38
13. OCTOBER 2016 SENIOR RESEARCHER MARIANNE THOMSEN AARHUS UNIVERSITY DEPARTMENT OF ENVIRONMENTAL SCIENCE AU A CIRCULAR BIOECONOMY WITH BIOBASED PRODUCTION FROM NUTRIENT AND CO 2 SEQUESTRATION BY SEAWEED MARIANNE THOMSEN, MICHELE SEGHETTA, ANNETTE BRUHN, SIMONE BASTIANONI, BERIT HASLER AD THE WHOLE MAB3 TEAM

A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

Ændr 2. linje i overskriften

13. OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSENAARHUSUNIVERSITYDEPARTMENT OF ENVIRONMENTAL SCIENCE

AU

A CIRCULAR BIOECONOMY

WITH BIOBASED PRODUCTION FROM NUTRIENT

AND CO2 SEQUESTRATION BY SEAWEED

MARIANNE THOMSEN, MICHELE SEGHETTA,

ANNETTE BRUHN, SIMONE BASTIANONI, BERIT HASLER AD THE WHOLE MAB3 TEAM

Page 2: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

ECOSYSTEM SERVICES

Definition:

Benefit that human obtain from an ecosystem (MEA, 2005)

Seaweed cultivation +

Ecoindustrial system =

____________________________

Engineered ecosystem services mimicking

the natural system

Fig. modified from Metrovancouver.org

Page 3: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CONCLUSION

Seaweed production and biorefinery systems may deliver supporting and regulatory

services, e.g. restoration of aquatic water quality and mitigation of climate change, while

producing biobased products for biobased societies

Climate regulation = Delivery of net negative GHG emission, e.g. carbon capture and

storage + carbon capture and use

› 0.1-1.3 ton CO2e bioassimilated per ton dw seaweed harvested

Nutrient cycling = Net removal of excess nitrogen and phosphorous from the aquatic

system re-entering the economic system.

› 5-43 kg N is removed from the aquatic system per ton dw seaweed harvested

Page 4: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CONCLUSION

Harmonised methodologies for quantifying the services delivered by seaweed

cultivation and biorefinery systems are needed!

The monetary value of the services obtained from biorefinery systems producing biogas,

protein, ethanol and fertilizer constitutes 5-30 % of the Return on Investment (RoI).

The break-even point in productivity are in the range of 2.2-5.8 ton dw seaweed/ha,

excluding investment and maintenance cost of the biorefinery plant.

RoI of the macroalgal biorefieny systems analysed varies between 126-11,100 EUR/ha

Page 5: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CONTENT

MAB3 systems analysed

Variability in productivity and units of measure

Services, policies and environmental performance

Product portfolio – a glimpse

Return on investments from MAB3 biobased production systems

Conclusion

Page 6: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

PROTEIN, ETHANOL & FERTILIZER PRODUCTS

Seed lines

Deployment

Maintenance

Harvest

Macroalgae production system

Transport

Pretreatment

Hydrolysis

Fermentation

Distillation/separation

Biorefinery

Ethanol

Proteins Fish feed prod. Fish feed

Liquid fertilizer

Page 7: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

BIOGAS AND PROTEIN

Seed lines

Deployment

Maintenance

Harvest

Macroalgae production system Transport

BiogasProduction

Biogas

Digestate storage

Chopping

Energy production pathway

Proteins

Digestate transport organic NPK

fertilizers

Microalgae growth

Electricity

Dewatering

Heat

Partial drying

Ensilage

Transport

Protein production pathway

Hydrolysis

CHP unitCO2

conversion

Page 8: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CIRCULAR NUTRIENT MANAGEMENT

Industrial ecology!

Use of emissions as a resource for

seaweed production

› Biobased products & services

Seghetta et al., 2016

Page 9: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

MAB3 SEAWEED CULTIVATION SITES

There are 7registered seaweed cultivation plants in Denmark.

Hjarnø Havbrug (Horsens) is the biggest, Seaweed Societé ApS

owns 3 plants; each10-30 ha. The remaining 3 seaweed

cultivation plants are below 10 ha.

Horsens:

13 ton N harvested /year < yearly emission supply of 740 ton

Limfjorden:

0.4 ton N harvested/year < yearly emission supply of 9 ton

(33-130 kg N/ha, 3-12 kg P/ha, 1000-4000 kg/ha)

Seghetta et al., 2016

Page 10: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

PRODUCTIVITY

a) Based on productivity measured in Limfjorden

b) Based on productivity measured in Horsens Fjord

Saccharina latissima &

Laminaria digitata , WW

Saccharina latissima, DW Laminaria digitate, DW

Productivity Lowa Highb Average Low High Average Low High Average

Dry matter content 21.6% 14.8% 28.3%

[kg/m HL] 6.1 12.0 9.1 0.9 1.8 1.3 1.7 3.4 2.6

[kg/m SL] 1.4 2.6 2.0 0.2 0.4 0.3 0.4 0.7 0.6

[Mg/ha] 6.8 13.2 10.0 1.0 2.0 1.5 1.9 3.7 2.8

Seghetta et al., 2016

Page 11: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

NON-MONETARY VALUE OF THE SERVICES

Climate Change mitigation

Mitigating Aquatic Eutrophication

Quantification of the regulatory services from macroalgae production and biorefinery systems

should be based on the net result of the whole value chain

Regulating service: Climate regulation kg CO2e assimilated /ton dw seaweed harvested

The cultivation step 990-1,300

The whole biorefiney value chain 123-190

The whole value chain of biogas and fertilizer production 170-1,247

Supporting services : Nutrient cycling kg N assimilated / ton dw seaweed harvested

Cultivation step 5-43

The whole biorefiney value chain 7-57

The whole value chain of biogas and fertilizer production 1-30

Thomsenet al., 2016

Page 12: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CLIMATE REGULATING POLICY

“If we are to limit global warming to 2 oC, all sectors in all countries must reduce their

emissions of GHGs to zero not later than 2060–2080.”

Today, investments in zero-emission technologies are rapidly catching up with

investments in fossil energy

The development and market growth of potential zero-emission technologies such as wind and solar power, electric transport systems, zero-

energy buildings and advanced biofuels have been impressive and the co-benefits of mitigation are widely recognized (IPCC, 2014).

In contrast to these advances, the energy-intensive industries (EIIs) are facing greater

challenges.

EIIs produce basic materials such as steel, cement, aluminium, fertilizers and plastics, and account for a large share of global GHG emissions.

The best available technologies (BATs) can only reduce emissions by 15–30% in these industries, even if they are applied on a large scale

May BBI catch up with the investments in EII ?

What are the climate performance of the BBI sector ?

Page 13: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

BIOREFINERY & CLIMATE REGULATION

BC: Average productivity 1,5 ton dw

seaweed /ha, harvest summer (high

ethanol), high dw percent

(Laminaria digitata)

A2: High productivity scenario,

harvest summer (high ethanol), high

dw percent (Laminaria digitata)

A6: Low CO2 footprint of the

cultivation design main reason for

carbon negative, i.e. CC mitigating

results!

Zero emission – climate change mitigation

Seghetta et al., 2016

Page 14: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

BIOGAS, PROTEINS & CLIMATE REGULATION

-4000

-3000

-2000

-1000

0

1000

2000

3000

Split Total Split Total Split Total Split Total Split Total

BioS1 BioS2 BioL1 ProS1 ProL1

kg C

O2

e/

ha

Total Proteins distribution Substituted Proteins DewateringHydrolysis & microalgae growth Chopping Carbon sequestration BioextractionSubstituted Fertiliz. (prod.&use) Digestate application Digestate storage and transp. Substituted electr. and heatBiogas (prod. and use) Ensilage Transport - road Partial Dry

System boundaries are important!

Cradle to Cradle vs. Cradle to

Gate

Sequestering of recalcitrant

carbon is important!

Seghetta et al., 2016

Page 15: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

PROTEIN, ETHANOL & FERTILIZER PRODUCTS

soil

atmosphere

SeawaterHuman WWTP

Page 16: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

THE BIOGENIC CARBON BALANCE

Biorefinery

~Glucose

Count Month

Ethanol

Liquid fertilizer

Emis WWTP

Eth Prod

Res Prod

Feed prod

ACC Fish feed

Prot production copy

~Uronic acid

~Mannitol

~Fucose

~Proteins

~Other

~Lipids

Atmosphere

Stor Dry Stor Bio

Harvest

Feed prod

Acc Mannitol

BiorefEmis

Fermentation

Noname 1

~

Mannitol

~

Uronic acid

Acc uronic acids

Growth

Uptake

Count Month Harv Time

Seawater Seaweed

Noname 2

Acc Fucose

Noname 3

~

Fucose

Acc Proteins

Noname 4

~

Proteins

Acc Others

Fish flesh

Humans

Noname 5

~

Other

Graph 4 Graph 5

Acc Lipids

Noname 6

~

Lipids

WWTP

Freshwater

Degradation

Residues FI

Food discard

Emis Bio

CombustionEth comb

Fertilizer trans

CO2 EtOh ferm and comb

AtmSoilSeaMA

Composition

Humans

Freshwater

Fish Industry

Decomp

Table 4

Trans Cap1

CO2 soil

Use

Transit

Emis

Fermentation

Soil

Maturation

Transp

har bio

Soil atmosphere

Dissolution

Flow to seawater

EtOH yield

Sludge

Biogas

Acc Glucose

Storage

Noname 7

~

Glucose

Kd

Fertilizer trans

Sludge

Fert & Digest

Soil ATM MA

FIG2

Fish and WWTP

FIG3

MA and Products

instant

MA and PROD

CUM

Productivity

Area

Soil flow total

Input

Harvest Cap

~

Conversion

Table 8

CuM fertiliz

CUM sludge application

CUM sludge

CUM FErtilizer

Graph 33

CUM EMI BIOGAS

Emis Bio

CombustionCUM BIO

CUM EMI WWTP

Table 9

Emis WWTP Noname 8

Graph 31

~

Glucose

Content

Ethanol

input

emission

Graph 32

Harv Time

MACRO

Eth Prod

Harv Time

~

Protein

Content

Res Prod

Harvest

Eth comb

Degradation

Transit

Fertilizer transSludge

Fish feed chain

F4 copy

Feed tran

Table 7

Table 6

Feed discarded

Feed Storage

Discharge

WWTP

ACC residues

Graph 28Paper scenario 1

F2 copy

Cumulative Macroalgae

Macro

Atm

Seawater

Soil total verify

Fish and chips

Ethanol production copy

ACC Ethanol

FIsh and chips

Soil and MA

FIG1

Seghetta et al., 2016

Page 17: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CARBON CYCLE – TIME VARIATION

1 production cycle 100 production cycles

9-13% of C is sequestrated

Seghetta et al., 2016

Page 18: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CARBON CYCLE – SEASONAL VARIATION

Carbon cycle simulations for 100 seaweed cultivation cycles evaluated after 100 years

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

Σ Seaweed Δ Atmosphere Δ Soil Σ EtOH Σ Liquid fertilizers Σ Fish feed

kg o

f ca

rbo

n

April May June July August

Harvest time

Seghetta et al., 2016

Page 19: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

WATER QUALITY POLICIES

-seaweed as an instrument for water quality restoration

- close existing resource leakage gaps by recycling excess nutrients from aquatic system

- An alternative to land-based instruments

Seghetta et al., 2016

Page 20: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

WATER QUALITY RESTORATION - BIOREF

-9.00E+01

-8.00E+01

-7.00E+01

-6.00E+01

-5.00E+01

-4.00E+01

-3.00E+01

-2.00E+01

-1.00E+01

0.00E+00

1.00E+01

BC A1 A2 A3 A4 A5 A6

kg N

eq

./h

a

Nitrogen limited

-1.20E+01

-1.00E+01

-8.00E+00

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

BC A1 A2 A3 A4 A5 A6

kg P

eq

./h

a

Phosphorus limited

Total Bioextraction Carbon stock

Substituted mineral fertilizer (production and use) Substituted protein (production) Substituted gasoline (production and use)

Transport and use of liquid fertilizer Protein distribution Ethanol distribution

Biorefinery Transport - Road Drying

Transport - Water Cultivation

Saccharina latissima harvested in spring Laminaria digitata harvested in spring

Seghetta et al., 2016

Page 21: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

WATER QUALITY RESTORATION - BIOGAS

-5.00E+01

-4.00E+01

-3.00E+01

-2.00E+01

-1.00E+01

0.00E+00

1.00E+01

BioS1 BioS2 BioL1 ProS1 ProL1

kg N

eq

./h

a

Nitrogen limited

-8.00E+00

-7.00E+00

-6.00E+00

-5.00E+00

-4.00E+00

-3.00E+00

-2.00E+00

-1.00E+00

0.00E+00

1.00E+00

BioS1 BioS2 BioL1 ProS1 ProL1

kg P

eq

./h

a

Phosphorus limited

Total Proteins distribution Substituted Proteins DewateringHydrolysis & microalgae growth Chopping Carbon sequestration BioextractionSubstituted Fertiliz. (prod.&use) Digestate application Digestate storage and transp. Substituted electr. and heatBiogas (prod. and use) Ensilage Transport - road Partial DryCultivation

Seghetta et al., 2016

Page 22: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

TAKE HOME MESSAGE

Seaweed production and biorefinery systems may perform net negative, i.e. contributing

climate regulation and water quality restoration by nutrient recycling.

Biogas and fertilizer production delivers higher mitigation of CC compared to biorefineries; i.e.

producing recalcitrant carbon sequestering in soil.

The more treatment steps included in the value chain, the higher risk of performing with a net

positive GHG emission, i.e. contributing to climate change.

Low/zero carbon energy sources and increased resource utilization efficiency may

counterbalance this tendency.

Zero or net negative balances for non-market services = for environmental sustainability

Net positive values for provisional services (goods) = for economic sustainability

Page 23: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

ANNUAL PRODUCTION COSTS - PHASES

Nursery

43%

Deployment

25%

Maintenance

9%

Harvest

23%

IMMATURE TECHNOLOGY

Nursery

17%

Deployment

40%

Maintenance

17%

Harvest

26%

MATURE TECHNOLOGY

Thomsen et al., 2016

Page 24: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

PRODUCTION COSTS & PRODUCTIVITY

Seaweed as instrument for circular nutrient management

Immature: low productivity

Mature I: Stone rope technology, optimum productivity, first year harvest

Mature II: Two season cultivation – nursery and deployment each second year

Mature III: Two season cultivation and double productivity

Limfjorden HorsensTechnology scenarios Immature Mature I Mature II Mature III Immature Mature I Mature II Mature III

Financial costs/ha cultivated [EUR/ha] 11,762 6,048 4,898 4,898 14,378 7,239 5,529 5,529Productivity Saccharina latissima (15% dry matter content) [kg/ha] 1,000 1,500 1,500 3,000 1,598 2,000 2,000 4,000Productivity Laminaria digitata (29% dry matter content) [kg/ha] 1,959 2,894 2,894 5,787 2,894 3,828 3,828 7,656

N assimilation -Saccharina latissima [kg N/ha] 33 64 64 128 39 65 65 130

N assimilation -Laminaria digitata [kg N/ha] 53 78 78 156 78 103 103 207

Financial costs of supporting service

27-365 EUR/kg N harvested

Thomsen et al., 2016

Page 25: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

SPATIAL CONFIGURATION OF THE COST-EFFECTIVE SOLUTION, 4165 TONS REDUCTION

Measures CostsSet aside

No measures

Catch crops etc.

Norm reductions

etc.

Hasler et al., 2015

Page 26: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

MARGINAL COSTS OF N LOAD REDUCTIONS

Buffer zones

Catch crops

Set aside

Afforestation

Constructed wetlands

Kr/

kg

N

N load reduction [ton]

Opportunity costs of the supporting service

91-183 DDK/kg N =

12-25 EUR/kg N harvested

Hasler et al., 2015

Page 27: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

MONETARY VALUE OF THE SERVICES

Climate Change mitigation

Mitigating Aquatic Eutrophication

Regulating service: Climate regulation kg CO2e assimilated /ton

dw seaweed harvested

Shadow price:

EUR/ kg CO2e harvested

Opportunity cost:

EUR/ton dw seaweed

The cultivation step 990-1,300

0.07-0.13

65-176

The whole biorefiney value chain 270-430 8-26

The whole value chain of biogas and fertilizer production 170-1,247 12-169

Supporting services : Nutrient cycling kg N assimilated / ton dw

seaweed harvested

Shadow price:

EUR/ kg N harvested

Opportunity cost:

EUR/ton dw seaweed

Cultivation step 5-43

12.2-24.6

61-1,056

The whole biorefiney value chain 7-57 90-1404

The whole value chain of biogas and fertilizer production 1-29 11-727

Page 28: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

For at få punktopstilling

på teksten

(flere niveauer findes),

For at få venstrestillet tekst

uden punktopstilling, brug

Ændr 2. linje i overskriften

Phycobiliproteins (PBP) >800

Pharmaceuticals, bioactive peptides, Polyphenols 10-800

Food 0.1-135

Phycocolloids (agar, carrageenan, alginate) 1-10

Polysaccharides- prebiotics 1-10

Succinic acid 3-8

Chemicals 0.5-1.5

Biogas, bioethanol 0.5-3

A GLIMPSE OF THE PRODUCT PORTFOLIO

Market volume

[Euro/kg] TPC

Fertilizers

Page 29: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

RETURN ON INVESTMENT – UGLY

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0 1000 2000 3000 4000 5000

EU

R/h

a

kg dw seaweed /ha

RoI as function of productivity

(min revenue, exclusive services)

Bioref S.l. spring

Bioref L.d. spring

Biogas S.l. spring

Protein S.l. optimized spring

Biogas L.d. summer

Bioref SA S.l. summer

The break-even point is

obtained by an increase in

the seaweed productivity of

4.5-6 ton dw seaweed/ha

Thomsen et al., 2016

Page 30: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

RETURN ON INVESTMENT – STILL UGLY

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

0 1000 2000 3000 4000 5000

EU

R/h

a

kg dw seaweed /ha

RoI as function of productivity

(min revenue, inclusive minimum revenue from services)

Bioref S.l. spring

Bioref L.d. spring

Biogas S.l. spring

Protein S.l. optimized spring

Biogas L.d. summer

Bioref SA S.l.

The break-even point is

obtained by seaweed

productivity of 4.2-5.3 ton

dw seaweed/ha

Thomsen et al., 2016

Page 31: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

RETURN ON INVESTMENT – MINIMUM UGLY

The break-even point is

obtained by seaweed

productivity of 3.2-4.4 ton

dw seaweed/ha

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

0 1000 2000 3000 4000 5000

EU

R/h

a

kg dw seaweed / ha

RoI as function of productivity

(min revenue, inclusive maximum revenue from services)

Bioref S.l. spring

Bioref L.d. spring

Biogas S.l. spring

Protein S.l. optimized spring

Biogas L.d. summer

Bioref SA S.l.

Thomsen et al., 2016

Page 32: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

RETURN ON INVESTMENT - GOOD

1. Optimized protein

production with microalgae

conversion of seaweed sugar

content

2. Combined succinic acid

and CO2 conversion, with TPC

and fertilizer as biproducts

3. Combined protein,

bioethanol and fertilizer

production in spring ( L.d. >

S.l.)

Break-even point: 2.5-5.8 ton

dw seaweed / ha -15000

-10000

-5000

0

5000

10000

0 1000 2000 3000 4000 5000

EU

R/h

a

kg dw seaweed /ha

RoI as function of productivity

(max revenue, exclusive services)

Bioref S.l. spring

Bioref L.d. spring

Biogas S.l. spring

Protein S.l. optimized spring

Biogas L.d. summer

Bioref SA S.l. summer

Thomsen et al., 2016

Page 33: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

RETURN ON INVESTMENT – EVEN BETTER

1. Optimized protein production

with microalgae conversion of

seaweed sugar content

2. Combined succinic acid and

CO2 conversion, with TPC and

fertilizer as biproducts

3 and 4. Combined protein,

bioethanol and fertilizer

production in spring ( L.d. > S.l.)

Break-even point: 2.2-4.4 ton

dw seaweed / ha-15000

-10000

-5000

0

5000

10000

15000

0 1000 2000 3000 4000 5000EU

R/h

a

kg dw seaweed /ha

RoI as function of productivity

(max revenue, inclusive services)

Bioref S.l. spring

Bioref L.d. spring

Biogas S.l. spring

Protein S.l. optimized spring

Biogas L.d. summer

Bioref SA S.l.

Thomsen et al., 2016

Page 34: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CONCLUSION

Seaweed production and biorefinery systems may deliver ecosystem services and

biobased products for biobased societies.

Climate Regulation = Delivery of net negative GHG emission, i.e. climate change

mitigation by carbon capture and storage + carbon capture and use

› Net negative values of 170-1,247 kg CO2e per ton dw seaweed biorefined

Nutrient cycling = Net removal of excess nitrogen and phosphorous from the aquatic

system re-entering the economic system

› Net negative value for reduction in eutrophication level1-57 kg N is removed from the

aquatic system per ton dw seaweed biorefined

Page 35: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

CONCLUSION

Harmonised methodologies for quantifying the services delivered by seaweed

cultivation and biorefinery systems are needed

The monetary value of the services obtained from biorefinery systems producing biogas,

protein, ethanol and fertilizer constitutes 5-30 % of the Return of Investment (RoI)

The break-even point in productivity are in the range of 2.2-5.8 ton dw seaweed/ha,

excluding investment and maintenance cost of the biorefinery plant.

RoI of the macroalgal biorefieny systems analysed varies between 126-11,100 Euro/ha

More high value products and a biorefinery pilot plant to be realised in MAB4

Page 36: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

AARHUS

UNIVERSITYAU

Funded by the Innovation fund Denmark

http://www.mab3.dk/

Thanks for input to the MAB3 consortium and a special thank to

Michele Seghetta, Annette Bruhn, Per Dolmer, Ditte Bruunshøj Tørring & Berit Hasler

Marianne Thomsen [email protected]

Page 37: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

REFERENCES –MAB3

1. Seghetta, M., Tørring, D., Bruhn, A. & Thomsen, M., 2016, 'Bioextraction potential of seaweed in Denmark – an instrument for

circular nutrient management' Science of the Total Environment, vol. 563-564, p. 513-529.

2. Seghetta, M., Hou, X., Bastianoni, S., Bjerre, A.-B. & Thomsen, M., 2016. Life cycle assessment of macroalgal biorefinery for

the production of ethanol, proteins and fertilizers – a step towards a regenerative bioeconomy. Journal of Cleaner Production,

vol. 20, p. 1158-1169. http://dx.doi.org/10.1016/j.jclepro.2016.07.195

3. Seghetta, M, Marchi, M, Bjerre, A-B, Thomsen, M & Bastianoni, S 2016, 'Modelling biogenic carbon flow in a macroalgal

biorefinery system' Algal Research. doi:10.1016/j.scitotenv.2016.04.010

4. Bruhn et al., 2016. Impact of environmental conditions on biomass yield, quality, and bio-mitigation of Saccharina latissima,

Aquaculture Environment Interactions, in press.

5. Seghetta, M., Romeo, D., D'este, M., Bastianoni, S., Alvarado-Morales, M., Angelidaki, I. & Thomsen, M., 2016. Macroalgae as

a new source of energy and feed in Denmark: evaluating the environmental impacts through LCA. Journal of Cleaner Production. In review.

6. The MacroAlgaeBiorefinery – systainable production of 3G bioenergy carriers and high value aquatic fish feed from

macroalgae (MAB3). Eds. Bjerre, A.-B. & Nikolaisen, L., DTI, 2016.

7. Thomsen et al., 2016. The circular economy of seaweed as nutrient management instrument for biobased production. In

prep.

Scientific papers are/will be available at: http://pure.au.dk/portal/en/[email protected]

Page 38: A CIRCULAR BIOECONOMY - AU Purepure.au.dk/portal/files/103745478/Greenaa_2016.pdf13 ton N harvested /year < yearly emission supply of 740 ton Limfjorden: 0.4 ton N harvested/year

13 OCTOBER 2016SENIOR RESEARCHER

MARIANNE THOMSEN

DEPARTMENT OF ENVIRONMENTAL SCIENCE

AARHUSUNIVERSITYAU

REFERENCES – MORE…

Petersen, JK, Bjerre, A-B, Hasler, B, Thomsen, M, Nielsen, MM & Nielsen, P 2016, Blå biomasse - potenitaler og udfordringer for opdræt af muslinger og tang.

Saikku, L., Antikainen, R., Droste, N., Pitkänen, ., Loiseau, E., Hansjürgens, B., Kuikman, P., Leskinen, P., Thomsen, M., 2015 Implementing the green

economy in a European context : Lessons learned from theories, concepts and case studies.

Pitkänen, K. Antikainen, R., Droste, N,.; Loiseau, E., Saikku, L., Aissani, L., Hansjürgens, B., Kuikman, P., Leksinen, P., Thomsen, M., 2016. What can be

learned from practical cases of green economy? - studies from five European countries. Journal of Cleaner Production, vol. 139(15), 139, p. 666-676.

Loiseau, E., Saikku, L., Antikainen, R., Droste, N., Hansjürgen, B., Pitkänen, K., Leskinen, P.,; Kuikman, P., Thomsen, M., 2016. Journal of Cleaner Production,

vol. 139, p. 361-371.

Droste, N., Hansjürgens, B., Kuikman, P., Otter , N., Antikainen, R., Leskinen, P., Saikku, L., Loiseau, E., Thomsen, M., 2016. Steering innovations towards a

green economy: understanding government intervention. Journal of Cleaner Production, vol. 135, 2016, s. 426-434.

Hasler B., A.Dubgaard, J. Momme Eberhardt, A. Koed, L. Martinsen, J.Nielsen, J. Støttrup, M.Wisz 2016. Samfunds- og sektorøkonomisk analyse af

vandmiljøindsatsen i Landdistriktsprogrammet (LDP) og Fiskeriprogrammet (EHFF). Analyse af mulighederne for at opgøre de økonomiske effekter

baseret på det eksisterende vidensgrundlag. Scientific report. Aarhus University, DCE - Danish Centre for Environment and Energy, In press.

Hasler, B, Hansen, LB, Andersen, HE & Konrad, M 2015, Modellering af omkostningseffektive reduktioner af kvælstoftilførslerne til Limfjorden:

Dokumentation af model og resultater. Aarhus University, DCE - Danish Centre for Environment and Energy.