32
A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1 , E. Fontaine 1 , W. Wobrock 1 , A. Schwarzenböck 1 , E.R. Williams 2 , F. Cazenave 3 , M. Gosset 4 , A. Protat 5 and J. Delanoë 6 ICCP 2012, July 30 – August 03, Leipzig, Germany 1 2 3 4 5 6

A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Embed Size (px)

Citation preview

Page 1: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African

squall lines

E. Drigeard1, E. Fontaine1, W. Wobrock1, A. Schwarzenböck1, E.R. Williams2, F. Cazenave3, M. Gosset4, A. Protat5 and J. Delanoë6

ICCP 2012, July 30 – August 03, Leipzig, Germany

1 2 3

4 5 6

Page 2: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Introduction : The Megha-Tropiques mission

• French-Indian satellite (launched on the 11/10/12)– To improve our knowledge of the processes linked to the

tropical convection and precipitation

• 2 ground validation campaigns (Niger & Maldives)– Aircraft measurements with the French Falcon 20

(CIP, PIP, 2DS probes, cloud radar RASTA)

Page 3: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Introduction : The Megha-Tropiques mission

• French-Indian satellite (launched on the 11/10/12)– To improve our knowledge of the processes linked to the

tropical convection and precipitation

• 2 ground validation campaigns (Niger & Maldives)– Aircraft measurements with the French Falcon 20

(CIP, PIP, 2DS probes, cloud radar RASTA)

– 2 ground radars : MIT & Xport

Objective : comparing ground based radar reflectivity with those

calculated from in-situ microphysical observations

Page 4: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

MIT & Xport radar : Data description

• Volumetric protocol :– 3D spatial distribution of the reflectivity every 12 minutes

• Elevations : - Xport : 12 anglesfrom 2 to 45°

- MIT : 15 anglesfrom 2 to 24°

Page 5: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

MIT & Xport radar : Data description

• MIT radar :– On the Niamey airport– C-band (5.5 GHz)– Range of 150km

• Xport radar :– 30 km SE of the airport– X-band (9.4 GHz)– Range of 135km

• To compare radar data and in-situ observations :

Co-localization of the 2 ground radars data

and the aircraft position Δ Xport radar+ MIT radar

90 km

Page 6: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

MIT & aircraft trajectory

Page 7: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Co-localization radar-aircraft : Method• Use of all scans collected during a observationnal period

• Steady state hypothesis of the reflectivity field during this period (increasing the vertical resolution)

• Spatial interpolation (Inverse Distance Weighting) using 8 observation points

23

14

5

6

7

8250 m

1° 1- 7°

250 m

Radar

Page 8: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Co-localization : Validation

• Comparison of observed and calculated RHI scans for the MIT radar

– Differences increase with distance (deterioration of the vertical resolution of the volumetric data)

– Statistical analysis : standard deviation = 3dBZ

Calculated RHI(15 scans)

Measured RHI(300 scans)

± 3dBZ

Page 9: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Co-localization : Validation

Good agreement between co-localized MIT reflectivity and airborne radar RASTAVery similar pattern for the airborne and the ground observation

Page 10: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Calculation of reflectivity from in-situ microphysics

In-situ probes (PIP, CIP, 2DS) show cloud particles from 50µm to 5mm.The cloud particles have irregular shapes (graupel, aggregate)

To calculate the equivalent reflectivity Ze, a power mass law m=αDβ is applied:

Example for number distribution averaged during 10s during

the flight #20

Page 11: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Calculation of reflectivity from in-situ microphysics

In-situ probes (PIP, CIP, 2DS) show cloud particles from 50µm to 5mm.The cloud particles have irregular shapes (graupel, aggregate)

To calculate the equivalent reflectivity Ze, a power mass law m=αDβ is applied:

α is determined by matching the reflectivity calculated by Mie theory with measurements of the cloud radar RASTA at 95GHz

0.001 < α < 0.1; and β = 2.1The mass law obtained in this way is applied again to calculate the reflectivity of the precipitation radars MIT and Xport (using Rayleigh approximation)

Page 12: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Co-localization radar-aircraft : Results

- Calculated reflectivity is in good agreement with observations of both ground radars

- Best results in regions where aircraft < 8000 m and range < 80 km

Page 13: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Co-localization radar-aircraft : Results

• Some periods with differences between signals• Statistically : MIT - microphysics Xport - microphysics

Mean -0.82 dBZ -1.80 dBZ

Standard deviation 3.91 dBZ 6.44 dBZ

Page 14: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Conclusions

• Reflectivity observed by precipitation radar can be recalculated from in-situ cloud microphysical measurements, if a mass-diameter relationship in a form of m=αDβ is applied (instead of m~D3)

• Limits :– mixte phase clouds and predominantly cold clouds (in the levels

from -5 to -30°C)– where reflectivity prevails from 15 to 35 dBZ.

• Perspectives:– on-going work on the differences observed between both ground

based radars– improving satellite retrieval processes in the Megha-Tropiques

context

Page 15: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Radars au sol : Aspect statistique

Page 16: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• 3 vols étudiés en particulier– Vol 18 : 13/08/2010 après-midi– Vol 20 : 17/08/2010 nuit– Vol 23 : 26/08/2010 matin

• 2 radars au sol (décalés de 30km) : – MIT : 593*360*15 = 3 202 200 points / fichier– XPORT : 677*360*12 = 2 924 640 points / fichier

Contexte MT1

• Portée MIT : 150km• Elévation max = 24°

• Portée XPORT : 135km 80km

• Elévation max = 45°Δ Xport radar+ MIT radar

Page 17: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• Constat : fortes différences entre les PDF MIT et XPORT• Sur ces figures :

– XPORT sur sa propre grille, sur la durée totale du vol, avec R < 80km & alti<12km

– MIT non corrigé sur sa propre grille, sur la durée totale du vol, avec R/XPORT < 80km & alti<12km

Besoin de corriger les données MIT

25 238 923 val16 779 568 val

10 773 505 val10 898 711 val

11 166 915 val10 814 451 val

Page 18: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• Pour déterminer la correction à appliquer : étude du rapport ZXPORT/ZMIT

• Problème : deux grilles distinctes pour les deux jeux de données

Intercomparaison des deux radars avec code de colocalisation De la même façon qu’on a colocalisé les données radars sol sur la trajectoire de l’avion Falcon,

on colocalise les données de l’un des deux radars sur la grille de l’autre (et inversement)

1. Utilisation de la grille XPORT comme référence interpolation des mesures MIT aux coordonnées (x, y, z, t) du XPORT

2. Utilisation de la grille MIT comme référence interpolation des mesures Xport aux coordonnées (x, y, z, t) du MIT

• Méthodologie : 1. Transformer les coordonnées d’observation (range, azimuth, elevation) du radar de référence dans

un repère géographique : latitude, longitude, altitude création d’une « trajectoire d’avion » virtuelle

2. Interpoler les observations du 2nd radar aux points du radar de référence

3. Sélection des données telles que : ZXPORT & ZMIT > -5dBZ & alti < 12km & dist/XPORT<80km

• Finalement : entre 10 et 25 millions de couples de valeurs pour chaque vol

Intercomparaison des deux radars

Page 19: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

25 238 923 val16 779 568 val20 426 838 val

11 166 915 val10 814 451 val13 251 095 val

• Étude du rapport ZXPORT/ZMIT (en mm6/m3) pour les données sélectionnées : – 5.5km < alti < 12km– R/XPORT < 80km

• Résultats :– facteur de correction moyen pour le vol 18 = 7.07 (écart-type = 5.07)– facteur de correction moyen pour le vol 20 = 5.39 (écart-type = 4.66) – facteur de correction moyen pour le vol 23 = 4.82 (écart-type = 4.45)

Facteur de correction

10 773 505 val10 898 711 val13 361 414 val

Page 20: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

25 238 923 val16 779 568 val20 426 838 val

11 166 915 val10 814 451 val13 251 095 val

• Étude du rapport ZXPORT/ZMIT (en mm6/m3) pour les données sélectionnées : – 5.5km < alti < 12km– R/XPORT < 80km

• Résultats :– facteur de correction moyen pour le vol 18 = 7.07 (écart-type = 5.07)– facteur de correction moyen pour le vol 20 = 5.39 (écart-type = 4.66) – facteur de correction moyen pour le vol 23 = 4.82 (écart-type = 4.45)

Facteur de correction

25 238 923 val20 426 838 val

11 166 915 val13 251 095 val

10 773 505 val13 361 414 val

Page 21: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

20 381 012 val16 779 568 val20 426 838 val

13 155 011 val10 898 711 val13 361 414 val

12 982 448 val10 814 451 val13 251 095 val

Page 22: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

20 381 012 val20 426 838 val

13 155 011 val13 361 414 val

12 982 448 val13 251 095 val

Bonne concordance entre les PDF en particulier pour les fortes réflectivités

caractéristiques des fortes précipitations

Page 23: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• Sélection des « meilleures données » :– Différence temporelle entre les mesures de chaque radar < 30 sec– Différence verticale < 5% de l’altitude de la mesure interpolée Filtre très important des données : < 1% de données restantes

Validation des jeux de données et de la méthode de colocalisation

6 020 val5 936 val

3 609 val3 680 val

2 699 val2 785 val

Page 24: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• 2 vols étudiés en particulier– Vol 45 : 27/11/2011 matin– Vol 46 : 27/11/2010 après-midi

• 2 radars au sol (distants de 2.5km) : – SPOL (2.80GHz) : 979*360*8 = 2 819 520 points / fichier

• 5 min de mesures toutes les 15 min

– SMART (5.63GHz) : 1499*360*26 = 14 030 640 points / fichier • 7.5 min de mesures toutes les 10 min

Contexte MT2 DYNAMO

Page 25: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• 2 vols étudiés en particulier– Vol 45 : 27/11/2011 matin– Vol 46 : 27/11/2010 après-midi

• 2 radars au sol (distants de 2.5km) : – SPOL (2.80GHz) : 979*360*8 = 2 819 520 points / fichier

• 5 min de mesures toutes les 15 min

– SMART (5.63GHz) : 1499*360*26 = 14 030 640 points / fichier • 7.5 min de mesures toutes les 10 min

Contexte MT2 DYNAMO

Radar SMARTRadar SPOL

• Portée SPOL : 147km

• Elévation max = 11°

• Portée SMART :150km

• Elévation max = 33°

Page 26: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

Comparaison des données• Sur ces figures :

• SPOL sur sa propre grille, sur la durée totale du vol, avec R < 120km & alti<12km

• SMART sur sa propre grille, sur la durée du vol, avec R < 120km & alti<12km

6 745 230 val9 574 265 val

4 554 910 val12 711 956 val

Page 27: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E

• Même technique que pour MT1 : colocalisation de l’un des deux radars sur la grille de l’autre

Intercomparaison des deux radars

4 869 756 val9 574 264 val

10 868 439 val12 711 956 val

Page 28: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E
Page 29: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E
Page 30: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E
Page 31: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E
Page 32: A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E