1
Shawn E. Simpson David Madigan A Bayesian self‐controlled method for drug safety surveillance in large‐scale longitudinal data Introduc?on Ensuring drug safety begins with extensive pre‐approval clinical trials This process con:nues a"er approval when drugs are in widespread use: post‐marke?ng surveillance Drugs taken by more people, for longer periods of :me, and in different ways than in pre‐approval trials May iden:fy adverse health outcomes associated with drug exposure that were not previously detected 1997 2004 Sta:s:cal Objec:ves Iden:fy drug‐condi:on pairs that may be linked Find drug interac:ons linked with condi:ons Es:mate the strength of these associa:ons Fundamental Difficul:es - Large size: Millions of people, 10000’s of condi:ons - High dimension: 10000’s of drugs, millions of interac:ons Current System: FDA AERS Longitudinal Healthcare Databases Sen?nel Ini?a?ve ‐ FDA plans to establish an ac’ve surveillance system using data from healthcare informa:on holders Observa?onal Medical Outcomes Partnership (OMOP) Researching methods for analyzing healthcare databases to evaluate safety profiles of drugs on the market Self‐Controlled Case Series ! ! ! ! MI VIOXX ! ! ! ! MI ! ! ! ! #$%&’( ) #$%&’( * VIOXX VIOXX VIOXX +,- +.. Person i observed for τ i days; (i,d) is their dth day y id = # of events observed on (i,d) x id = 1 if exposed to drug on (i,d), 0 otherwise Method developed to es:mate rela:ve incidence of AEs to assess vaccine safety [Farrington, 1995] One drug, one adverse event (AE) Events arise according to a non‐homogeneous Poisson process, exposure modulates the event rate Intensity on (i,d) = Method mAP score 22 PRR 0.2251486 22 OR 0.2280057 23 BCPNN 0.209197 22 EBGM 0.2173618 23 CHI‐SQ 0.2144175 22 PRR05 0.2046662 22 ROR05 0.2046221 12 BCPNN05 0.1832317 12 EB05 0.1860902 SCCS (1 AE, 1 drug) 0.2216072 Bayesian SCCS, Normal prior, precision 1 (1 AE, 1 drug) 0.26065568 Bayesian Logistic Regression, Normal prior, precision 1 (1 AE, multiple drugs) 0.2665139 Case‐Control 0.186743 Advantages - Automated - Be‘er temporal data Disadvantages - Li‘le baseline data - No OTC informa:on Yes No Yes a b No c d AE j Drug i Total: N s y id | x id Poisson( e φi +βxid ) Li = P( yi 1,..., yi τi | xi 1,..., xi τi )= P( y i | xi )= τi d=1 P( yid | xid ) τi (e φ +βx ) y Condi:on to remove φ i Could use ML to get es:mates, but drug effect β is of interest and the φ i ’s are nuisance parameters Condi:on on sufficient sta:s:c n i =Σy id Condi:onal likelihood for i Maximize to get β CMLE consistent, asympto:cally Normal [Cameron and Trivedi, 1998] L c i = P( yi | xi , ni )= P( yi | xi ) P( ni | xi ) τi d=1 e βxid d e βx id yid n i | x i Poisson( d e φi +βxid ) If i has no events (y i = 0) then L i C = 1, so we only need cases (i.e. n i ≥ 1) in the analysis SCCS does within‐person comparison of event rate during exposure to event rate while unexposed (‘self‐controlled’) Bayesian Extension of SCCS Longitudinal databases have 10000’s of poten:al drugs Intensity model: e (main effects) + (2‐way interac:ons) high dimensionality with millions of predictors Standard ML leads to overfilng; need to regularize Our approach – put a prior on β parameters to shrink the es:mates toward zero, smooth out es:ma:on, and reduce overfilng e φ i + βx id Mul:ple Drugs and Interac:ons We extend the model to one AE and mul?ple drugs ! ! ! ! MI ! ! ! ! ! ! MI MI #$%&’( ) #$%&’( * ! ! ! ! QUETIAPINE ! ! ! ! OLANZAPINE VIOXX VIOXX VIOXX VIOXX +,- .*/ ! ! ! ! OLANZAPINE CELECOXIB QUETIAPINE Intensity on (i,d) = e φi + β T xid = e φi + β1 xid1 + ··· + βp xidp x idj = 1 if exposed to drug j, 0 otherwise Intensity with drug interac:ons, :me‐varying covariates: xid =( xid1, ..., xidp ) T β =( β , ..., β ) T β =( β1, ..., βp ) T e {φi + β T xid + P r =s γrs xidr xids + α T zid } 1. Normal prior (ridge regression) 2. Laplacian prior (lasso) β ^ . 1 β2 β β ^ 2 . β β 1 β j N(0, σ 2 β ) max lik subject to p j =1 β 2 j s β j Laplace(0, 1/λ) p max lik subject to p j =1 |βj | s References Results: OMOP Methods Evalua?on Methods evalua:on: - Chose 10 drugs, 10 condi:ons of interest - 9 drug‐condi:on pairs with a true associa’on - Pairs determined to have no link serve as nega’ve controls Evalua:on is based on mean average precision (mAP) score: measures the degree to which a method maximizes ‘true posi:ves’ while minimizing ‘false posi:ves’ MSLR database (1.5M people) Further Work Cameron and Trivedi (1998) Regression Analysis of Count Data. Cambridge University Press. Farrington (1995) “Rela:ve incidence es:ma:on from case series for vaccine safety evalua:on,” Biometrics, Vol. 51, No. 1, pg. 228‐235. Genkin et al. (2007) “Large‐scale Bayesian logis:c regression for text categoriza:on,” Technometrics, Vol. 49, No. 3, pg. 291‐304. Current approach to surveillance is based on the FDA’s Adverse Event Repor?ng System (AERS) Anyone can voluntarily submit a report on adverse events (AEs) that may be related to drug exposures Difficul:es with AERS - Messy – spelling errors, etc. - Bias – underrepor:ng, duplicate reports, media - Unreliable temporal informa:on Mul:ple drugs and AEs may be listed on one report 15000 drugs × 16000 AEs = 240 million tables Most AEs do not occur with most drugs; small counts in a FDA uses 2 × 2 summaries, applies Bayesian shrinkage methods to deal with variability due to small counts Limita:ons - No adjustment for confounding drugs - Ignores interac:ons - May not u:lize temporal informa:on x i1 x i2 x i3 x ... ... y i1 y i2 y i3 y ... Relax independence assump:ons to allow dependence between events Allow events to influence future exposures β 1 x 1 +…+β j x j +…+β k x k +…+β p x p e N[1] [1] 2 ) N[D] [D] 2 ) ... drug class [1] drug class [D] ... β 1 x 1 + ... + β p x p e β 1 x 1 + ... + β p x p e ... ... y m y 1 ~ ~ ... N1 (c) (1) 2 ) Np (c) (c) 2 ) ... condition class (c) Hierarchical modeling of drugs into drug classes Hierarchical modeling of condi:ons into classes Convex op:miza:on: Posterior modes via cyclic coordinate descent [Genkin et al, 2007] Handles millions of predictors in logis:c case (BBR) l c = log L c i stent, asymptot Data Reduc:on to Cases Only Poten:al analysis techniques: maxSPRT, cohort methods, case control, case‐crossover, self‐controlled case series …

A Bayesian self‐controlled method for drug safety ...shawn/ssimpson_nssl_poster.pdf · drug safety surveillance in large‐scale longitudinal data Introducon • Ensuring drug safety

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Bayesian self‐controlled method for drug safety ...shawn/ssimpson_nssl_poster.pdf · drug safety surveillance in large‐scale longitudinal data Introducon • Ensuring drug safety

ShawnE.Simpson DavidMadigan

ABayesianself‐controlledmethodfordrugsafetysurveillanceinlarge‐scalelongitudinaldata

Introduc?on•  Ensuringdrugsafetybeginswithextensivepre‐approval

clinicaltrials

•  Thisprocesscon:nuesa"erapprovalwhendrugsareinwidespreaduse:post‐marke?ngsurveillance

•  Drugstakenbymorepeople,forlongerperiodsof:me,andindifferentwaysthaninpre‐approvaltrials

•  Mayiden:fyadversehealthoutcomesassociatedwithdrugexposurethatwerenotpreviouslydetected

1997 2004

Sta:s:calObjec:ves•  Iden:fydrug‐condi:onpairsthatmaybelinked

•  Finddruginterac:onslinkedwithcondi:ons•  Es:matethestrengthoftheseassocia:ons

•  FundamentalDifficul:es-  Largesize:Millionsofpeople,10000’sofcondi:ons

-  Highdimension:10000’sofdrugs,millionsofinterac:ons

CurrentSystem:FDAAERS

LongitudinalHealthcareDatabases•  Sen?nelIni?a?ve‐FDAplanstoestablishanac've

surveillancesystemusingdatafromhealthcareinforma:onholders

•  Observa?onalMedicalOutcomesPartnership(OMOP)‐Researchingmethodsforanalyzinghealthcaredatabasestoevaluatesafetyprofilesofdrugsonthemarket

Self‐ControlledCaseSeries

!" !" !" !"

MI! VIOXX!

!" !" !" !"

MI!

!" !" !" !"

#$%&'(")"

#$%&'("*" VIOXX! VIOXX! VIOXX!

+,-"

+.."

•  Personiobservedforτidays;(i,d)istheirdthday•  yid=#ofeventsobservedon(i,d)•  xid=1ifexposedtodrugon(i,d),0otherwise

•  Methoddevelopedtoes:materela:veincidenceofAEstoassessvaccinesafety[Farrington,1995]

•  Onedrug,oneadverseevent(AE)

•  Eventsariseaccordingtoanon‐homogeneousPoissonprocess,exposuremodulatestheeventrate

•  Intensityon(i,d)=

Method mAPscore22PRR 0.2251486

22OR 0.2280057

23BCPNN 0.209197

22EBGM 0.2173618

23CHI‐SQ 0.2144175

22PRR05 0.2046662

22ROR05 0.2046221

12BCPNN05 0.1832317

12EB05 0.1860902

SCCS(1AE,1drug) 0.2216072

BayesianSCCS,Normalprior,precision1(1AE,1drug)

0.26065568

BayesianLogisticRegression,Normalprior,precision1(1AE,multipledrugs)

0.2665139

Case‐Control 0.186743

•  Advantages-  Automated-  Be`ertemporaldata

•  Disadvantages-  Li`lebaselinedata-  NoOTCinforma:on

Yes No

Yes a b

No c d

AEj

Drugi

Total:N

2.  Condi:onalindependenceofeventsandexposures

yid

yid '

x i

for d ≠ d'

yid

xid '

xid

for d ≠ d'

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Poisson event rate on each day

Assume that events arise according to a non-homogeneous Poissonprocess, where drug exposure modulates the baseline event rate

Poisson intensity on day (i , d) = e !i + "xid

wheree !i = fixed individual intensity ratee " = multiplicative e!ect of drug exposure

yid | xid ! Poisson( e !i+"xid )

The likelihood contribution of (i , d) is

P( yid | xid ) =e!e{!i +"xid}(e !i+"xid )yid

yid !

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Likelihood and Assumptions

Joint probability of events for i over all observed days

Li = P( yi1, . . . , yi!i | xi1, . . . , xi!i ) = P( yi | xi ) =!i!

d=1

P( yid | xid )

= exp{!"

d

e "i+#xid} "!i!

d=1

(e "i+#xid )yid

yid !

Assumptions

1 Conditionally independent events

yid ## yid! | xi for d $= d !

2 Events are conditionally independent of exposures

yid ## xid! | xid for d $= d !

Condi:ontoremoveφi

•  CoulduseMLtogetes:mates,butdrugeffectβisofinterestandtheφi’sarenuisanceparameters

•  Condi:ononsufficientsta:s:cni=Σyid

•  Condi:onallikelihoodfori

•  Maximize togetβCMLEconsistent,asympto:callyNormal[CameronandTrivedi,1998]

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Condition to remove !i

Could use ML to get estimates, but the drug e!ect ! is of interestand the "i ’s are nuisance parameters.

Condition on su"cient statistic ni =P

d yid to remove "i

ni | xi ! Poisson(!

d

e !i+"xid )

Conditional likelihood for i

Lci = P( yi | xi, ni ) =

P( yi | xi )

P( ni | xi )"

#i"

d=1

#e "xid

$d! e "xid!

%yid

Maximize lc =$

log Lci to get !̂CMLE

#$ consistent, asymptotically normal [Cameron and Trivedi, 1998]

If i has no events (yi = 0) then Lci = 1 $ only need cases (ni % 1)

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Condition to remove !i

Could use ML to get estimates, but the drug e!ect ! is of interestand the "i ’s are nuisance parameters.

Condition on su"cient statistic ni =P

d yid to remove "i

ni | xi ! Poisson(!

d

e !i+"xid )

Conditional likelihood for i

Lci = P( yi | xi, ni ) =

P( yi | xi )

P( ni | xi )"

#i"

d=1

#e "xid

$d! e "xid!

%yid

Maximize lc =$

log Lci to get !̂CMLE

#$ consistent, asymptotically normal [Cameron and Trivedi, 1998]

If i has no events (yi = 0) then Lci = 1 $ only need cases (ni % 1)

•  Ifihasnoevents(yi=0)thenLiC=1,soweonlyneedcases(i.e.ni≥1)intheanalysis

•  SCCSdoeswithin‐personcomparisonofeventrateduringexposuretoeventratewhileunexposed(‘self‐controlled’)

BayesianExtensionofSCCS

•  Longitudinaldatabaseshave10000’sofpoten:aldrugs•  Intensitymodel:e(maineffects)+(2‐wayinterac:ons)

highdimensionalitywithmillionsofpredictors

•  StandardMLleadstooverfilng;needtoregularize

•  Ourapproach–putaprioronβparameterstoshrinkthees:matestowardzero,smoothoutes:ma:on,andreduceoverfilng

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Poisson event rate on each day

Assume that events arise according to a non-homogeneous Poissonprocess, where drug exposure modulates the baseline event rate

Poisson intensity on day (i , d) = e !i + "xid

wheree !i = fixed individual intensity ratee " = multiplicative e!ect of drug exposure

yid | xid ! Poisson( e !i+"xid )

The likelihood contribution of (i , d) is

P( yid | xid ) =e!e{!i +"xid}(e !i+"xid )yid

yid !

Mul:pleDrugsandInterac:ons•  WeextendthemodeltooneAEandmul?pledrugs

!"!" !"

!"

MI!!" !"

!" !"!" !"

MI!

MI!

#$%&'(")"

#$%&'("*"

!" !"

!" !"

QUETIAPINE!

!" !"!" !"

OLANZAPINE!

VIOXX! VIOXX!

VIOXX! VIOXX!

+,-"

.*/"

!"!"!" !"

OLANZAPINE!CELECOXIB!

QUETIAPINE!

•  Intensityon(i,d)=

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Multiple drugs

SCCS: Multiple drugs

We extend the model to one adverse event and multiple drugs:

!"!" !"

!"

MI!!" !"

!" !"!" !"

MI!

MI!

#$%&'(")"

#$%&'("*"

!" !"

!" !"

QUETIAPINE!

!" !"!" !"

OLANZAPINE!

VIOXX! VIOXX!

VIOXX! VIOXX!

+,-"

.*/"

!"!"!" !"

OLANZAPINE!CELECOXIB!

QUETIAPINE!

Intensity on (i , d): e !i + !Txid = e !i + "1 xid1 + ··· + "p xidp

xidj =

!1 exposed to drug j on (i , d)0 otherwise

xid = ( xid1, . . . , xidp )T

! = ( !1, . . . , !p )T

Intensity with drug interactions, time-varying covariates

e {!i + !Txid +P

r !=s #rs xidr xids + "Tzid}

•  xidj=1ifexposedtodrugj,0otherwise•  Intensitywithdruginterac:ons,:me‐varyingcovariates:

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Multiple drugs

SCCS: Multiple drugs

We extend the model to one adverse event and multiple drugs:

!"!" !"

!"

MI!!" !"

!" !"!" !"

MI!

MI!

#$%&'(")"

#$%&'("*"

!" !"

!" !"

QUETIAPINE!

!" !"!" !"

OLANZAPINE!

VIOXX! VIOXX!

VIOXX! VIOXX!

+,-"

.*/"

!"!"!" !"

OLANZAPINE!CELECOXIB!

QUETIAPINE!

Intensity on (i , d): e !i + !Txid = e !i + "1 xid1 + ··· + "p xidp

xidj =

!1 exposed to drug j on (i , d)0 otherwise

xid = ( xid1, . . . , xidp )T

! = ( !1, . . . , !p )T

Intensity with drug interactions, time-varying covariates

e {!i + !Txid +P

r !=s #rs xidr xids + "Tzid}

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Multiple drugs

SCCS: Multiple drugs

We extend the model to one adverse event and multiple drugs:

!"!" !"

!"

MI!!" !"

!" !"!" !"

MI!

MI!

#$%&'(")"

#$%&'("*"

!" !"

!" !"

QUETIAPINE!

!" !"!" !"

OLANZAPINE!

VIOXX! VIOXX!

VIOXX! VIOXX!

+,-"

.*/"

!"!"!" !"

OLANZAPINE!CELECOXIB!

QUETIAPINE!

Intensity on (i , d): e !i + !Txid = e !i + "1 xid1 + ··· + "p xidp

xidj =

!1 exposed to drug j on (i , d)0 otherwise

xid = ( xid1, . . . , xidp )T

! = ( !1, . . . , !p )T

Intensity with drug interactions, time-varying covariates

e {!i + !Txid +P

r !=s #rs xidr xids + "Tzid}

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Multiple drugs

SCCS: Multiple drugs

We extend the model to one adverse event and multiple drugs:

!"!" !"

!"

MI!!" !"

!" !"!" !"

MI!

MI!

#$%&'(")"

#$%&'("*"

!" !"

!" !"

QUETIAPINE!

!" !"!" !"

OLANZAPINE!

VIOXX! VIOXX!

VIOXX! VIOXX!

+,-"

.*/"

!"!"!" !"

OLANZAPINE!CELECOXIB!

QUETIAPINE!

Intensity on (i , d): e !i + !Txid = e !i + "1 xid1 + ··· + "p xidp

xidj =

!1 exposed to drug j on (i , d)0 otherwise

xid = ( xid1, . . . , xidp )T

! = ( !1, . . . , !p )T

Intensity with drug interactions, time-varying covariates

e {!i + !Txid +P

r !=s #rs xidr xids + "Tzid}

1.  Normalprior(ridgeregression)

2.  Laplacianprior(lasso)

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of !j in the case of orthonormal columns of X. M and "are constants chosen by the corresponding techniques; sign denotes the sign of itsargument (±1), and x+ denotes “positive part” of x. Below the table, estimatorsare shown by broken red lines. The 45! line in gray shows the unrestricted estimatefor reference.

Estimator Formula

Best subset (size M) !̂j · I[rank(|!̂j | ! M)

Ridge !̂j/(1 + ")

Lasso sign(!̂j)(|!̂j |" ")+

(0,0) (0,0) (0,0)

|!̂(M)|

"

Best Subset Ridge Lasso

!^ !^2. .!

1

! 2

!1 !

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression(right). Shown are contours of the error and constraint functions. The solid blueareas are the constraint regions |!1| + |!2| ! t and !2

1 + !22 ! t2, respectively,

while the red ellipses are the contours of the least squares error function.

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of !j in the case of orthonormal columns of X. M and "are constants chosen by the corresponding techniques; sign denotes the sign of itsargument (±1), and x+ denotes “positive part” of x. Below the table, estimatorsare shown by broken red lines. The 45! line in gray shows the unrestricted estimatefor reference.

Estimator Formula

Best subset (size M) !̂j · I[rank(|!̂j | ! M)

Ridge !̂j/(1 + ")

Lasso sign(!̂j)(|!̂j |" ")+

(0,0) (0,0) (0,0)

|!̂(M)|

"

Best Subset Ridge Lasso

!^ !^2. .!

1

! 2

!1 !

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression(right). Shown are contours of the error and constraint functions. The solid blueareas are the constraint regions |!1| + |!2| ! t and !2

1 + !22 ! t2, respectively,

while the red ellipses are the contours of the least squares error function.

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Bayesian Extension of SCCS

Overfitting

Priors on model parameters !

1 Normal prior (ridge regression)

!j ! N(0, "2!)

max likelihood subject top!

j=1

!2j " s

2 Laplacian prior (lasso)

!j ! Laplace(0, 1/#)

max likelihood subject top!

j=1

|!j | " s

Posterior modes via cyclic coordinate descent [Genkin et al, 2007].Handles millions of predictors in logistic case (BBR).

Log likelihood is concave # convex optimization problem. Each stepincreases log posterior, “climb to top of the hill”

maxliksubjectto

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Bayesian Extension of SCCS

Overfitting

Priors on model parameters !

1 Normal prior (ridge regression)

!j ! N(0, "2!)

max likelihood subject top!

j=1

!2j " s

2 Laplacian prior (lasso)

!j ! Laplace(0, 1/#)

max likelihood subject top!

j=1

|!j | " s

Posterior modes via cyclic coordinate descent [Genkin et al, 2007].Handles millions of predictors in logistic case (BBR).

Log likelihood is concave # convex optimization problem. Each stepincreases log posterior, “climb to top of the hill”

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Bayesian Extension of SCCS

Overfitting

Priors on model parameters !

1 Normal prior (ridge regression)

!j ! N(0, "2!)

max likelihood subject top!

j=1

!2j " s

2 Laplacian prior (lasso)

!j ! Laplace(0, 1/#)

max likelihood subject top!

j=1

|!j | " s

Posterior modes via cyclic coordinate descent [Genkin et al, 2007].Handles millions of predictors in logistic case (BBR).

Log likelihood is concave # convex optimization problem. Each stepincreases log posterior, “climb to top of the hill”

maxliksubjectto

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Bayesian Extension of SCCS

Overfitting

Priors on model parameters !

1 Normal prior (ridge regression)

!j ! N(0, "2!)

max likelihood subject top!

j=1

!2j " s

2 Laplacian prior (lasso)

!j ! Laplace(0, 1/#)

max likelihood subject top!

j=1

|!j | " s

Posterior modes via cyclic coordinate descent [Genkin et al, 2007].Handles millions of predictors in logistic case (BBR).

Log likelihood is concave # convex optimization problem. Each stepincreases log posterior, “climb to top of the hill”

References

Results:OMOPMethodsEvalua?on•  Methodsevalua:on:

-  Chose10drugs,10condi:onsofinterest-  9drug‐condi:onpairswithatrueassocia'on-  Pairsdeterminedtohavenolinkserveasnega'vecontrols

•  Evalua:onisbasedonmeanaverageprecision(mAP)score:measuresthedegreetowhichamethodmaximizes‘trueposi:ves’whileminimizing‘falseposi:ves’

MSLRdatabase(1.5Mpeople)

FurtherWork

•  CameronandTrivedi(1998)RegressionAnalysisofCountData.CambridgeUniversityPress.

•  Farrington(1995)“Rela:veincidencees:ma:onfromcaseseriesforvaccinesafetyevalua:on,”Biometrics,Vol.51,No.1,pg.228‐235.

•  Genkinetal.(2007)“Large‐scaleBayesianlogis:cregressionfortextcategoriza:on,”Technometrics,Vol.49,No.3,pg.291‐304.

•  CurrentapproachtosurveillanceisbasedontheFDA’sAdverseEventRepor?ngSystem(AERS)

•  Anyonecanvoluntarilysubmitareportonadverseevents(AEs)thatmayberelatedtodrugexposures

•  Difficul:eswithAERS

-  Messy–spellingerrors,etc.-  Bias–underrepor:ng,duplicatereports,media-  Unreliabletemporalinforma:on

•  Mul:pledrugsandAEsmaybelistedononereport

•  15000drugs×16000AEs=240milliontables

•  MostAEsdonotoccurwithmostdrugs;smallcountsina

•  FDAuses2×2summaries,appliesBayesianshrinkagemethodstodealwithvariabilityduetosmallcounts

•  Limita:ons

-  Noadjustmentforconfoundingdrugs-  Ignoresinterac:ons-  Maynotu:lizetemporalinforma:on

xi1 xi2 xi3 xiτ...

...

yi1 yi2 yi3 yiτ...•  Relaxindependenceassump:onstoallowdependencebetweenevents

•  Alloweventstoinfluencefutureexposures

β1x1+…+βjxj+…+βkxk+…+βpxpeN(μ[1],σ[1]2) N(μ[D],σ[D]2)...

drugclass[1] drugclass[D]...

β1x1+...+βpxpe

β1x1+...+βpxpe

...

...

ym

y1~

~

...

N(μ1(c),σ(1)2) N(μp(c),σ(c)2)...

cond

itio

ncl

ass

(c)

•  Hierarchicalmodelingofdrugsintodrugclasses

•  Hierarchicalmodelingofcondi:onsintoclasses

•  Convexop:miza:on:Posteriormodesviacycliccoordinatedescent[Genkinetal,2007]

•  Handlesmillionsofpredictorsinlogis:ccase(BBR)

A Bayesian self-controlled method for drug safety surveillance in large-scale longitudinal data

Self-controlled case series method

Single drug

SCCS: Condition to remove !i

Could use ML to get estimates, but the drug e!ect ! is of interestand the "i ’s are nuisance parameters.

Condition on su"cient statistic ni =P

d yid to remove "i

ni | xi ! Poisson(!

d

e !i+"xid )

Conditional likelihood for i

Lci = P( yi | xi, ni ) =

P( yi | xi )

P( ni | xi )"

#i"

d=1

#e "xid

$d! e "xid!

%yid

Maximize lc =$

log Lci to get !̂CMLE

#$ consistent, asymptotically normal [Cameron and Trivedi, 1998]

If i has no events (yi = 0) then Lci = 1 $ only need cases (ni % 1)

DataReduc:ontoCasesOnly

•  Poten:alanalysistechniques:maxSPRT,cohortmethods,casecontrol,case‐crossover,self‐controlledcaseseries…