17
A Big Data Approach for Comprehensive Urban Shadow Analysis from Airborne Laser Scanning Point Clouds Anh Vu Vo and Debra F. Laefer Center for Urban Science and Progress | New York University

A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

A Big Data Approachfor Comprehensive Urban Shadow Analysisfrom Airborne Laser Scanning Point Clouds

Anh Vu Vo and Debra F. Laefer

Center for Urban Science and Progress | New York University

Page 2: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Background

Page 3: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Background

Urban shadow analysis

Sunlight is critical to all aspects of human life

Ensuring access to sunlight can be a challenge in urban environments

Shadow analysis is often a part of the urban planning process

Shadow analysis is mathematically simple but can be computationally intensive

1

Page 4: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Background

High resolution airborne laser scanning point cloud

2

1.4 billion data points

Density: 300 points/m2 (hor.) 35 points/m2 (ver.)

DOI:10.17609/N8MQ0N (open dataset)

Page 5: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Background

3

Distributed hardware and Hadoop software

Scale beyond the capacity of one single machine

Distributed memory cluster

Hadoop software stack: YARN (resource manager and scheduling) Hadoop Distributed File System (storage) Apache Spark (data analytics) Apache HBase (data management)

Page 6: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

A Big Data Approachfor Comprehensive Urban Shadow Analysisfrom Airborne Laser Scanning Point Clouds

Page 7: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Comprehensive Urban Shadow (CUS) Analysis with Distributed Computing

4

Distributed CUS algorithm

A point p in a point cloud can only cast shadow on and receive shadows from the other points along the same sun ray passing p

To group points into point beams:

Transform the input point cloud to UQP, which has axis P parallel to the Sun direction

Rasterize the point data by a regular 2D grid on the UQ plane

Points in each raster cell resembles a point beam

Fig 1 – Distributed shadow computation algorithm

Page 8: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Comprehensive Urban Shadow (CUS) Analysis with Distributed Computing

4

Distributed CUS algorithm

To group points into point beams: Transform the input point cloud to

UQP, which has axis P parallel to the Sun direction

Rasterize the point data by a regular 2D grid on the UQ plane

Points in each raster cell resembles a point beam

Fig 1 – Distributed shadow computation algorithm

Page 9: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Comprehensive Urban Shadow (CUS) Analysis with Distributed Computing

4

Distributed CUS algorithm

Each point beam can be processed independently to identity shaded/illuminated points: Density based clustering Points in the cluster with highest p-

values are considered as illuminated. The remaining points in the point

beam are considered as shaded

Fig 1 – Distributed shadow computation algorithm

Page 10: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Comprehensive Urban Shadow Analysis with Distributed Computing

5

Fig 2 – Acyclic data flow diagram for the Spark implementation

Spark implementation Spark’s core concepts

Spark: general-purpose, distributed computing framework for distributed data processing

RDD: immutable, resilient, distributed dataset

Except for T2, all other transformations are performed independently on each RDD

Page 11: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Results

Page 12: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Results

6

Instantaneous shadow map

• Computation time for 1.4 billion points: 1.5 – 3.0 minutes per timestep• 50 nodes, 5 GB of memory per node

(a) Computed 3D shadow map (b) Ground truth

Fig 3 – Shadows of the North-West corner of St. Stephen’s Green computed for 15:02:19 26/03/2015

Page 13: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Results

(a) Computed 3D shadow map (b) Ground truth

Instantaneous shadow map

Fig 4 – Shadows of the Liberty Hall and the surrounding computed for 12:50:47 26/03/2015

(a) Computed 3D shadow map

7

Page 14: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Results

8

Shadow accrual maps

Fig 4 – Summer Solstice

Fig 5 – Winter Solstice

Page 15: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Conclusions

Page 16: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Conclusions

• Distributed approach for computing detailed urban shadows in 3D directly from high-resolution airborne laser scanning point clouds

• Highly scalable algorithm suitable for implementation in a distributed memory computing cluster

• Computing an instantaneous shadow map for a 1.4 billion point dataset took 1.5 – 3.0 minutes with 50 cores and 5 GB RAM per core. More cores can be added, if a shorter processing time is desired or more data needs to be processed

• Multiple output formats can be derived, including instantaneous 3D shadow models, shadow accrual maps, shadow timelapse videos

11

Page 17: A Big Data Approach for Comprehensive Urban Shadow ... · Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis Background Urban shadow analysis Sunlight is critical

Anh Vu Vo and Debra Laefer | NYU CUSP Comprehensive Urban Shadow Analysis

Authors

Anh Vu Vo

Acknowledgement

Debra Laefer

[email protected] [email protected]