EF

0508

77tu

cum

anu

s V

ach

alT

ucu

mán

, Arg

enti

na

M. L

uci

a27

6E

F03

2349

EF

0323

67E

F03

2386

EF

0324

04E

F05

0873

vogt

i F

ries

e* �

Aba

nca

y, P

eru

C. R

asm

uss

en17

2D

Q78

8130

DQ

7882

99D

Q78

8383

DQ

7885

17E

F05

0878

volu

cell

oid

es G

riba

do*

San

Jos

e, C

osta

Ric

aP.

Han

son

122

DQ

7881

31A

Y26

7133

KA

Y26

7149

KA

Y26

7165

K

Rc

Ru

bicu

nd

obom

bus

Sko

riko

v (1

/1)

rubi

cun

du

s S

mit

hC

un

din

amar

ca, C

olom

bia

A. P

erez

021

DQ

7880

94B

oyac

á, C

olom

bia

S. C

amer

on20

2D

Q78

8267

DQ

7883

67D

Q78

8491

EF

0508

88

Rf

Ru

fipe

dib

ombu

s S

kori

kov

(2/1

)ex

imiu

s S

mit

hA

lish

an, T

aiw

anJ.

de

Boe

r04

9D

Q78

8005

DQ

7881

86A

Y73

9464

CD

Q78

8426

EF

0509

11

Sx

Sen

exib

ombu

s F

riso

n

(4/2

)bi

colo

ratu

s S

mit

hN

anto

u, T

aiw

anC

. Lin

225

DQ

7879

76A

F49

2971

KA

F49

3038

KA

F49

2904

KE

F05

1005

kuli

nge

nsi

s C

ocke

rell

Zh

ejia

ng

Pro

v., C

hin

aS

C e

t al

. 09

7D

Q78

8042

DQ

7882

17D

Q78

8343

DQ

7884

49E

F05

1006

Sp

Sep

arat

obom

bus

Fri

son

(2/

2)gr

iseo

coll

is (

DeG

eer)

Illi

noi

s, U

SA

H. H

ines

082

DQ

7880

18D

Q78

8196

AF

4930

39K

AF

4929

05K

EF

0508

79m

orri

son

i C

ress

onA

rizo

na,

US

AT.

Sil

lett

014

DQ

7880

65U

tah

, US

AT.

Gri

swol

d19

6D

Q78

8240

DQ

7883

50D

Q78

8468

EF

0508

80

Sb

Sib

iric

obom

bus

Vog

t (5

/4)

asia

ticu

s M

oraw

itz

�H

imac

hal

Pra

desh

, In

dia

M. S

ain

i24

9D

Q78

7970

EF

0323

69E

F03

2387

EF

0324

06E

F05

0896

niv

eatu

s K

riec

hba

um

erK

ayse

ri P

rov.

, Tu

rkey

PR

et

al.

093

DQ

7880

70D

Q78

8244

DQ

7883

53D

Q78

8472

EF

0508

93si

biri

cus

(Fab

rici

us)

Kh

övsg

öl N

uu

r, M

ongo

lia

D S

hep

pard

274

EF

0323

48E

F03

2370

EF

0323

88E

F03

2407

EF

0508

97su

lfu

reu

s F

ries

eK

ayse

ri P

rov.

, Tu

rkey

PR

et

al.

064

DQ

7881

11D

Q78

8283

AY

7394

92H

DQ

7885

04E

F05

0895

vort

icos

us

Ger

stae

cker

*A

ksar

ay P

rov.

, Tu

rkey

PR

et

al.

124

DQ

7881

32D

Q78

8300

DQ

7883

84D

Q78

8518

EF

0508

94

St

Su

bter

ran

eobo

mbu

s V

ogt

(9/7

)ap

posi

tus

Cre

sson

�U

tah

, US

AT.

Gri

swol

d14

5D

Q78

7965

DQ

7881

48D

Q78

8314

DQ

7883

95E

F05

0986

bore

alis

Kir

byM

ain

e, U

SA

SC

, JW

250

DQ

7879

81A

F49

2976

KA

F49

3043

KA

F49

2909

KE

F05

0987

dif

fici

llim

us

Sko

riko

v*H

ongy

uan

, Sic

hu

an, C

hin

aS

C e

t al

. 15

4D

Q78

7998

DQ

7881

77D

Q78

8327

DQ

7884

17E

F05

0990

dis

tin

guen

du

s M

oraw

itz

�E

desb

ecka

, Fin

lan

dC

. Gri

nte

r19

7D

Q78

7999

DQ

7881

80D

Q78

8328

DQ

7884

20E

F05

0988

frag

ran

s (P

alla

s)K

ayse

ri P

rov.

, Tu

rkey

PR

et

al.

061

DQ

7880

12D

Q78

8191

DQ

7883

33D

Q78

8430

EF

0509

92m

elan

uru

s L

epel

etie

rD

zun

gars

kij A

lata

u, K

azak

h.

M. H

ause

r02

2D

Q78

8056

DQ

7882

30A

F49

2990

KA

F49

2856

KE

F05

0991

pers

onat

us

Sm

ith

Hon

gyu

an, S

ich

uan

, Ch

ina

SC

et

al.

138

DQ

7880

81D

Q78

8256

DQ

7883

59D

Q78

8481

EF

0509

93su

bter

ran

eus

(Lin

nae

us)

Upp

lan

d C

o., S

wed

enB

. Ced

erbe

rg04

6D

Q78

8109

DQ

7882

81A

F49

3027

KA

F49

2893

KE

F05

0989

Th

Th

orac

obom

bus

Dal

lad

eute

ron

ymu

s S

chu

lzP

rim

orsk

iy K

rai,

Ru

ssia

K. H

olst

on14

7D

Q78

7997

DQ

7881

76D

Q78

8326

AY

2671

70K

EF

0509

22T

orre

(19

/16)

filc

hn

erae

Vog

t �

Hon

gyu

an, S

ich

uan

, Ch

ina

SC

et

al.

206

DQ

7880

08D

Q78

8188

DQ

7883

31D

Q78

8428

EF

0509

33h

edin

i B

isch

off

Qio

ngl

ai S

h, S

ich

uan

, Ch

ina

SC

et

al.

129

DQ

7880

23D

Q78

8199

DQ

7883

38D

Q78

8437

EF

0509

30h

onsh

uen

sis

(Tka

lck

)A

F49

3029

KA

F49

2962

KA

F49

2895

K

hu

mil

is I

llig

erE

. Pyr

enee

s, F

ran

ceH

H, P

R05

6D

Q78

8026

DQ

7882

02A

Y73

9469

HD

Q78

8439

EF

0509

24im

petu

osu

s S

mit

hX

inm

ian

, Sic

hu

an, C

hin

aP.

Wil

liam

s.28

4E

F03

2350

EF

0323

73E

F03

2391

EF

0324

09E

F05

0927

mlo

kosi

evit

zii

Rad

oszk

owsk

iA

rtvi

n P

rov.

, Tu

rkey

PR

et

al.

081

DQ

7880

61D

Q78

8235

DQ

7883

49D

Q78

8463

EF

0509

17

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Tab

le 1

.C

onti

nu

ed

Page 9: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 169

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

mu

scor

um

(L

inn

aeu

s)Ö

lan

d C

o., S

wed

enB

. Ced

erbe

rg03

3D

Q78

8067

DQ

7882

41D

Q78

8351

DQ

7884

69E

F05

0925

pasc

uor

um

(S

copo

li)

Tos

can

a, I

taly

SC

, JW

023

DQ

7880

77D

Q78

8251

AF

4930

01K

AY

4928

67K

EF

0509

32po

tan

ini

Mor

awit

z*H

ongy

uan

, Sic

hu

an, C

hin

aS

C e

t al

. 11

3D

Q78

8086

DQ

7882

60D

Q78

8362

DQ

7884

85E

F05

0928

pseu

dob

aica

len

sis

Vog

tP

rim

orsk

iy K

ray,

Ru

ssia

K. H

olst

on25

3E

F03

2357

EF

0323

72A

Y26

7155

KA

Y26

7171

KE

F05

0923

rem

otu

s T

kalck

�Q

ion

glai

Sh

, Sic

hu

an, C

hin

aS

C e

t al

. 19

2D

Q78

8092

DQ

7882

65D

Q78

8365

DQ

7884

90E

F05

0929

rud

erar

ius

(Mü

ller

)O

berg

urg

l, A

ust

ria

SC

, JW

047

DQ

7880

95A

F49

2932

KA

F49

2999

KA

F49

2865

KE

F05

0920

sch

ren

cki

Mor

awit

z �

W. K

hen

tey,

N. M

ongo

lia

M. M

üh

len

berg

298

AF

3648

28B

AF

4929

33K

AF

4930

00K

AF

4928

66K

EF

0509

31sy

lvar

um

(L

inn

aeu

s)U

ppsa

la C

o., S

wed

enS

C, J

W11

0D

Q78

8114

DQ

7882

85D

Q78

8376

DQ

7885

06E

F05

0918

velo

x (S

kori

kov)

*A

rtvi

n P

rov.

, Tu

rkey

PR

et

al.

094

DQ

7881

27D

Q78

8296

DQ

7883

81D

Q78

8514

EF

0509

21ve

tera

nu

s (F

abri

ciu

s)Ju

ra, F

ran

ceA

. Sch

oll

187

DQ

7881

29D

Q78

8298

DQ

7883

82D

Q78

8516

EF

0509

19zo

nat

us

Sm

ith

Aks

aray

Pro

v., T

urk

eyP

R e

t al

. 06

3D

Q78

8138

DQ

7883

06D

Q78

8386

DQ

7885

22E

F05

0926

Tr

Tri

corn

ibom

bus

Sko

riko

v (3

/3)

atri

pes

Sm

ith

Zh

ejia

ng

Pro

v., C

hin

aP.

Mei

hu

a06

6D

Q78

7971

DQ

7881

53D

Q78

8316

DQ

7883

99E

F05

0964

imit

ator

Pit

tion

i �

Gu

izh

ou P

rov.

, Ch

ina

M. Y

un

028

DQ

7880

32D

Q78

8208

DQ

7883

39D

Q78

8441

EF

0509

65tr

icor

nis

Rad

oszk

owsk

iP

rim

orsk

iy K

ray,

Ru

ssia

K. H

olst

on14

8D

Q78

8121

AF

4929

37K

AF

4930

04K

AF

4928

70K

EF

0509

63

OU

TG

RO

UP

ST

rib

eS

pec

ies

Api

ni

Api

s d

orsa

ta F

abri

ciu

sB

anga

lore

, In

dia

S. C

amer

on32

1L

2289

3C2

AY

2671

46K

AF

0917

33M

AY

2671

78K

EF

0510

28A

pis

mel

life

ra L

inn

aeu

sA

rkan

sas,

US

AS.

Cam

eron

320

L22

891

AF

0152

67D

AF

0917

32M

EF

0323

97E

F05

1030

Eu

glos

sin

iE

ugl

ossa

im

peri

alis

Coc

kere

llS

ão P

aulo

, Bra

zil

S. C

amer

on31

9A

J581

085M

iA

Y26

7144

KA

Y26

7160

KA

Y26

7176

K

Eu

laem

a bo

livi

ensi

s (F

ries

e)L

a P

az P

rov.

, Bol

ivia

M. H

ause

r21

3D

Q78

8139

DQ

7883

07D

Q78

8387

DQ

7885

23E

F05

1029

Mel

ipon

ini

Gen

iotr

igon

a th

orac

ica

Sm

ith

Ku

ala

Mu

da, M

alay

sia

R. H

epbu

rn30

3D

Q78

8140

DQ

7883

08D

Q78

8388

DQ

7885

24E

F05

1023

Het

erot

rigo

na

itam

a C

ocke

rell

Ku

ala

Mu

da, M

alay

sia

R. H

epbu

rn30

4D

Q78

8141

DQ

7883

09D

Q78

8389

DQ

7885

25E

F05

1024

Hyp

otri

gona

gri

bodo

i (M

agre

tti)

Bw

indi

, Uga

nda

R. K

ajob

e32

2D

Q79

0440

RD

Q81

3121

RD

Q81

3199

RD

Q81

3043

RE

F05

1026

Lio

trig

ona

mah

afal

ya

Bro

oks

& M

ich

ener

Mah

ajan

ga P

rov.

, Mad

agas

car

B. F

ish

erD

Q79

0442

RD

Q81

3126

RD

Q81

3204

RD

Q81

3048

R

Ple

beia

fro

nta

lis

Fri

ese

Pu

ebla

, Mex

ico

M. V

illa

mar

323

DQ

7904

59R

DQ

8131

38R

DQ

8132

16R

DQ

8130

59R

EF

0510

27T

rigo

na

amaz

onen

sis

Du

cke

Mad

re d

e D

ios,

Per

uS.

Cam

eron

178

DQ

7881

42D

Q78

8310

DQ

7883

90D

Q78

8526

EF

0510

25

Su

bgen

us

Spe

cies

Col

lect

ion

loc

alit

yC

olle

ctor

V.#

16S

EF

-1α

Ops

inA

rgK

PE

PC

K

Th

e tw

o-le

tter

acr

onym

(in

bol

d)

in c

olu

mn

1 d

enot

es t

he

abbr

evia

ted

subg

enu

s n

ame.

Nu

mbe

rs in

par

enth

eses

fol

low

ing

subg

ener

ic n

ames

ref

er t

o to

tal n

um

ber

of s

peci

es r

ecog

niz

ed b

y W

illi

ams

(199

8) (

excl

udi

ng

exti

nct

spe

cies

) fo

llow

ed b

y th

e n

um

ber

repr

esen

ted

in t

he

pres

ent

stu

dy. A

ster

isks

in

dica

te t

axa

that

wer

ere

cogn

ized

as

con

spec

ific

wit

h o

ther

spe

cies

by

Wil

liam

s (1

998)

. Su

pers

crip

t le

tter

s fo

llow

ing

acce

ssio

n n

um

bers

indi

cate

seq

uen

ces

obta

ined

from

pre

viou

s st

udi

es.

BB

ae e

t al

., u

npu

bl. G

enB

ank

refe

ren

ce, 2

001;

CC

amer

on &

Wil

liam

s (2

003)

; C2 C

amer

on (

1993

); DD

anfo

rth

& J

i (2

001)

; HH

ines

et

al. (

2006

); KK

awak

ita

et a

l. (2

003,

2004

); M

Mar

duly

n &

Cam

eron

(19

99);

Mi M

ich

el-S

alza

t, C

amer

on &

Oli

veir

a (2

004)

; RR

asm

uss

en &

Cam

eron

, 200

7).

HH

, P

R =

H.

Hin

es,

P. R

asm

ont;

SC

et

al. =

S.

Cam

eron

, P.

Wil

liam

s, J

. Wh

itfi

eld;

PR

et

al. =

P.

Ras

mon

t, M

. Ayt

ekin

, H

. H

ines

, M

. Ter

zo,

I. B

arbi

er;

SC

, JW

= S

.C

amer

on, J

. Wh

itfi

eld;

RA

, RB

= R

. Aya

la, R

. Bro

oks.

Page 10: A comprehensive phylogeny of the bumble bees ( Bombus

170 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

GENES

Five genes were selected for analysis based on priortesting for useful signal: mitochondrial 16S rRNA, andthe nuclear protein-encoding genes long-wavelengthrhodopsin copy 1 (opsin), elongation factor-1 alphaF2 copy (EF-1α), arginine kinase (ArgK) and phos-phoenolpyruvate carboxykinase (PEPCK). 16S wasselected for its high evolutionary rate, useful forresolving tip relationships; the nuclear genes providebetter phylogenetic signal at deeper hierarchical lev-els in the phylogeny. A full discussion of the first fourgenes, primer sequences, and rationale underlyingtheir selection is provided elsewhere (Hines et al.,2006). PEPCK was selected because it has recoveredrelationships within Lepidoptera at similar taxonomiclevels to those in Bombus (Friedlander et al., 1996) andcontains both highly variable intron and conservedexon regions. PEPCK primers used for most taxa wereFHv4-5′-TGTATRATAATTCGCAAYTTCAC-3′ andRHv4-5′-CTGCTGGRGTYCTAGATCC-3′. Some taxarequired an alternative forward primer, either FH2-5′-GTSTCTTATGGGAGSGGTTACGG-3′ or FHv5-5′-AGAACAATTATCTYAAATRCTAARCTTC-3′. Theforward primer sequences began within an intronand were unable to amplify some of the outgrouptaxa. For these and two problematic Bombus taxa(Bombus haematurus and Bombus pressus), pri-mers were designed to amplify only the exon region:PEPCKexF-5′-GATAYTGGCTATCACARATCC-3′ and21dNrc from Friedlander et al. (1996). Some previ-ously reported sequences were obtained from Gen-Bank (Table 1). Two of these were renamed to conformto current species names, deduced from their collec-tion locality: Bombus parthenius from Taiwan is rec-ognized as Bombus sonani and Bombus nevadensisfrom the eastern USA is recognized as Bombusauricomus.

MORPHOLOGY

We analysed an updated version of the morphologicaldata set of Williams (1994), incorporating 47 bumblebee taxa scored for 53 morphological characters,including character states of the male genitalia (30characters), male soma (seven characters) and femalesoma (16 characters) (Appendices 1 and 2). Each sub-genus is represented by one or two exemplars, whichexpress the character state for the remainder of thesubgenus; variable subgenera were represented bymore than one species. Because genitalic characters ofApini and Meliponini used in the molecular analyseswere difficult to homologize with Bombini, the nextclosest outgroup, Euglossini (Eufriesea), was selected,along with the slightly more distant Xylocopinae(Lestis).

POLYMERASE CHAIN REACTION (PCR) AND DNA SEQUENCING

Detailed extraction, PCR and sequencing protocols arereported in Hines et al. (2006). PCR amplification ofPEPCK was conducted at annealing temperatures of49–50 °C and extension at 72 °C. Gene fragments ofthe following sizes were amplified: (1) ∼530 nucleotides(bp) of 16S; (2) ∼680 bp of opsin, including two intronscomprising 178 bp (Mardulyn & Cameron, 1999); (3)∼725 bp of EF-1α F2 copy, containing an intron of∼200 bp; (4) ∼910 bp of ArgK containing an intron of∼325 bp; and (5) ∼900 bp of PEPCK containing twointrons of ∼525 bp. Sequences obtained from thesefragments, using the Applied Biosystems BigDyeTerminator kit version 3.0 or 3.1, were visualized withan ABI 3730XL automated sequencer at the W. M.Keck Center for Comparative and Functional Genom-ics, University of Illinois. Both strands were sequencedfor all taxa and consensus sequences were deposited inGenBank (accession numbers are shown in Table 1).

ALIGNMENT

Sequences were edited and aligned (default parame-ters, CLUSTAL W) in BioEdit (version 5.0.9) (Hall,1999), with some manual adjustment if identical orhighly similar regions were aligned differently acrosstaxa. A comparative check on the 16S alignment wasmade using CLUSTAL X, version 1.81 (Jeanmouginet al., 1998), with gap opening of 10 and gap extensionof 0.10. Nucleotides of uncertain alignment for 16S(∼50 bp from four hypervariable AT-rich regions) wereexcluded from the data matrices. ArgK and PEPCKcontained a few indels that were problematic to alignfor a few taxa; the ambiguous regions for these weretreated as missing data, as in Kawakita et al. (2003).Nucleotides of EF-1α that varied between our taxaand those of Kawakita et al. (2003) were confirmedby reinspection of chromatograms. Gap regions ofunambiguous alignment were coded as separatebinary characters following the methods of Simmons& Ochoterena (2000) and Simmons, Ochoterena &Carr (2001), incorporating only the regions that wereparsimony informative in collective analyses. With theintroduction of gaps in the alignments, individualgene fragments had the following numbers of aligned/gap-coded sites: 16S, 573/8; opsin, 751/5; EF-1α, 906/13; ArgK, 1108/43; and PEPCK, 1425/57. The com-bined (five-genes) data set included 4763 bp and 126gap-coded characters.

PHYLOGENETIC ANALYSES

DNA sequencesInter- and intrasubgeneric relationships of Bombuswere inferred largely from Bayesian analyses,

Page 11: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 171

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

implemented in MrBayes, version 3.1.2 (Ronquist &Huelsenbeck, 2003) on an IBM p-series 690 supercom-puter operated by the National Center for Super-computing Applications (University of Illinois atUrbana-Champaign, Champaign, IL). Genes wereanalysed individually and collectively, each parti-tioned into exon, intron and gap regions (when appli-cable) to account for variation in evolutionary ratesamong gene regions. Four taxa sequenced only for the16S fragment (Bombus tunicatus, Bombus wilemani,Bombus coreanus, and B. luteipes) were excluded fromcollective analyses.

Model selection for each gene was based on Akaikeinformation criteria in Modeltest, version 3.7 (Posada& Crandall, 1998) and MrModeltest (Nylander, 2004).The model parameters used for each gene parti-tion were: 16S (GTR + I + G), 16S gap characters(standard + G); EF-1α intron (GTR + I + G), EF-1αexon (GTR + I + G), EF-1α gap characters (standard +G); opsin intron (GTR + I + G), opsin exon (HKY + G),opsin gap characters (standard + G); ArgK intron(GTR + G), ArgK exon (GTR + I + G), ArgK gap char-acters (standard + G); PEPCK intron (GTR + G),PEPCK exon (HKY + G) and PEPCK gap characters(standard + G). In combined analyses, gap-coded char-acters were treated as a single partition (standard + G).

Four to six independent analyses were carried outfor each gene fragment and for the combined data(eight million generations for individual genes, 12million for combined analyses, four chains withmixed-models, flat priors, saving trees every 1000generations). Consensus trees were estimated from atleast three independent analyses, with convergentlog-likelihood plots examined in Tracer 1.2 (Rambaut& Drummond, 2003). All trees estimated prior to sta-tionarity were discarded. Trees remaining after con-vergence from replicate runs were combined to createa single majority rule consensus tree. Posterior prob-ability (PP) values represent the proportion of allMarkov chain samples that contain a given node, andare interpreted as the probability that a node ormonophyletic group is correct given the model and thedata.

To assess the influence of the gap regions on treetopology, additional parallel analyses were conductedwith gap-coded characters excluded.

Maximum parsimony nonparametric bootstrapanalysis of the combined five-genes data [heuristicsearch, 300 replicates, ten random additions perreplicate, retaining a maximum of 300 trees in eachreplicate, tree-bisection-reconnection (TBR) branchswapping] was implemented in PAUP*4.0 (Swofford,2001) to compare parsimony bootstrap values withBayesian posterior probabilities. Correspondinglyhigh values for these two different measures of sup-port provide good confidence for testing the monophyly

of the conventional Bombus subgenera and acceptingother monophyletic groups.

Morphological dataMorphological characters were analysed under parsi-mony in PAUP* (heuristic search, 100 replicates witha maximum of 500 trees saved per replicate, TBRbranch-swapping, all characters of equal weight).Because male genitalic characters have been the focusin prior examinations of Bombus phylogeny (Williams,1985, 1994), we separated the morphological charac-ters into two partitions, one with the full set ofcharacters, the other with only genitalic characters.Replicate analyses established that tree topology andtree statistics were stable. Nonparametric bootstrap-ping (heuristic search: 100 replicates, ten randomadditions per replicate, maximum of 500 trees savedper replicate) provided measures of relative supportfor each node in the parsimony tree.

Morphological characters were also combined witha reduced five-genes data set of the 47 Bombus taxaanalysed under parsimony, implemented in MrBayes(two independent runs, three million generations,four chains, saving trees every 1000 generations, flatpriors, mixed models using the same parameters asthose applied to the total sequence data set, standardmodel applied to the morphological characters).Results were compared with those from a Bayesiananalysis of the reduced five-genes data set alone(same model parameters and conditions as applied togenes + morphology). Outgroups for this analysiswere selected from the full-scale molecular data set(Plebeia, Trigona, Heterotrigona, Apis, and Eulaema;Table 1), coded as missing data for the morphologicalcharacters.

RESULTS

RESOLUTION AND SUPPORT FOR THE PHYLOGENY

Independent Bayesian analyses of each nucleargene data set resulted in highly resolved and wellsupported phylogenies overall (supplementary treesonline). On the whole, opsin was less useful near thetips of the phylogeny but resolved many of the deeperclades, whereas EF-1α, ArgK, and PEPCK providedgood resolution and support for relationships withinand between clades throughout the trees. By contrast,mitochondrial 16S (supplementary tree online) wasespecially useful in resolving the tip clades within con-ventional groupings (subgenera) but generally poor atresolving intersubgeneric and deeper relationships(Table 2).

Simultaneous Bayesian analysis of the combinedsequence data produced a tree with nearly completeresolution and high branch support at all levels

Page 12: A comprehensive phylogeny of the bumble bees ( Bombus

172 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

(Fig. 1, Table 2). Of the 204 Bombus nodes in the tree,all but 12 were resolved and 158 (77%) were supportedby posterior probability values > 0.95. Relation-ships among subgenera indicated by high support(PP > 0.95) are summarized in Fig. 2.

SUBGENERIC RELATIONSHIPS

The Bayesian combined (Fig. 1) and individual nuc-lear gene phylogenies, and to some extent the 16Sphylogeny, indicated strong support for all but the fol-lowing five conventional Bombus subgenera (Table 2):Separatobombus, Dasybombus, Cullumanobombus,Fervidobombus, and Tricornibombus. Of the threelarger nonmonophyletic subgenera, Cullumanobom-bus was paraphyletic as Bombus rufocinctus fell out assister group to the remaining Cullumanobombus spe-cies (Bombus apollineus + Bombus semenoviellus) + aNew World clade (Fig. 1). Fervidobombus emerged as

polyphyletic as the group (Bombus morio + Bombusexcellens + Bombus dahlbomii) separated and at-tached to the Thoracobombus–Rhodobombus clade(PP = 0.81), leaving the remaining Fervidobombusstrongly supported (PP = 1.0). In turn, a polyphyleticTricornibombus, which excluded Bombus (Tricorni-bombus) imitator, and included Bombus (Exilobom-bus) exil (PP = 1.0), attached as sister group toFervidobombus (minus the dahlbomii-group) withstrong support (PP = 1.0). Of the remaining two non-monophyletic subgenera (both ditypic), Separatobom-bus was unresolved due to poor support (Fig. 1), andDasybombus was polyphyletic as Bombus (Dasybom-bus) macgregori and Bombus (Dasybombus) handlirs-chi fell into different well supported clades (both withPP = 1.0). Two other ditypic subgenera represented inthis study by both species (Coccineobombus and Bom-bias) were resolved as strongly monophyletic(PP = 1.0).

Table 2. The left half of the table indicates resolution (number of internal nodes resolved) and node support (PP = posteriorprobability) for the conventional Bombus subgenera from Bayesian analyses of the combined sequences from five genes.In the right half of the table, posterior probability values are reported for subgeneric monophyly based on individual genesequences. Abbreviations of subgeneric names are given in Table 1. The 12 monotypic subgenera (Table 1) are not listed,nor are subgenera comprising two species for which we have only one representative (Br, Fn, Ob, Rf). u, unresolved; pa,paraphyletic; po, polyphyletic

Subgenus

Numberof taxain study

Number of internalnodes resolvedin combinedgene tree

Number of nodes PP ≥ 0.95in combinedgene tree

PP support for monophyly of subgenera

16S Opsin ArgK Ef-1α PEPCK

Pr 46 42 28 u 1.0 1.0 1.0 1.0Bo 13 10 4 1.0 1.0 1.0 1.0 1.0Al 5 4 4 u 1.0 1.0 1.0 1.0Rb 7 6 5 1.0 1.0 0.86 1.0 1.0Cc 2 1 1 0.87 1.0 1.0 0.98 1.0Sp 2 0 0 u u u u uDs 2 0 0 u po po po poCu 3 1 1 0.99 u pa u uMl 12 11 10 1.0 0.89 1.0 1.0 0.91Ag 5 4 4 u 0.85 1.0 1.0 1.0Sb 5 4 3 u 0.99 0.84 1.0 0.98Fv* 19 17 15 u 1.0 0.97 u 1.0Tr 3 1 1 po u pa u poRh 3 2 2 1.0 1.0 0.88 1.0 1.0Th 18 15 11 1.0 u 1.0 1.0 1.0Ps 20 19 17 1.0 1.0 1.0 1.0 1.0Mg 12 11 9 u 0.94 1.0 1.0 0.78Sx 2 1 1 1.0 0.98 1.0 1.0 1.0Dv 4 2 1 1.0 1.0 1.0 1.0 1.0St 8 7 5 1.0 0.98 1.0 1.0 1.0Or 2 1 1 1.0 1.0 1.0 1.0 1.0Bi 2 1 1 1.0 1.0 1.0 1.0 1.0Md 7 6 5 1.0 1.0 1.0 1.0 1.0

*Fervidobombus minus the dahlbomii + morio + excellens group.

Page 13: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY

173

© 2007 The Linnean Society of London,

Biological Journal of the Linnean Society,

2007,

91

, 161–188

Fig

ure

1.

Ph

ylog

eny

of

Bom

bus

est

imat

ed f

rom

Bay

esia

n a

nal

ysis

of

com

bin

ed s

equ

ence

dat

a fr

om fi

ve g

ene

frag

men

ts (

16S

, ops

in, A

rgK

, EF

-1

α

, an

d P

EP

CK

).S

ubg

ener

ic c

lade

s ar

e in

divi

dual

ly c

olou

r-co

ded

and

labe

lled

wit

h t

he

subg

ener

ic n

ame.

Val

ues

abo

ve b

ran

ches

are

Bay

esia

n p

oste

rior

pro

babi

liti

es; v

alu

es b

elow

bran

ches

are

par

sim

ony

boot

stra

p va

lues

. Alt

ern

ativ

e re

solu

tion

fro

m p

arsi

mon

y an

alys

is s

how

n a

s do

tted

lin

es.

Ou

tgro

up

bran

ches

(in

gre

y),

repr

esen

ted

byda

shed

lin

es, h

ave

been

sh

orte

ned

for

vis

ual

pu

rpos

es. N

W,

New

Wor

ld

cla

de; S

F,

shor

t-fa

ced

cla

de; L

F,

lon

g-fa

ced

cla

de.

0.86

0.65

0.88 76

1.0 91 0.

60 640.

92 71

1.0 99

1.0 85

0.95 88

1.0

100

0.58 63

1.0 67

0.58

0.94

1.0

100

0.67

0.68

1.0

100

1.0 68

1.0

100

0.99 94

0.97

1.0 90

0.99 72

0.95

1.0

100

1.0 85

0.63

1.0 81 1.0 92

1.0 88

0.64 98

1.0

100

1.0

100

0.56

1.0 99

1.0

100

1.0 93

0.86

1.0 96

1.0

100

1.0 98

0.52

0.90

1.0 95

0.58

0.78

0.88

1.0 95

1.0 75

0.87 67

1.0

100

0.95

1.0 75

1.0 76

1.0

100

1.0

100

1.0 98

0.75

0.99 86 1.

0 92

1.0 98

1.0

100

1.0

100

0.99 0.

55 0.89

0.71

1.0

1.0

100

0.53

1.0 99

1.0

100

1.0

100

1.0 96

0.99

0.94 99

1.0

100

1.0 99

1.0 86

1.0

100

1.0

1.0

100

1.0 98

1.0 87 1.0 90

0.98

1.0 89

1.0 98

59

1.0 92

1.0 99

1.0 69

0.94

1.0 87

1.0 68

1.0 90

1.0

100

1.0

100

1.0

100

1.0 98

1.0 90

1.0 95

0.66

0.96 73

1.0

100

1.0 68

1.0 71

0.93 51

1.0 85

0.88 79

1.0 90

0.52

1.0

100

1.0

100

1.0

100

1.0 99

1.0 88

1.0 98

1.0 87

1.0

100

0.92

1.0

100

0.81

1.0 68

0.65 53

0.97

1.0 94

0.98

1.0 87

1.0 82

0.88 1.

0 83

1.0

100

1.0

100

1.0

100

1.0 92

1.0

100

1.0 94

1.0

100

1.0 99

1.0 86

0.78

1.0

100

1.0 93

0.96

1.0

100

1.0 79

1.0

100 1.0

100

0.99 90

1.0

100

1.0 95

1.0

100

1.0 59

0.60

1.0 83

1.0

100

1.0 54

0.64

1.0 87

1.0

100

1.0

100

1.0 93

1.0 94 0.65

1.0 80

1.0

100

1.0 71

1.0 59

0.60

1.0

100

1.0

100

87

1.0

100

1.0

100

1.0 94

0.56

1.0

100

1.0

100

0.98

0.99 73

1.0 97

1.0

100

0.72

1.0 91

0.93 76

1.0

100

1.0

100

0.92

1.0 87

0.93 63

1.0 98

1.0

100

1.0

100

0.77 86

1.0

100

0.89 68

1.0 92

1.0 99

1.0

100

1.0

100

78

87

54

52

67

6658

0.99

1.0 99

1.0

100

1.0 83

0.80

1.0

100

1.0

100

1.0

100

1.0

100

1.0

100

1.0

100

64

52

73

72

63

58

69

61

74

56

0.99

58

0.66

Pyro

bom

bus

Bom

bus

s.s.

Alp

inobom

bus

Robust

obom

bus

Frat

ernobom

bus

Sep

arat

obom

bus

Sep

arat

obom

bus

Funeb

ribom

bus

Das

ybom

bus

Cocc

ineo

bom

bus

Das

ybom

bus

Rubic

undobom

bus

Bra

chyc

ephal

ibom

bus

Cullu

man

obom

bus

Cro

tchiib

om

bus

Sib

iric

obom

bus

Ober

tobom

bus

Mel

anobom

bus

Fest

ivobom

bus

Rufiped

ibom

bus

Alp

igen

obom

bus

Thora

cobom

bus

Muci

dobom

bus

Eve

rsm

annib

om

bus

Laes

obom

bus

Rhodobom

bus

Ferv

idobom

bus

Ferv

idobom

bus

Tric

orn

ibom

bus

Exi

lobom

bus

Tric

orn

ibom

bus

Psithyr

us

Meg

abom

bus

Sen

exib

om

bus

Div

erso

bom

bus

Subte

rran

eobom

bus

Orien

talib

om

bus

Kal

lobom

bus

Bom

bia

s

Confu

sibom

bus

Men

dac

ibom

bus

Pres

sibom

bus

cingula

tus

alboan

alis

jonel

lus

frig

idus

bea

tico

lasa

nder

soni

mix

tus

sitk

ensi

sbro

dm

annic

us

pra

toru

mm

odes

tus

(Chin

a)m

odes

tus

(Kaz

akhst

an)

pyr

enae

us

arden

sflav

esce

ns

biroi

avan

us so

nan

iin

freq

uen

spar

then

ius

pic

ipes lem

nis

catu

sle

pid

us

infirm

us

pre

ssus

hyp

noru

m (

Euro

pe)

per

ple

xus

hyp

noru

m (

Chin

a)hae

mat

uru

sbifar

ius

tern

ariu

shuntii vo

snes

ensk

iiim

pat

iens

wilm

atta

eep

hip

pia

tus

lapponic

us

sylv

icola

bim

acula

tus

montico

lam

elan

opyg

us

flav

ifro

ns

calig

inosu

sce

ntr

alis

vandyk

eiva

gan

scr

ypta

rum

pat

agia

tus

moder

atus

occ

iden

talis

terr

icola

fran

klin

ilu

coru

m (

Chin

a)lu

coru

m (

Euro

pe)

affinis

hyp

ocr

ita

terr

estr

isig

nitus

spora

dic

us

neo

bore

us

bal

teat

us alpin

us

pola

ris

tucu

man

us

robust

us

mel

aleu

cus

ecuad

orius

hort

ula

nus

vogti

volu

cello

ides

frat

ernus

morr

isoni

funeb

ris

mac

gre

gori

grise

oco

llis

crotc

hii

cocc

ineu

sbae

rihan

dlir

schi

rubic

undus

bra

chyc

ephal

us

apolli

neu

s sem

enov

iellu

sru

foci

nct

us

niv

eatu

svo

rtic

osu

ssu

lfure

us

asia

ticu

ssi

biric

us

ober

tier

zuru

men

sis

sich

elii

ince

rtus la

pid

ariu

sal

ages

ianus

kerien

sis

ladak

hen

sis

fris

eanus

form

ose

llus

rufo

fasc

iatu

sm

inia

tus

sim

illim

us

fest

ivus

exim

ius

nobili

ska

shm

iren

sis

wurf

lenii

pse

udobai

cale

nsi

shed

ini

schre

nck

ihonsh

uen

sis

impet

uosu

spota

nin

ire

motu

spas

cuoru

m mlo

kosi

evitzi

isy

lvar

um

vete

ranus

ruder

ariu

sve

lox

zonat

us

musc

oru

mfilc

hner

ae deu

tero

nym

us

hum

ilis

arm

enia

cus

mes

om

elas

pom

oru

mdah

lbom

iiex

celle

ns

morio

atra

tus

tran

sver

salis

pulla

tus

bra

silie

nsi

sso

noru

s (M

exic

o)

pen

sylv

anic

us

(Mis

souri,U

SA)

sonoru

s (A

rizo

na)

mex

ican

us

stei

ndac

hner

im

ediu

sopifex

bel

licosu

sdili

gen

sca

liforn

icus

ferv

idus

trin

om

inat

us

wei

si dig

ress

us

tric

orn

isat

ripes

exil

imitat

or

quad

rico

lor

sylv

estr

isnorv

egic

us

fern

aldae

flav

idus

skoriko

vibar

bute

llus

max

illosu

sas

hto

ni

bohem

icus

vest

alis

suck

leyi

cam

pes

tris

chin

ensi

sru

pes

tris

corn

utu

stibet

anus

citr

inus

insu

laris

variab

ilis

conso

brinus

kore

anus

sush

kini

tich

enko

ise

curu

sre

ligio

sus

hort

oru

mport

chin

sky

ger

stae

cker

isu

pre

mus

bic

olo

ratu

sku

lingen

sis

longip

esuss

ure

nsi

sdiv

ersu

sap

posi

tus

bore

alis

dis

tinguen

dus

subte

rran

eus

frag

rans

diffici

llim

us

mel

anuru

sper

sonat

us

hae

morr

hoid

alis

funer

ariu

sso

roee

nsi

sau

rico

mus

nev

aden

sis

confu

sus

han

dlir

schia

nus

shap

osh

nik

ovi

men

dax

def

ecto

rav

inov

iellu

sco

nve

xus

wal

toni

pen

sylv

anic

us

(Mis

souri,U

SA)

Gen

iotr

igona

thora

cica H

eter

otr

igona

itam

aH

ypotr

igona

gribodoi

Liotr

igona

mah

afal

ya

Trig

ona

amaz

onen

sis

Eula

ema

boliv

iensi

sEuglo

ssa

imper

ialis

Apis

dors

ata

Apis

mel

lifer

a

muci

dus p

ersi

cus

laes

us

argill

aceu

sru

der

atus

Pleb

eia

fronta

lis

trifas

ciat

us

bre

vice

ps

gra

ham

i

hyp

erbore

us

Fern

aldae

psi

thyr

us

Eopsi

thyr

us

Allo

psi

thyr

us

Met

apsi

thyr

us

Laboriopsi

thyr

us

Ash

tonip

sith

yrus

Psithyr

us

LFSF

NW

Page 14: A comprehensive phylogeny of the bumble bees ( Bombus

174 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Figure 2. Bombus phylogeny representing only the subgeneric relationships with strong support (PP = 0.95) from theBayesian tree in Fig. 1. Branches are colour-coded as in Fig. 1. Values on branches are Bayesian posterior probabilityvalues.

SF

LF

1.0

1.0 Melanobombus

Obertobombus

Festivobombus

Exilobombus

Alpigenobombus

Senexibombus

Diversobombus

Megabombus

Orientalibombus

Thoracobombus

Psithyrus

Rhodobombus

Tricornibombus

Kallobombus

Eversmannibombus

Mucidobombus

Subterraneobombus

Fervidobombus

Confusibombus

Bombias

Mendacibombus

Pyrobombus

Bombus

Alpinobombus

NW

Cullumanobombus

Cullumanobombus

Sibericobombus

Rufipedibombus

Fervidobombus

Tricornibombus (B. imitator)

Laesobombus

NW

(dahlbomii gr.)

(B. rufocinctus)

1.0

1.01.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.99

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.98

1.0

0.99

1.0

Rb

Ds

Fn

Sp

Fr

Cc

Ds

Rc

Br

Sp

Cr

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Page 15: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 175

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Of the 11 recognized monotypic subgenera (Table 1),most of their relationships to other taxa were wellresolved with good support (Figs 1, 2). Notably, theattachment of Exilobombus (B. exil) within Tricorni-bombus was strongly supported (PP = 1.0), as was theplacement of Pressibombus (= B. pressus) as sister toBombus infirmus within Pyrobombus (PP = 0.99;Fig. 1). Sister group relationships of the monotypicsubgenera are summarized in Table 3.

The four species sequenced only for the 16S frag-ment were resolved in the 16S tree within their ex-pected subgenera. In particular, B. luteipes fell withinthe Pyrobombus clade (Bombus avanus + B. sonani+ Bombus infrequens + B. parthenius) (PP = 0.90),attaching to B. infrequens + B. parthenius as an unre-solved trichotomy (PP = 0.97); B. tunicatus attachedas sister to Bombus terricola (PP = 0.74); B. coreanuswas sister to Bombus ashtoni + Bombus bohemicus(PP = 0.85); and B. wilemani was sister to Bombus tri-fasciatus (PP = 1.0).

Parsimony nonparametric bootstrap analysis of thecombined sequences resulted in a tree nearly identicalto but somewhat less resolved than the Bayesian tree[Fig. 1, bootstrap values (BV) shown below branches].The only substantive contradiction was Cullumano-bombus, which was monophyletic in the parsimonytree (BV = 87%) but paraphyletic in the Bayesian tree(PP = 0.99). Parsimony resulted in decreased resolu-tion within portions of Pyrobombus, Bombus s.s.,Psithyrus, and Fervidobombus, principally for rela-tionships that were poorly supported with Bayesiananalysis. Inconsistencies between parsimony andBayesian support values (Fig. 1) also occurred near afew of the tip taxa within several subgenera, whereposterior probability values were generally low(PP = 0.65). Parsimony gave stronger support for the

hypothesis that Mendacibombus falls nearest the root(BV = 86%).

DEEP RELATIONSHIPS

The individual nuclear- and combined-genes phyloge-nies resolved nearly all subgenera into two large andstrongly supported sister clades (Figs 1, 2), short-faced(SF) and long-faced (LF), which broadly correspondto differences in facial morphology and ecologicallyimportant differences in tongue-length, with someexceptions. ArgK (Fig. 3D) gave somewhat weakersupport for SF (PP = 0.83) and opsin (Fig. 3C) did notfully resolve it, whereas PEPCK did not fully resolvethe LF clade (Fig. 3E). However, the sister group rela-tionship between SF + LF, with or without Kallobom-bus, was supported in all nuclear gene analyses(Fig. 3B–E).

Nested within the short-faced clade was a large, wellsupported group consisting of taxa found exclusivelyin the New World, including Robustobombus andnumerous mono- and ditypic subgenera (Figs 1, 2).Eight of the 19 mono- and ditypic subgenera fell intothis New World (NW) clade, which was also stronglysupported in the individual gene trees, except 16S.The subgeneric tree (Fig. 2, inset) shows clearly thatthe New World clade has poorer resolution among sub-genera than any other part of the tree.

Although the nuclear gene trees were generallycompatible, uncertainty surrounded both the root andthe placement of the monotypic Kallobombus (Kl) withrespect to the short- and long-faced clades. A consen-sus of the basal relationships for the five genes(Fig. 3A) summarizes the uncertainty. Kallobombus inthe EF-1α tree (Fig. 3B) formed a trichotomy with theshort- and long-faced clades whereas, in the opsin tree,

Table 3. Synopsis of the closest relatives of each of the 11 conventional monotypic subgenera of Bombus

Subgenus Sister group relationship PP value/BV

Pressibombus Pe + Bombus (Pr) infirmus 0.99/94Fraternobombus Fr + Rb 0.99/–Crotchiibombus Cr + Bombus (Sp) griseocollis 0.89/–Rubicundobombus Rc + Cc + Bombus (Ds) handlirschi 1.0/99Festivobombus Fs + Ml 0.94/–Mucidobombus/Eversmannibombus/ (Mc + Ev) + Ls 1.0/88Laesobombus ((Mc + Ev) + Ls) + Th 1.0/98Exilobombus Ex + (Bombus (Tr) atripes + Bombus tricornis) 1.0/99Kallobombus Kl + LF + SF 1.0/98Confusibombus Cf + Bi 1.0/100

The sister group relationships are inferred from combined DNA sequences of 16S, EF-1α, opsin, and ArgK.Abbreviated subgeneric names in column 2 are given in Table 1.PP, posterior probability; BV, parsimony bootstrap value; –, no support.

Page 16: A comprehensive phylogeny of the bumble bees ( Bombus

176 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

it was more closely related to the long-faced clade(Fig. 3C) and, with ArgK and PEPCK, it was sister toSF + LF (Fig. 3D, E). In the combined-genes analysis,Kallobombus was resolved as sister to SF + LF withmoderate support (PP = 0.93, BV = 63%). With respectto rooting the Bombus tree, opsin and PEPCK sug-gested a rooting along the Mendacibombus branch

(Fig. 3C, E), although support from opsin was poor(PP = 0.63), and EF-1α and ArgK indicated a rootingwith Confusibombus + Bombias (PP = 0.99 and 0.74,respectively). EF-1α did not resolve the sister grouprelationship between Bombias + Confusibombus,which was strongly supported by all the other genes(PP = 0.98–1.0). The combined analysis (Fig. 1) sug-

Figure 3. Bombus trees summarizing the basal relationships for each of four nuclear genes. A, summary consensus ofthe four individual gene trees: EF-1α (B), opsin (C), ArgK (D), and PEPCK (E). Kl, Kallobombus; Bi, Bombias; Cf,Confusibombus; Md, Mendacibombus. SF and LF refer to the short-faced and long-faced clades, respectively. Proportionsshown on the branches of individual gene trees are Bayesian posterior probabilities.

SF

LF

Kl

Md

Bi

Cf

SFSF

LF

Kl

Md

Bi

Cf

SF

LF

Kl

Md

Bi

Cf

SF

LF

Kl

Md

BiCf

LF

SF

LF

Kl

Bi

Cf

Md

C. opsinB. EF-1a

D. ArgK E. PEPCK

A. Consensus

0.81

1.0

0.85

0.970.780.63

0.801.0

0.670.99

0.99

1.0

0.83

1.00.90

1.0

0.74

1.0

0.99

1.0

0.91

0.86

1.0

1.0

1.0 1.0

0.99

0.96

Page 17: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 177

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

gested Mendacibombus as sister group to the remain-ing bumble bees, with weak to moderate support(PP = 0.77, BV = 86%).

EFFECTS OF GAP-CODED CHARACTERS

Excluding the gap-coded characters from the five-genes data set had minor influences on tree topologyoverall and support values were highly similar to thecomplete data set. In a few cases, gap characterssubstantially increased support for a clade, includ-ing (1) the sister group relationship betweenB. rufocinctus and members of the New World clade +(B. semenoviellus + B. apollineus) (PP = 0.65 withoutgaps, 0.99 with gaps); (2) the sister group relationshipbetween Bombus citrinus and Bombus insulariswithin Psithyrus (from 0.90 to 1.0); and (3) thesister group relationship between (Megabombus +Senexibombus + Diversobombus) and Thoracobom-bus–Psithyrus (from 0.91 to 0.98). By contrast, gapcharacters substantially decreased support for therelationship between Bombus velox and Bombusruderarius (within Thoracobombus) from 0.99 to0.52. Regarding topological changes, excluding thegap characters caused the Bombus hypnorum–B. haematurus group within Pyrobombus (Fig. 1) toattach as sister to the clade Bombus cingulatus–B. biroi (PP = 0.62), and within Alpinobombus (Fig. 1),Bombus balteatus attached as sister to Bombus hyper-boreus in place of Bombus neoboreus (PP = 0.94). Mostimportantly, excluding gap characters shifted the posi-tion of the root from Mendacibombus to Bombias +Confusibombus (PP = 0.61).

MORPHOLOGY

Figure 4 illustrates comparative results of parsimonybootstrap analyses based on the complete set of mor-phological characters (Fig. 4A) and on the male geni-talia alone (Fig. 4B), with bootstrap values indicatingsupport for nodes > 50%. Genitalic characters aloneresulted in higher tree resolution than when somaticcharacters were included, although support for theadditional resolution was weak. Both data sets recov-ered a New World clade + Sibiricobombus but boot-strap support was < 50% with the inclusion of somaticcharacters. The genitalic data resolved a short-facedclade, with weak support (BV = 59%), and therewas no resolution of a long-faced clade in eithertree. The trichotomy Senexibombus + Diversobombus+ Megabombus was well supported in both trees(BV = 83% and 78%). Five of the nine subgenera rep-resented by two exemplars in the complete data setwere recovered with good support (BV > 70%), onlythree were supported by genitalia alone. The basaldivergences resembled the comprehensive DNA tree

(Figs 1, 2), except that Mendacibombus was paraphyl-etic and Bombias and Confusibombus did not form aclade.

Bayesian analysis of the sequence data for these 47taxa recovered a tree (not shown) entirely consistentwith the subgeneric relationships from the all-taxonBayesian analysis (Fig. 2), with nearly identical highsupport values (all but a few PP = 0.98). Adding themorphological characters to the 47-taxon sequencedata resulted in decreased support for Subterrane-obombus + Orientalibombus (from PP = 0.92 to 0.85)and for the placement Kallobombus as sister to theshort-faced + long-faced clades (from PP = 0.94 to0.68). Also, Alpigenobombus moved from its positionas an unresolved polytomy with the clades circum-scribing the New World taxa–Sibiricobombus andMelanobombus–Rufipedibombus to that of sister tothese two clades, although support was weak(PP = 0.85).

DISCUSSION

MONOPHYLY OF CONVENTIONAL SUBGENERA

An unequivocal result of this molecular phylogeneticexamination is the strong support that it provides forgroups of species represented by the conventional sub-generic system, as developed over many years frommorphological taxonomy (Radoszkowski, 1884; Vogt,1911; Krüger, 1917; Skorikov, 1922; Frison, 1927;Richards, 1968; summarized in Williams, 1998). Thisis consistent with the more limited molecular analysesof Pedersen (2002) and Kawakita et al. (2004). In re-trospect, the long stability of the Bombus subgenera isnotable given the intense controversies over theirhigher-level classification (for a review, see Ito, 1985).Clearly, characters of the male genitalia (Radosz-kowski, 1884; Vogt, 1911; Richards, 1968; Williams,1985, 1994) have proven reliable indicators of species-group membership (see also Hines et al., 2006).

The problems generally arise when these samecharacters are used to assess relationships amongthe subgenera. On the whole, morphological charac-ters, whether analysed phenetically (Plowright &Stephen, 1973; Ito, 1985) or cladistically (Williams,1985, 1994; Ito & Sakagami, 1985), have been unableto fully resolve the intersubgeneric relationships or toreconstruct higher-level clades that are congruentwith the DNA-based phylogeny. Although finding mor-phological characters that can serve as synapomor-phies for higher-level groupings of Bombus could beuseful, another approach to the study of morphologywould make use of the well-resolved DNA phylogenyto elucidate the evolution of functionally interestingmorphological traits, such as features of the male gen-italia, the tongue, and colour pattern.

Page 18: A comprehensive phylogeny of the bumble bees ( Bombus

178 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

In a few cases, our results lead to the splitting ofconventional subgenera. The large subgenus Fervi-dobombus is a conspicuous example, as the dahl-bomii-group (Fig. 1) falls outside this clade, leavingbehind a strongly supported clade attached to a poly-phyletic Tricornibombus. The polyphyly of Fervi-dobombus was suggested in earlier phenetic (Ito,1985) and cladistic analyses of subgeneric relation-ships (Koulianos & Schmid-Hempel, 2000; Kawakitaet al., 2003). The report by Cameron & Williams(2003), rooting Fervidobombus with Thoracobombus(thought to be among its closest relatives), producedan apparently monophyletic clade because other sub-genera were not represented in the analysis. More

complete taxon sampling outside Fervidobombusupdates this.

Williams (1998) assigned B. handlirschi to themonotypic Dasybombus (Labougle & Ayala, 1985)based on similarities of the male genitalia, but theDNA data show that B. handlirschi is closely relatedto Rubicundobombus (sensu Franklin, 1912, 1913)and Coccineobombus (Fig. 1). The two remainingoccurrences of nonmonophyly of subgenera (Cullu-manobombus and Separatobombus) are less clear cutin terms of support, and would benefit from tar-geted studies of those groups.

In one of the more surprising results, it appears thatPressibombus is a part of Pyrobombus. Morphologi-

Figure 4. Nonparametric parsimony bootstrap trees estimated from morphological characters for 47 Bombus subgenericexemplars. A, analysis of the total morphology data set. B, analysis of genitalic characters alone. Values above branchesindicate bootstrap support (BV) > 50%. Subgeneric taxon labels are given in Table 1.

87

54

100

72

100

Ds

CcBrRcSbFrCrRbSpSpFn

SxDvMgOr

Bo

Al

Ml

Ob

Ps

Th

Ag

Kl

St

RhTrFv

EvMcExLs

PrPrFs

Rf

Cu

CfBi

MdMd

macgregorihandlirschicoccineus

brachycephalusrubicundusniveatusfraternuscrotchii

volucelloidesmorrisonigriseocollisfunebris

kulingensistrifasciatussupremus

haemorrhoidalis

sporadicusterrestris

hyperboreus

insularissylvestris

filchneraesylvarum

nobilisbreviceps

soroeensis

melanurus

armeniacustricornisfervidus

persicusmucidus

exillaesus

hypnorumlapponicusfestivus

eximius

rufocinctus

confususnevadensisconvexus

avinoviellus

9456 62

63

simillimusladakhensis

oberti

65 67

59

pressusPe

65

95

83 90

89 96

68 57

91 69

86

76 6456

83 78

51

86 79

Ds

Ml

Bo

Ag

Th

Ps

51

54

56

B. GenitaliaA. All Morphology

Ds

CcBrRcSbFrCrRbSpSpFn

SxDvMgOr

Bo

Al

Ml

Ob

Ps

Th

Ag

Kl

St

RhTrFv

EvMcExLs

PrPrFs

Rf

Cu

CfBi

MdMd

Pe

Ds

Ml

Bo

Ag

Th

Ps

SF

NW

Page 19: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 179

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

cally, B. pressus is characterized by distinctive malegenitalia, particularly by a strong reduction of thegonostylus, which appears to a lesser extent in othermembers of the parthenius-group, and by a uniqueventrolateral production of the head of the penis valve.Apart from this new addition to the group, Pyrobom-bus, the largest subgenus, is decisively monophyletic(for additional discussion, see Hines et al., 2006). Incontrast to earlier reports by Williams (1991, 1994,1998) suggesting that Mendacibombus is paraphyleticand Sibiricobombus sensu Richards (1968) (whichincluded Obertobombus) is polyphyletic, both groupsare monophyletic and, from the single species studiedhere, Obertobombus indeed forms a monophyleticgroup with Sibiricobombus. The monotypic Festivo-bombus and Rufipedibombus form a strongly sup-ported group with the larger Melanobombus.

The socially parasitic subgenus Psithyrus has pro-voked a great of deal of taxonomic controversy. Histor-ically, Psithyrus was considered a separate genus ofbumble bees (Lepeletier, 1832) because of the diver-gent biology and morphology associated with itsinquiline mode of life. Our results strongly supportPsithyrus as a monophyletic group within Bombus,which is consistent with the majority of findings overthe last few decades (Plowright & Stephen, 1973;Pekkarinen et al., 1979; Ito, 1985; Williams, 1985,1991, 1994; Pamilo et al., 1987; Pedersen, 2002; Kawa-kita et al., 2004). Furthermore, Psithyrus divides intothe same clades (Fig. 1) established as subgenera inearlier taxonomic studies (Franklin, 1912, 1913; Fri-son, 1927; Popov, 1931; Pittioni, 1949). Williams (1991,1998) treated these as species groups, synonymizingthe subgeneric names; Rasmont et al. (1995) consid-ered them as separate subgenera within Bombus. Therelationships among these species groups receiveweaker support, highlighting the consistency in rela-tive degree of support between the molecular and mor-phological data.

Of potential interest to Psithyrus evolution is thefinding by Bromham & Leys (2005) that rates ofmolecular evolution in social parasites are fasterthan those of their social relatives. If this conclu-sion is accepted, and if substitution rates areexpected to evolve in a lineage-dependent fashion, itfollows that the socially parasitic Psithyrus shouldexhibit faster rates than most of their social rela-tives. There may be a hint of this in the greater com-bined branch lengths of Psithyrus relative to theother subgenera, but testing this requires sister-group comparison of substitution rates in their non-parasitic sister taxa.

DEEP DIVISIONS WITHIN BOMBUS

Krüger (1917) recognized a division of the bumblebees into two larger sections, Odontobombus (‘with

spine’) and Anodontobombus (‘without spine’), basedon several diagnostic morphological characters,including head shape and presence/absence of a mid-basitarsal spine. His Odontobombus (Thoracobombus,Laesobombus, Mucidobombus, Rhodobombus, Sub-terraneobombus, and Megabombus) and Anodonto-bombus (Pyrobombus, Bombus s.s., Alpinobombus,Cullumanobombus, Melanobombus, Kallobombus,Confusibombus, and Mendacibombus) correspondapproximately to our long-faced and short-facedclades. In detail, the long-faced clade includes anadditional eight subgenera (Fig. 1) not included inKrüger’s more restricted investigation of CentralEuropean fauna, and the short-faced clade includes 13subgenera omitted by Krüger. Krüger’s characters ledhim to group Kallobombus, Confusibombus, and Men-dacibombus within the equivalent of the short-facedclade, whereas our results reveal that these taxa falloutside both divisions, representing more basal diver-gences in the phylogeny. Kawakita et al. (2004) dis-cussed two higher-level Bombus groupings (clades Aand B), which are consistent with our long-faced andshort-faced divisions, but with many fewer taxa andweak support for their A clade. Interestingly, withBayesian analysis of sequences from only 47 (∼20%) ofthe 218 taxa collected for this study, we recovered theidentical structure to that of the comprehensive tree,with well supported intersubgeneric relationships,including the short-faced, long-faced, and New Worldsubdivisions. This indicates that taxon sampling isless important in recovering higher level phylogeneticstructure of Bombus than is the availability of a largenumber of informative characters.

RELATIONSHIPS NEAR THE RANK OF SPECIES

In several cases, sister taxa share such a remarkabledegree of sequence similarity that we might askwhether they are conspecific. Given the 1–2 bp differ-ences we commonly see within a gene for many taxonsamples, for example, within nuclear genes of het-erozygous females or from comparisons of conspecifictaxa sequenced both by us and by Kawakita et al.(2003), we consider it likely that two nominal taxa areconspecific if they differ by only 1–2 bp across all genesequences (equivalent to only 0.03–0.05% sequencedivergence). Of course, final decisions about speciesstatus will require examining the patterns of variationamong a broad sampling of individuals.

Several sympatric species pairs exhibit discordantcolour patterns yet have virtually identical sequences.For example, Bombus (Sibiricobombus) niveatus(Fig. 1), which is white-banded, and Bombus vortico-sus, which is yellow-banded, differed by a single nucle-otide (ArgK) across all five genes, supporting theirstatus as dimorphic colour forms of the same species.

Page 20: A comprehensive phylogeny of the bumble bees ( Bombus

180 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Williams (1991, 1998) concluded this from morphologyand Rasmont et al. (2005) from mandibular glandsecretions. Bombus (Mendacibombus) handlirshianus(white-band) and Bombus shaposhnikovi (yellow-banded) differ by two bases (1 bp 16S, 1 bp PEPCK),and individuals of these two colour forms were evenobserved to share a common nest entrance at a site innorth-east Turkey (H. M. Hines, pers. observ.). Some ofthese colour dimorphisms may be the result ofintraspecific diallelic differences (Owen & Plowright,1980). The lack of correspondence between colour pat-tern variation and degree of nucleotide differentiationshows that much remains to be learned about colourpattern evolution, and sets the stage for examiningpossible adaptive causes, including mimicry.

Some putative allopatric species pairs, also describedfrom distinct colour morphs, may be conspecific. Oneexample involves the two Senexibombus species,Bombus bicoloratus (Taiwan) and Bombus kulingensis(mainland China), which differ by only a single base inboth the 16S and PEPCK sequences. Another exampleincludes Bombus pensylvanicus from eastern NorthAmerica and Bombus sonorus from western NorthAmerica: both taxa, which are similar in morphologybut variable in colour pattern (Williams, 1998), exhibitsigns of introgression as B. sonorus from San LuisPotosí, Mexico (an area of sympatry with B. pensyl-vanicus) and B. sonorus from Arizona are not mono-phyletic relative to two B. pensylvanicus sequencesfrom Missouri (Fig. 1). Other likely conspecific taxa,questioned by Williams (1998), include Bombuserzurumensis/Bombus sichelii (3 bp difference for 16S,3 bp for EF1α, 1 bp for PEPCK) and Bombus volucel-loides/Bombus melaleucus (2 bp 16S, 3 bp ArgK).

In two cases, allopatric pairs of Psithyrus taxaexhibit nearly identical sequences and could be con-specific: Bombus fernaldae/Bombus flavidus (1 bp dif-ference EF1a, 1 bp ArgK) and B. ashtoni/B. bohemicus(1 bp ArgK). It is unusual that one member of eachpair occurs only in the New World and the other onlyin the Old World, respectively. If conspecific, each pairwould encompass a nearly Holarctic temperate distri-bution, thus far found only in the lucorum complexand some Alpinobombus species. The possible conspec-ificity of B. fernaldae and B. flavidus has not been con-sidered until now, but Williams (1991) suggested thatB. ashtoni and B. bohemicus could be parts of thesame species. Both taxa specialize on hosts of the sub-genus Bombus s.s.: B. ashtoni on Bombus affinis andB. terricola (Plath, 1934; Fisher, 1984), B. bohemicuson Bombus lucorum (Alford, 1975)

Other species pairs considered potentially con-specific (Williams, 1998) are somewhat geneticallydivergent based on 16S, including B. occidentalis/B. terricola (7 bp, 1.3%); Bombus fervidus/Bombuscalifornicus (8 bp, 1.6%); B. velox/Bombus deuter-

onymus and Bombus sylvicola/Bombus lapponicus(10 bp, 1.9%); B. moderatus + B. cryptarum/B. lucorum(11 bp, 2.1%, 14 bp, 2.6%; neither taxon is monophy-letic with B. lucorum); Bombus alagesianus/Bombuskeriensis (14 bp, 2.6%) and Bombus difficillimus/Bombus melanurus (20 bp, 3.8%). The separation ofB. auricomus and B. nevadensis on the basis of mor-phology, colour pattern (Williams, 1998), and alloz-ymes (Scholl et al., 1992) is also supported by oursequence data (22 bp, 4.2%). Interestingly, Bombusmodestus from Kazakhstan is genetically distinct fromB. modestus from Sichuan, China for 16S, exhibitinggreater genetic distance (24 bp, 4.5%) than many pairsof sister species.

IMPLICATIONS FOR BOMBUS CLASSIFICATION

Several authors have suggested that the subgenericsystem for bumble bees would benefit from simplifica-tion (Menke & Carpenter, 1984; Williams, 1998). Thechallenge is to recognize monophyletic groups that aremorphologically and behaviourally meaningful, whilereducing the number of small subgenera. Our Bombusphylogeny raises the possibility of revising the classi-fication with more confidence by providing a frame-work to ensure monophyletic subgenera and reducethe proliferation of formal group names. Here weintend no nomenclatural action as specific recommend-ations concerning recognition of groups will be madeelsewhere, based in part on some of the following rel-evant details.

Concerning the New World clade, rather than recog-nizing even more monotypic subgenera, it might bemore practical to recognize the entire New World cladeas a single subgenus consisting of several speciesgroups, including Robustobombus. Further reductionsin numbers of subgenera could be achieved by placingObertobombus (Bombus oberti) into Sibiricobombus,and by including Festivobobombus (Bombus festivus)and Rufipedibombus in Melanobombus. Whether toconsolidate these taxa into one group is complicatedby the fact that many of the monotypic subgeneraare sister to clades subtended by conspicuously longbranches, suggesting long separation/distinctness(Fig. 1). In view of these apparently large intersubge-neric genetic distances, it might be prudent to con-sider additional biological characters in decisions as towhether to combine the taxa.

Given the strong support for Pressibombus fallingwithin Pyrobombus, it is reasonable to synonymizePressibombus under Pyrobombus. The clade com-prising the monotypic subgenera Mucidobombus,Eversmannibombus, and Laesobombus could be con-sidered as members of Thoracobombus or as a sepa-rate three-species subgenus. Exilobombus attaches toTricornibombus (excluding B. imitator) and should be

Page 21: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 181

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

considered a part of Tricornibombus. Megabombuscould include Senexibombus. Bombias and Confusi-bombus might be combined into a single subgenus,although the branches appear long and the respectivetaxa distinct.

New names might be required to accommodate thesplitting of a few subgenera. The obvious division ofFervidobombus into two monophyletic groups couldrequire a new species group or subgenus designationfor B. dahlbomii + B. morio + B. excellens. Other clas-sification decisions may involve Cullumanobombus,Separatobombus, Dasybombus, and Tricornibombus.

FUTURE RESEARCH

PhylogenyWithin some clades (e.g., Bombus s.s. and Fervidobom-bus), a few of the internodes are short but have highposterior probabilities (Fig. 1). We interpret theserelationships with caution because Bayesian inferenceis highly sensitive to phylogenetic signal (indicatinghigh posterior probability values with relatively fewcharacters) and has been shown (with simulated data)to occasionally attach high support values to incorrectshort internodes (Alfaro, Zoller & Lutzoni, 2003).Gathering additional characters should resolve theuncertainties associated with these short branches.Importantly, new characters from other genes shouldincrease resolution and support for relationshipswithin the New World clade and strengthen the place-ment of Kallobombus and assignment of the root.

The missing putative species (Williams, 1998) fromthis study are most notably from Psithyrus (eight spe-cies), Mendacibombus (five species) and Melanobom-bus (four species). Examination of the positions ofthese and remaining species from small subgenera(e.g., Cullumanobombus, Rufipedibombus, Senexi-bombus, and Orientalibombus) would secure ourknowledge of Bombus relationships and subgenericmonophyly.

Diversification in the New WorldThe pattern of diversification of the New World clade,with its numerous distinctive taxa that span NorthAmerica, Mexico, and the Andes, suggests there mayhave been at least two episodes of relatively rapiddivergence after colonization of the New World. Thefirst of these is implied by the very short branchesthat subtend relatively long branches of the morpho-logically distinct monotypic subgenera, which aredifficult to resolve with good support (Fig. 1). Thispattern poses interesting questions concerning theinterplay between colonization of the New World andtrends in bumble bee diversification. Comparativestudies of sister taxa outside this group, which areall Old World (except B. rufocinctus), could reveal

whether any morphological or physiological innova-tions occurred in association with episodes of conti-nental colonization and diversification (Kay et al.,2005). The second episode occurred with Robustobom-bus, the only speciose monophyletic subgenus withinthe New World clade. This group seems to havediverged more recently in upland areas of the north-ern Andes, perhaps in association with new ecologicalopportunities provided after the northern Andeanuplift (3–5 Mya) that involved the colonization bynew plant genera (Hughes & Eastwood, 2006). Ourrobust species phylogeny affords the opportunity totest this hypothesis with estimates of divergencetimes.

The only other large endemic New World subgenus,Fervidobombus, suggests a similar pattern of diversi-fication after colonization from the Old World. How-ever, in contrast to taxa of the New World clade, manyof which inhabit cooler, mountainous habitats, Fervi-dobombus inhabit warmer lowland habitats, includingtropical rain forest (Williams, 1985; Cameron &Williams, 2003). Their predisposition to nest aboveground, a characteristic of many of their closest OldWorld relatives, may underlie their mostly lowlanddistribution, and at least partially explain the innova-tion in nest architecture associated with the atypicalrain forest species, Bombus transversalis (Taylor &Cameron, 2003) and Bombus pullatus (Hines, Cam-eron, & Deans, 2007). Additional research on the biol-ogy of Old World relatives should clarify influences ofecological shifts and phylogeny on life history of thetropical bumble bees.

Colour pattern evolutionColour pattern mimicry in bumble bees has been sug-gested by several authors (Plowright & Owen, 1980;Williams, 1991) to explain many geographical trendsin colour pattern variation. However, conclusions thatcolour patterns do not also evolve along phylogeneticlineages have been limited by incomplete species sam-pling and coding of the full range of patterns andintraspecific polymorphisms. Our comprehensive phy-logenetic results permit the first comparative exami-nation of convergence and mimicry on a worldwidescale.

ACKNOWLEDGEMENTS

First and foremost we thank B. Cederberg andP. Rasmont, without whose collecting and taxonomicassistance this research would have been greatlydiminished. We also thank all of those listed in Table 1for their assistance worldwide in the contribution offresh material for sequencing; most significantly, wethank R. Ayala, A. M. Aytekin, O. Berg, M. Hauser, R.Hepburn, P. Mardulyn, C. Rasmussen, M. Saini, A.

Page 22: A comprehensive phylogeny of the bumble bees ( Bombus

182 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Scholl, R. Thorp, R. Vandame, and J. Whitfield. Weespecially thank Chen Xuexin and Tang Ya for theirinvaluable assistance with organizing the China expe-dition, Pierre Rasmont for organizing the Turkeyexpedition, Ricardo Ayala for organizing collecting inMexico, and Gernot Patzelt for assisting with collect-ing in the Austrian Alps. We thank Sudhakar Pami-dighantam (UIUC NCSA) for invaluable technicalassistance and Ben Grosser and Micah Wolfe for cre-ative assistance with graphics. We are indebted to JimWhitfield for his careful reading and comments on themanuscript. We also thank Sally Corbet, CharlesMichener, and three anonymous reviewers forcomments. Lastly, SAC is especially grateful to JBWfor sharing in the earliest vision of this research. Thisresearch was supported by USDA grants (NRI,CSREES, 2002-35302-11553 and 2004-35302-15077)and NSF grants (DEB 060004) to S.A.C.

REFERENCES

Alfaro ME, Zoller S, Lutzoni F. 2003. Bayes or bootstrap? Asimulation study comparing the performance of BayesianMarkov chain Monte Carlo sampling and bootstrapping inassessing phylogenetic confidence. Molecular Biology andEvolution 20: 255–266.

Alford DV. 1975. Bumblebees. London: Davis-Poynter Limited.Bromham L, Leys R. 2005. Sociality and the rate of molecular

evolution. Molecular Biology and Evolution 22: 1393–1402.Cameron SA. 1993. Multiple origins of advanced eusociality

in bees inferred from mitochondrial DNA sequences. Pro-ceedings of the National Academy of Sciences of the UnitedStates of America 90: 8687–8691.

Cameron SA. 2003. Data from the elongation factor-1α genecorroborates the phylogenetic pattern from other genesrevealing common ancestry of bumble bees and stingless bees(Hymenoptera: Apinae). Proceedings of the III MesoamericanSeminar on Stingless Bees. Tapachula, Chiapas: ECOSURand Universidad Autónoma de Chiapas, 132–136.

Cameron SA, Jost MC. 1998. Correlates of dominance statusamong queens in a cyclically polygynous Neotropical bumblebee. Insectes Sociaux 45: 135–149.

Cameron SA, Mardulyn P. 2001. Multiple molecular datasets suggest independent origins of highly eusocial behaviorin bees (Hymenoptera: Apinae). Systematic Biology 50: 194–214.

Cameron SA, Mardulyn P. 2003. The major opsin gene isuseful for inferring higher level phylogenetic relationships ofthe corbiculate bees. Molecular Phylogenetics and Evolution28: 610–613.

Cameron SA, Whitfield JB. 1996. Use of walking trails bybees. Nature 379: 125.

Cameron SA, Williams PH. 2003. Phylogeny of bumble beesin the New World subgenus Fervidobombus (Hymenoptera:Apidae): congruence of molecular and morphological data.Molecular Phylogenetics and Evolution 28: 552–563.

Danforth BN, Ji S. 2001. Australian Lasioglossum + Homa-

lictus form a monophyletic group: resolving the ‘Australianenigma’. Systematic Biology 50: 268–283.

Darwin CR. 1859. On the origin of species by means of naturalselection. London: John Murray.

Dornhaus A, Cameron SA. 2003. A scientific note on foodalert in Bombus transversalis. Apidologie 34: 87–88.

Dornhaus A, Chittka L. 2004. Information flow and regula-tion of foraging activity in bumble bees (Bombus spp.).Apidologie 35: 183–192.

Evans DL, Waldbauer GP. 1982. Behaviour of adult andnaïve birds when presented with a bumblebee mimic.Zeitschrift für Tierpsychologie 59: 247–259.

Fisher RM. 1984. Evolution and host specificity: a study of theinvasion success of a specialized bumblebee social parasite.Canadian Journal of Zoology 62: 1641–1644.

Franklin HJ. 1912. The Bombidae of the New World, part I.Transactions of the American Entomological Society 38: 177–486.

Franklin HJ. 1913. The Bombidae of the New World, Part II.Species south of the United States. Transactions of the Amer-ican Entomological Society 39: 73–200.

Freeman RB. 1968. Charles Darwin on the routes of malebumble bees. Bulletin of the British Museum (Natural His-tory) (Historical) 3: 179–189.

Friedlander TP, Regier JC, Mitter C, Wagner DL. 1996. Anuclear gene for higher level phylogenetics: phosphoe-nolpyruvate carboxykinase tracks Mesozoic-age divergenceswithin Lepidoptera (Insecta). Molecular Biology and Evolu-tion 13: 594–604.

Frison TH. 1927. A contribution to our knowledge of the rela-tionships of the Bremidae of America north of Mexico(Hymenoptera). Transactions of the American EntomologicalSociety 53: 51–78.

Hall TA. 1999. BioEdit: a user-friendly biological sequencealignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Heinrich B. 2004. Bumblebee economics (with a new preface).Cambridge, MA: Harvard University Press.

Hines HM, Cameron SA, Deans A. 2007. Nest architectureand foraging behavior in Bombus pullatus (Hymenoptera:Apidae), with comparisons to other tropical bumble bees.Journal of the Kansas Entomological Society 80: 1–15.

Hines HM, Cameron SA, Williams PH. 2006. Molecularphylogeny of the bumble bee subgenus Pyrobombus(Hymenoptera: Apidae: Bombus) with insights into gene util-ity for lower level analysis. Invertebrate Systematics 20: 289–303.

Hughes C, Eastwood R. 2006. Island radiation on a conti-nental scale: exceptional rates of plant diversification afteruplift of the Andes. Proceedings of the National Academy ofSciences of the United States of America 103: 10334–10339.

Ito M. 1985. Supraspecific classification of bumblebees basedon the characters of male genitalia. Contributions from theInstitute of Low Temperature Science, Series B 20: 1–143.

Ito M, Sakagami SF. 1985. Possible synapomorphies of theparasitic bumblebees (Psithyrus) with some nonparasiticbumblebees (Bombus) (Hymenoptera: Apidae). Sociobiology10: 105–119.

Page 23: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 183

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gib-son TJ. 1998. Multiple sequence alignment with Clustal X.Trends in Biochemical Science 23: 403–405.

Kawakita A, Sota T, Ascher JS, Ito M, Tanaka H, Kato M.2003. Evolution and phylogenetic utility of alignment gapswithin intron sequences of three nuclear genes in bumblebees (Bombus). Molecular Biology and Evolution 20: 87–92.

Kawakita A, Sota T, Ito M, Ascher JS, Tanaka H, Kato M,Roubik DW. 2004. Phylogeny, historical biogeography, andcharacter evolution in bumble bees (Bombus: Apidae) basedon simultaneous analysis of three nuclear gene sequences.Molecular Phylogenetics and Evolution 31: 799–804.

Kay KM, Reeves PA, Olmstead RG, Schemske DW. 2005.Rapid speciation and the evolution of hummingbird pollina-tion in neotropical Costus subgenus Costus (Costaceae):evidence from nrDNA ITS and ETS sequences. AmericanJournal of Botany 92: 1899–1910.

Koulianos S. 1999. Phylogenetic relationships of the bumble-bee subgenus Pyrobombus (Hymenoptera: Apidae) inferredfrom mitochondrial cytochrome b and cytochrome oxidase Isequences. Annals of the Entomological Society of America92: 355–358.

Koulianos S, Schmid-Hempel P. 2000. Phylogenetic relation-ships among bumble bees (Bombus, Latreille) inferred frommitochondrial cytochrome b and cytochrome oxidase Isequences. Molecular Phylogenetics and Evolution 14: 335–341.

Krüger E. 1917. Zur Systematik der mitteleuropäischenHummeln (Hym.). Entomologische Mitteilungen 6: 55–66.

Labougle JM, Ayala R. 1985. A new subgenus and species ofBombus (Hymenoptera: Apidae) from Guerrero. Mexico FoliaEntomológica Mexicana 66: 47–55.

Lepeletier de Saint Fargeau ALM. 1832. Observations surl’ouvrage intitulé: ‘bombi scandinaviae monographice trac-tato, etc., à Gustav Dahlbom’. Annales de la Société Ento-mologique de France 1: 366–382.

Linnaeus C. 1758. Systema naturae, 10th edn. Stockholm.Lockhart PJ, Cameron SA. 2001. Trees for bees. Trends in

Ecology and Systematics 16: 84–88.Mardulyn P, Cameron SA. 1999. The major opsin in bees

(Insecta: Hymenoptera): a promising nuclear gene for higherlevel phylogenetics. Molecular Phylogenetics and Evolution12: 168–176.

Menke AS, Carpenter J. 1984. Nuclearbombus, new subge-nus (or how to eliminate bumblebee subgenera and learn tolove the Bombus). Bulletin of the Entomological Society ofCanada 16: 130.

Michel-Salzat A, Cameron SA, Oliveira ML. 2004. Phylog-eny of the orchid bees (Hymenoptera: Apinae: Euglossini):DNA and morphology yield equivalent patterns. MolecularPhylogenetics and Evolution 32: 309–323.

Michener CD. 1990. Classification of the Apidae(Hymenoptera). University of Kansas Science Bulletin 54:75–164.

Milliron HE. 1961. Revised classification of the bumblebees, asynopsis (Hymenoptera: Apidae). Journal of the KansasEntomological Society 34: 49–61.

Milliron HE. 1971. A monograph of the Western Hemispherebumblebees (Hymenoptera: Apidae; Bombinae). I. The gen-

era Bombus and Megabombus subgenus Bombias. Memoirsof the Entomological Society of Canada 82: 1–80.

Milliron HE. 1973a. A monograph of the Western Hemispherebumblebees (Hymenoptera: Apidae; Bombinae). II. Thegenus Megabombus subgenus Megabombus. Memoirs of theEntomological Society of Canada 89: 81–237.

Milliron HE. 1973b. A monograph of the Western Hemispherebumblebees (Hymenoptera: Apidae; Bombinae). III. Thegenus Pyrobombus subgenus Cullumanobombus. Memoirs ofthe Entomological Society of Canada 91: 238–333.

Nylander JAA. 2004. MrModeltest, version 2. Available at:http://www.abc.se/~nylander/).

Obrecht E, Scholl A. 1981. Enzymelektrophoretische Unter-suchungen zur Analyse der Verwandtschaftsgrade zwischenHummel- und Schmarotzerhummelarten (Apidae, Bombini).Apidologie 12: 257–268.

Olesen JM. 1989. Behavior and nest structure of the Amazo-nian Bombus transversalis in Ecuador. Journal of TropicalEcology 5: 243–246.

Owen RE, Plowright RC. 1980. Abdominal pile color dimor-phism in the bumble bee, Bombus melanopygus. Journal ofHeredity 71: 241–247.

Pamilo P, Pekkarinen A, Varvio S-L. 1987. Clustering ofbumblebee subgenera based on interspecific genetic relation-ships (Hymenoptera, Apidae: Bombus and Psithyrus).Annales Zoologici Fennici 24: 19–27.

Pedersen BV. 1996. A phylogenetic analysis of cuckoo bum-blebees (Psithyrus, Lepeletier) and bumblebees (Bombus,Latrielle) inferred from sequences of the mitochondrial genecytochrome oxidase I. Molecular Phylogenetics and Evolu-tion 5: 289–297.

Pedersen BV. 2002. European bumblebees (Hymenoptera:Bombini) − phylogenetic relationships inferred from DNAsequences. Insect Systematics and Evolution 33: 361–386.

Pekkarinen A. 1979. Morphometric, colour and enzymevariation in bumblebees (Hymenoptera, Apidae, Bombus) inFennoscandia and Denmark. ACTA Zoologica Fennica 158:1–60.

Pekkarinen A, Varvio-Aho SL, Pamilo P. 1979. Evolu-tionary relationships in northern European Bombus andPsithyrus species (Hymenoptera: Apidae) studied on thebasis of allozymes. Annales Entomologici Fennici 45: 77–80.

Pittioni B. 1949. Beiträge zur Kenntnis der BienenfaunaSO-Chinas. Die Hummeln und Schmarotzerhummeln derAusbeute J. Klapperich (1937/38). (Hym., Apoidea, Bombini).Eos 2: 241–284.

Plath OE. 1934. Bumblebees and their ways. New York, NY:Macmillan Co.

Plowright RC, Owen RE. 1980. The evolutionary signifi-cance of bumble bee colour patterns: a mimetic interpreta-tion. Evolution 34: 622–637.

Plowright RC, Stephen WP. 1973. A numerical taxonomicanalysis of the evolutionary relationships of Bombus andPsithyrus (Apidae: Hymenoptera). Canadian Entomologist105: 733–743.

Popov VB. 1931. Zur Kenntnis der Paläarktischen Schma-rotzerhummeln (Psithyrus Lep.). Eos 7: 131–209.

Page 24: A comprehensive phylogeny of the bumble bees ( Bombus

184 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

Posada P, Crandall KA. 1998. Modeltest: testing the modelof DNA substitution. Bioinformatics 14: 817–818.

Radoszkowski O. 1884. Révision des armures copulatricesdes mâles du genre Bombus. Byulletin′ Moskovskogo Obsh-chestva Ispytatelei Prirody 59: 51–92.

Rambaut A, Drummond A. 2003. Tracer V1.2 MCMC tracerfile analyzer. Oxford: University of Oxford. Available athttp://evolve.zoo.ox.ac.uk/beast/.

Rasmont P, Ebmer PA, Banaszak J, Zanden G. 1995. vander Hymenoptera Apoidea Gallica. Liste taxonomique desabeilles de France, de Belgique, de Suisse et du Grand-Duché de Luxembourg. Bulletin de la Société de France 100:1–98.

Rasmont P, Terzo M, Aytekin AM, Hines H, Urbanova K,Cahlikova L, Valterova I. 2005. Cephalic secretions of thebumblebee subgenus Sibiricobombus Vogt suggest Bombusniveatus Kriechbaumer and Bombus vorticosus Gerstaeckerare conspecific (Hymenoptera, Apidae, Bombus). Apidologie36: 571–584.

Rasmussen C, Cameron SA. 2007. A molecular phylogeny ofthe Old World stingless bees (Hymenoptera: Apidae: Melipo-nini) and the non-monophyly of the large genus Trigona.Systematic Entomology 32: 26–39.

Reinig WF. 1935. On the variation of Bombus lapidarius L.and its cuckoo, Psithyrus rupestris Fabr., with notes onmimetic similarity. Journal of Genetics 30: 321–356.

Reinig WF. 1939. Die Evolutionsmechanismen, erläutert anden Hummeln. Verhandlungen der Deutschen ZoologischenGesellschaft Supplement 12: 170–206.

Richards OW. 1968. The subgeneric division of the genusBombus Latrielle (Hymenoptera: Apidae). Bulletin of theBritish Museum (Natural History) Entomology 22: 209–276.

Roig-Alsina A, Michener CD. 1993. Studies of the phylogenyand classification of long-tongued bees (Hymenoptera: Api-dae). University of Kansas Science Bulletin 55: 124–162.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesianphylogenetic inference under mixed models. Bioinformatics19: 1572–1574.

Sakagami SF. 1976. Specific differences in the bionomic char-acters of bumblebees: a comparative review. Journal of theFaculty of Science, Hokkaido University Series VI, Zoology20: 390–447.

Sakagami SF, Akahira Y, Zucchi R. 1967. Nest architectureand brood development in a neotropical bumblebee Bombusatratus. Insectes Sociaux 14: 389–414.

Scholl A, Thorp RW, Owen RE, Obrecht E. 1992. Spe-cific distinctness of Bombus nevadensis (Cresson) andB. auricomus (Robertson) (Hymenoptera: Apidae) − enzymeelectrophoretic data. Journal of the Kansas EntomologicalSociety 65: 134–140.

Schultz TR, Engel MS, Ascher JS. 2001. Evidence for the ori-gin of eusociality in the corbiculate bees (Hymenoptera: Api-dae). Journal of the Kansas Entomological Society 74: 10–16.

Simmons MP, Ochoterena H. 2000. Gaps as characters insequence-based phylogenetic analyses. Systematic Biology49: 369–381.

Simmons MP, Ochoterena H, Carr TG. 2001. Incorpora-tion, relative homoplasy, and effect of gap characters in

sequence-based phylogenetic analyses. Systematic Biology30: 454–462.

Skorikov AS. 1922. [Palaearctic bumble bees. Part I generalbiology (including zoogeography)]. Izvestiya Severnoi Oblast-noi Stantsii Zashchity Rastenii Ot Vreditelei 4: 1–160.

Skorikov AS. 1931. Die Hummelfauna Turkestans und ihreBeziehungen zur zentralasiatischen Fauna (Hymenoptera:Bombidae). Abhandlungen der Pamir-Expedition 1928 8:175–247.

Sladen FWL. 1912. The humble-bee. London: Macmillan.Swofford DL. 2001. PAUP* phylogenetic analysis using par-

simony (*and other methods), Version 4. Sunderland, MA:Sinauer Associates.

Taylor OM, Cameron SA. 2003. Nest construction and archi-tecture of the Amazonian bumble bee (Hymenoptera: Api-dae). Apidologie 34: 321–331.

Thompson GJ, Oldroyd BP. 2004. Evaluating alternativehypotheses for the origin of eusociality in corbiculate bees.Molecular Phylogenetics and Evolution 33: 452–456.

Thorp R. 2005. Bombus franklini Frison, 1921. Franklin’sBumble Bee (Hymenoptera: Apidae: Apinae: Bombini). In:Shepherd MD, Vaughan DM, Black SH, eds. Red List of Pol-linator Insects of North America. CO-ROM Version 1 (May2005). Portland, OR: The Xerces Society for InvertebrateConservation.

Tkalc B. 1968. Revision der vier sympatrischen, homo-chrome geographische Rassen bildenden Hummelarten SO-Asiens (Hymenoptera, Apoidea, Bombinae). AnnotationesZoologicae et Botanicae 52: 1–31.

Tkalc B. 1972. Arguments contre l’interprétation tradi-tionelle de la phylogénie des abeilles (Hymenoptera,Apoidea). Première partie, intoduction et exposés fondamen-taux. Bulletin de la Société Entomologique de Mulhouse1972: 17–28.

Tkalc B. 1974. Eine Hummel-Ausbeute aus dem Nepal-Himalaya (Insecta, Hymenoptera, Apoidea, Bombinae).Senckenbergiana Biologica 55: 311–349.

Tkalc B. 1989. Neue Taxa asiatischer Hummeln(Hymenoptera, Apoidea). Acta Entomologica Bohemoslovaca86: 39–60.

Vogt O. 1911. Studien über das Artproblem. 1. Mitteilung.Über das Variieren der Hummeln. 2. Teility (Schluss).Sitzungsberichte der Gesellschaft Naturforschender Freundezu Berlin 1911: 31–74.

Waldbauer GP, Sternberg JG, Maier CT. 1977. Phenolog-ical relationships of wasps, bumblebees, their mimics, andinsectivorous birds in an Illinois sand area. Ecology 58: 583–591.

Williams PH. 1985. A preliminary cladistic investigation ofrelationships among the bumble bees (Hymenoptera, Api-dae). Systematic Entomology 10: 239–255.

Williams PH. 1991. The bumble bees of the Kashmir Hima-laya (Hymenoptera: Apidae, Bombini). Bulletin of the BritishMuseum (Natural History) Entomology 60: 1–204.

Williams PH. 1994. Phylogenetic relationships among bumblebees (Bombus Latr.): a reappraisal of morphological evi-dence. Systematic Entomology 19: 327–344.

Williams PH. 1998. An annotated checklist of bumble bees

u∞∞

u∞∞

u∞∞

u∞∞

Page 25: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 185

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

with an analysis of patterns of description (Hymenoptera:Apidae, Bombini). Bulletin of the British Museum (NaturalHistory) Entomology 67: 79–152.

Williams PH. 2007. The distribution of bumblebee colour pat-terns world-wide: possible significance for thermoregulation,crypsis, and warning mimicry. Biological Journal of the Lin-nean Society in press.

Zucchi R. 1973. Aspectos bionômicos de Exomalopsis aureo-pilosa e Bombus atratus incluindo consideraçòes sobre aevolução do comportamento social (Hymenoptera, Apoidea).Doctoral Thesis. Faculdade de Filosofia, Ciencias e Letras deRibeirão Preto.

APPENDIX 1

The morphological character states represented in thematrix are listed. Multistate characters analysed asordered are shown with asterisks. Characters of thepenis refer to the penis valves unless otherwisespecified.

MALE PENIS

1. Spatha broader than long (0); spatha longer thanbroad (1).2. Spatha basally broadly rounded (0); spatha basallyacutely pointed (1).3. Spatha laterally continuous with valves (0); spathalaterally overhanging valves (1).4. Dorsal lightly sclerotized channel narrow (0); dor-sal lightly sclerotized channel broad (1).5. Shaft without a distinct ventro-lateral angle (0);shaft with an acute ventro-lateral angle near the mid-point of its length (1); shaft with only a weak trace ofa ventro-lateral angle (2); shaft with ventro-lateralangle broadly rounded as a shallow convexity (3);shaft with ventro-lateral angle pronounced as a verybroadly rounded right angle (4).6. Shaft dorso-ventrally narrow or irregular inbreadth (0); shaft uniformly dorso-ventrally expanded(1).7. Apex straight or curved outwards (0); apex curvedin towards body midline (1).8.* Head strongly laterally compressed (0); headnearly tubular (1); head strongly dorso-ventrally flat-tened (2).(9) Inner basal shelves broad (0); inner basal shelvesnarrow (1).10.* Inner shelves of head absent or weakly defined(0); inner shelves of head strongly marked basally bya pronounced right angle, then running parallel toshaft axis as far as recurved head (1); inner shelvesexpanded basally (2).11.* Head with outer shelf narrow (0); head withouter shelf extended laterally by more than the samebreadth as head (1); head with outer shelf curvedventrally and then twisted towards apex, to form halfof a funnel (2).

12. Head with outer shelf narrow or board (0); headwith outer margin of shaft with straight section nar-row subapically (1).13. Head with inner (median) margin of recurved sec-tion convex (0); head with inner margin of recurvedsection concave.14. Head with or without inwardly recurved hook (0);head straightened with secondary loss of inwardlyrecurved hook (1).15. Head without basal ventral projection (0); headwith basal ventral projection (1).16. Shaft nearly straight in lateral aspect (0); shaftwith a strong ‘S’-shaped dogleg in lateral aspect (1).

MALE VOLSELLA

17.* Small irregular sclerite, not extending apicallyfurther than gonostylus (0); large clasping organ,extending apically further that gonostylus (1); entirevolsella elongated and narrowed (2).18. Outer margin with long setae (0); outer marginwithout long setae (1).19. Lateral margins subapically converging (0); lat-eral margins broadened immediately subapically andthen truncated apically (1).20. Inner margin without a distinct subapical process(0); inner margin with a subapical process, which isusually toothed, arising just before inner margin andprojecting in towards midline of body (1); inner sub-apical process produced distinctly beyond inner mar-gin, often in the form of a broad curved tongue (2);inner subapical process reduced to an indistinct curvein margin, always lacking teeth (3).21. Inner subapical process distinctly separated fromapex, often nearer midpoint of length (0); inner sub-apical process narrowly subapical, at least on long axisof volsella.22.* Inner ventral ridge not swollen or swelling notcurved back proximally towards outer margin (0);inner ventral ridge, near mid-point of volsella length,pronounced at the inner edge of coarsely sculpturedarea in the apical half and curved back proximallytowards the outer margin (1); coarsely sculptured ven-tral area broadened basally before an inner constric-tion to a narrower subapical neck, and pear-shaped (2).23.* Coarsely sculptured ventral area weakly definedor proximal half reaching outer margin adjacent togonocoxite (0); proximal half of coarsely sculpturedventral area separated from outer margin by a con-cave, weakly sculptured area, forming a narrow shin-ing submarginal groove (1); proximal half of coarselysculptured ventral area separated from outer marginby a concave, weakly sculptured area, forming a sub-marginal groove as broad as coarsely sculptured area(2); proximal half of coarsely sculptured ventral areaseparated from margin by broad submarginl groovewith long setae (3).

Page 26: A comprehensive phylogeny of the bumble bees ( Bombus

186 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

24.* Inner apical margin without stout setae (0);inner apical margin with stout setae (1); inner apicalmargin with stout setae very long and dense (2).

MALE GONOSTYLUS

25. Inner basal corner without a distinct process (0);inner basal corner with a distinct rounded processprojecting in towards midline of body (1); inner basalcorner with a distinct process; distally narrowed in theform of a single sharp spine (2); inner basal processwith teeth (3).26. Basal inner margin associated with setae (0);basal inner margin without associated setae (1).27. Inner basal process produced (0); inner basal pro-cess reduced to a stub or membranous or both (1).28. Inner apical margin simple (0); inner apical mar-gin double with a submarginal groove (1).29. Apical process present (0); apical process absent(1).30. Apical process rounded or narrowing (0); apicalprocess broadened (1).

MALE HEAD

31. Mandible with sparse long setae from posteriormargin (0); mandible with dense setae from posteriormargin, forming a ‘beard’ (1).32. Antenna short, not reaching back beyond wingbases (0); antenna long, reaching back beyond wingbases (1).33. Flagellar segments nearly straight and cylindrical(0); flagellar segments curved (1).34. Compound eye similar in relative size to femaleeye (0); compound eye distinctly enlarged relative tofemale eye (1).

MALE THORAX

35. Hind tibia with outer surface uniformly convex(0); hind tibia with outer surface partially concavemedially in distal third (1).36. Hind tibia with short or long hairs over entireouter surface (0); hind tibia without even short hairsmedially in distal third (1).

MALE ABDOMEN

37. Gastral sternum VII with posterior margin medi-ally convex or irregular, but not broadly concave (0);gastral sternum VII with posterior margin mediallybroadly concave (1).

FEMALE HEAD

38.* Labrum with median longitudinal ridge (0);labrum with complete transverse ridge between twogrooves (1); labrum with transverse ridge broadly

interrupted medially (2); labrum with median part oftransverse ridge displaced towards apex of labrum toform a projecting lamella, which reaches towards theanterior margin of the labrum (3).39. Labrum broadly rectangular (0); labrum broadlytriangular (1).40. Mandible distally broadly rounded (0); mandibledistally pointed (1).41. Mandible with two to four teeth (0); mandible withsix teeth (1).42. Mandible with basal keel not reaching distal mar-gin (0); mandible with basal keel reaching distal mar-gin (1).43. Oculo-malar distance less than the basal breadthof mandible (0); oculo-malar distance equal to orgreater than the basal breadth of mandible (1).44. Oculo-malar area broadly rounded into the faceanteriorly, the area below the eye uniformly convex(0); oculo-malar area separated from the face anteri-orly by a narrowly rounded angle, the area immedi-ately below the eye partially concave (1).

FEMALE THORAX

45.* Mid-basitarsus with disto-posterior cornerbroadly rounded or forming a right angle (0); mid-basitarsus with acute disto-posterior corner (1);mid-basitarsus with pronounced disto-posteriorspine (2).46. Hind tibia without corbicula (0); hind tibia withcorbicula (1).47. Hind tibia with disto-posterior corner formingright angle (0); hind tibia with disto-posterior corneracute or spinosely produced (1).48. Hind basitarsus with proximo-posterior processno longer broad (0); hind basitarsus with proximo-posterior process longer than broad (1).49. Hind basitarsus with proximal process with fewscattered hairs on outer surface (0); hind basitarsuswith proximal process densely hairy on outer surface(1).

FEMALE ABDOMEN

50.* Gastral sternum II without transverse ridge (0);gastral sternum II with weakly rounded traverseridge (1); gastral sternum II with strongly raisedtransverse ridge (2).51. Gastral sternum VI without subapical swellings,curving gradually dorsally (0); gastral sternum VIwith paired subapical swellings, lateral areasabruptly turned dorsally (1).52. Gastral sternum VI without lateral keels (0); gas-tral sternum VI with lateral keels (1).53. Gastral segments V–VI nearly coaxial with seg-ments I-IV (0); gastral segments V–VI curled ventrallyand back towards anterior (1).

Page 27: A comprehensive phylogeny of the bumble bees ( Bombus

BUMBLE BEE PHYLOGENY 187

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

APPENDIX 2

Morphological character matrix. Morphological character states are explained in Appendix 1.

1111111111222222222233333333334444444444555512345678901234567890123456789012345678901234567890123

Lestis 00000-000000-00000-----000000000110000010100001000000Eufriesea 00100-000000-00001-----000000000000100010100010000000avinoviellus 10000-000000-0001000-00001000010011001000010010000000convexus 10010-001000-0001001000001000010011001000010010000000nevadensis 10010-001000-0001102100111000010011012000010111000000confusus 10010-011000-0001102000111000010011003000010111000000soroeensis 111120011000–0001102100101000011100013000100111101000haemorrhoidalis 110120011000–0001112000201100111101103000110011101000kulingensis 110120011000–0001102100231000111101103000100211100000trifasciatus 110120011000–0001102100231000111101103000110211100000supremus 110120011000–0001102100231000111101103000110211100000melanurus 11112011100000001102100111000011101003000110211101000insularis 110120011000–0001103000110100011100003110001200002111sylvestris 110120011000–0001103000110100010000003110001200002111exil 110120011000–0001102000211000011100003000100211101000tricornis 110120011000–0001102100111000011100003000110211101000fervidus 110120011000–0001102000111000011100003000110211101000armeniacus 111120011000–0001102100111000011100003000110211101000persicus 110120011000–0001103000211000011100003000110211101100mucidus 110120011000–0001102000211000011100003000110211101000laesus 110120011000–0011112000211000011101003000100211101000filchnerae 110120011000–0011102000221000011100003000110211101000sylvarum 110120011000–0011102000221000011100003000110211101000hyperboreus 111120121000–1101102100111110010001103000110111101000sporadicus 11114012103001101102100111100010001103000100011100000terrestris 11114012103001101102100111100010001103000100011100000hypnorum 11112012100000001102100111110010001003000100011100000lapponicus 11112012100000001102100111110010001003000100011100000pressus 11114012102000101102100111001010000103000110011100000breviceps 11112012100000001102100111000010000003001100111101000nobilis 11112012100000001102100111000010000103001100111101000eximius 11013012101000001102100111001011001103000110011100000festivus 11111012100000001102100111100010000003000100011100000simillimus 11111012100110001102100111100010011013000110011100000ladakhensis 11011012100110001102100111100010000013000110010100000oberti 11111012100010001102100111000010010003000110011110000niveatus 11111012110000001102110111000011011013000110011110000rufocinctus 11111012100000001102100111000010010113000100011100000brachycephalus 11111012120000001102123111100010010013000100011100000rubicundus 111110121200–0001102123111000010010013000100011100000handlirschi 11111112110010002102123101100010010013000100011100000coccineus 11111112110010001102123111000010010013000100011100000fraternus 11111012100000001102120111000001010013000100011100000crotchii 11111012110000001102121111000011011103000100011100000griseocollis 11111012100000001102122111100010010013000100011100000morrisoni 11111012100000001102122111000010011013000100011100000funebris 111110121000–0001102122111000010010013000100011100000volucelloides 11111012110010001102122111000011010013000100011100000macgregori 11111112100010002102123101100010010013000100011100000

Page 28: A comprehensive phylogeny of the bumble bees ( Bombus

188 S. A. CAMERON ET AL.

© 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 161–188

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this article:

Figure S1. 16S. Phylogeny of Bombus estimated from Bayesian analysis of mitochondrial 16S rRNA nucleotidedata. Values above branches are Bayesian posterior probabilities. The left hand portion of the figure connects viathe dashed lines at the bottom to the dotted lines at the top of the right hand portion of the figure.

Figure S2. EF-1∝. Phylogeny of Bombus estimated from Bayesian analysis of elongation factor-1alpha F2 copynucleotide sequences. Values above branches are Bayesian posterior probabilities. The left hand portion of the fig-ure connects via the dashed lines at the bottom to the dotted lines at the top of the right hand portion of the fi gure.

Figure S3. Opsin. Phylogeny of Bombus estimated from Bayesian analysis of long-wavelength rhodopsin copy1 nucleotide sequences. Values above branches are Bayesian posterior probabilities. The left hand portion of thefigure connects via the dashed lines at the bottom to the dotted lines at the top of the right hand portion of thefigure.

Figure S4. ArgK. Phylogeny of Bombus estimated from Bayesian analysis of arginine kinase nucleotidesequences. Values above branches are Bayesian posterior probabilities. The left hand portion of the figure con-nects via the dashed lines at the bottom to the dotted lines at the top of the right hand portion of the figure.

Figure S5. PEPCK. Phylogeny of Bombus estimated from Bayesian analysis of phosphoenolpyruvate carbox-ykinase nucleotide sequences. Values above branches are Bayesian posterior probabilities. The left hand portionof the figure connects via the dashed lines at the bottom to the dotted lines at the top of the right hand portionof the figure.

This material is available as part of the online article from:http://www.blackwell-synergy.com/doi/abs/10.1111/j.1095-8312.2007.00784.x(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary mate-rials supplied by the authors. Any queries (other than missing material) should be directed to the correspondingauthor for the article.