17
A 2.9-30.3GHz Fourth- Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering Department University of Maine, USA Dec.12-15, 2010 1 17th IEEE International Conference on Electronics, Circuits and Systems

A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Embed Size (px)

Citation preview

Page 1: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

A 2.9-30.3GHz Fourth-Harmonic

Voltage-Controlled Oscillator in 130nm SiGe BiCMOS

Technology

Yang Lin and David E. KoteckiElectrical and Computer Engineering Department

University of Maine, USA

Dec.12-15, 2010 1

17th IEEE International Conference on Electronics, Circuits and Systems

Page 2: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Outline

Voltage-controlled oscillator (VCO)Wide-tuning VCO applicationsPrevious work on the state-of-the-art wide-

tuning VCOsDesign & Post-layout simulation of this work

Dec.12-15, 2010 2

17th IEEE International Conference on Electronics, Circuits and Systems

Page 3: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Voltage-Controlled Oscillator (VCO)

Dec.12-15, 2010 3

17th IEEE International Conference on Electronics, Circuits and Systems

Vdd

Gnd

Vtune

Vtune controls output frequencyVCO

Load

Gnd

fmin

fmax

Page 4: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Wide-tuning VCO applications

RadarBroadbandCommunication

Dec.12-15, 2010 4

17th IEEE International Conference on Electronics, Circuits and Systems

RemoteSensing

Page 5: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

State-of-the-art wide-tuning VCOs

The widest tuning range in the 130nm ring VCOs reported

Frequency (GHz)

Topology Technology

1-9 Two-stage VCO CMOS 130nm

1.82-10.18 Two-stage digitally controlled

CMOS 130nm

3-10 Digitally-controlled ring CMOS 90nm

1-10 Four-stage VCO CMOS 90nm

0.23-6.3 Relaxation VCO CMOS 90nm

0.1-65.8 Triple-push with lumped devices

CMOS 90nm

3-11 Coupled two-stage CMOS 180nm

1.25-13.66 QVCO + two stages XOR AlGaAs/GaAs

2.9-30.3 QVCO + XOR + Push-push frequency doubler

BiCMOS SiGe 130nm

Dec.12-15, 2010 5

17th IEEE International Conference on Electronics, Circuits and Systems

This work

Page 6: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Dec.12-15, 2010 6

17th IEEE International Conference on Electronics, Circuits and Systems

For the XOR, differential inputs Ap and An (0o delay @ frequency f0 ) XOR differential inputs Bp and Bn (90o delay @ frequency f0) = differential outputs Zp and Zn (frequency 2f0 )

Base-collector-connected (level-shifting) NPN transistors: decrease the XOR input voltages for Bp and Bn

0

1

Architecture

Zp

Zn

ApAn

50 Ohm

ApAn

Bp’ Bn’

Zp

Znout

f0 2f0 4f02.9-30.3GHz1.45-15.15GHz0.725-7.575GHz

Ring Quadrature

VCO

BiCMOS Gilbert XORBp

Bn

Push-push frequency doubler

Page 7: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Ring Quadrature VCO (QVCO)

Gate width/length (µm)Buffer: Common source (amplified output) ‘Vctrl’ is high: low-frequency mode, T1 & T4 close to ‘off’, T2 & T3 provide most currents‘Vctrl’ achieves a specific high value, the oscillation freq. keeps the same‘Vctrl’ is low: high-frequency mode, |Vgs| of T1 & T4 increases, current and freq. boostIncreasing ‘Vdd’ boosts the output frequency

Dec.12-15, 2010 7

17th IEEE International Conference on Electronics, Circuits and Systems

Delay Cell

outp

outn

inp

inn

Delay Cell

outp

outn

inp

inn

Buffer

Buffer

Buffer

Buffer

0o

90o

180o

270o

Ap

An

Bp’

Bn’Delay cell

Page 8: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Dec.12-15, 2010

17th IEEE International Conference on Electronics, Circuits and Systems 8

BiCMOS Gilbert XOR

Logic part, Emitter followers & Current sourceDelays of Ap, An, Bp and Bn are 0o, 180o, 90o and 270o

Bp & Bn are ~0.7V lower than Ap & AnZp and Zn are differential outputsBiCMOS XOR outperforms CMOS XOR: high freq. & differential outputs CMOS XOR: up to ~5.5GHz input freq.

Emitter followers as buffers

Current Source

Logic Part

A B A XOR B

Ap<An(0)

Bp<Bn(0)

Zp<Zn(0)

Ap<An(0)

Bp>Bn(1)

Zp>Zn(1)

Ap>An(1)

Bp<Bn(0)

Zp>Zn(1)

Ap>An(1)

Bp>Bn(1)

Zp<Zn(0)

Page 9: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

AC

VL

out

BE iV v

L/2

Push-push frequency doubler

Dec.12-15, 2010 9

17th IEEE International Conference on Electronics, Circuits and Systems

2 3

0

1 ...! 2! 3!

nx

n

x x xe x

n

( )

BE i BE

T T

V v V

V Vc c C Si I I I e e

2 3 4

2 3 4( ...)

2 6 24

BE

T

Vi i i iVc ST T T T

v v v vi I e

V V V V

for all x)

(

BE i

T

V v

Vc SI I e

BE

T

V

VC SI I e Half-circuit

Half-circuit model

2 3 4

2 3 4( ...)

2 6 24

BE

T

Vi i i iVc ST T T T

v v v vi I e

V V V V

Schematic

L

B C

E

πriv or+

-2

Ljci

Page 10: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Dec.12-15, 2010

17th IEEE International Conference on Electronics, Circuits and Systems 10

2 4

2 4

2 4 2 4 40 0 0 0 0

2 4 2 4 4

2 ( ...)2 24

( ...) ( ...) cos(2 2 ) ( ...) cos(4 4 )2 32 2 24 96

BE

T

BE

T

Vi iVc c ST T

V

VST T T T T

v vi i I e

V V

v v v v vI e

V V V V V

0cos( )iv v

Doubled frequency dominates !!

Zp & Zn out-of-phase: odd harmonics cancel, even harmonics add

2 20

1[1 cos(2 2 )]

2iv v

L

2 1 2 1 0n ni iv v 2 2 22n n ni i iv v v

0 0cos( ) cos( )i iv v v v Assuming

4 40

1 3 1[ 2cos(2 2 ) cos(4 4 )]

4 2 2iv v

Push-push frequency doubler (continued)

Page 11: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Microchip Layout

Size: 750µm×500µm

The ground & power planes are not shown for clarity.

Dec.12-15, 2010 11

17th IEEE International Conference on Electronics, Circuits and Systems

500µm

750µm

Vbuffer

Vctrl

Vdd!

Vxor

VL

out

Gnd!

QVCO

XOR

Push-push frequency doubler

Page 12: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Post-layout simulation resultsOscillation frequency

Dec.12-15, 2010 12

17th IEEE International Conference on Electronics, Circuits and Systems

30.3GHz

2.9GHz

Tuning range = 165%

Page 13: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

VCO transient output at 30.3GHz(into a 50Ω load)

•Non-ideal 4th-harmonic output

•A small 2nd-harmonic signal still exists due to the incomplete cancellation of Zp and Zn signals

•Peak-peak voltage amplitude ~20mV

Dec.12-15, 2010 13

17th IEEE International Conference on Electronics, Circuits and Systems

Page 14: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

4th-harmonic output power spectruminto a 50Ω load

30.3 GHz, -33.5 dBm

The rejections 23.5dB @7.575GHz8dB @15.15GHz12.5dB @22.725GHz

@30.3 GHz, Dissipated power: 34.2 mW, Output power: -33.5 [email protected] GHz, Dissipated power: 32.89 mW, Output power: -56.5 dBm

Dec.12-15, 2010 14

17th IEEE International Conference on Electronics, Circuits and Systems

Page 15: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Phase Noise (PN) versus offset frequency

At 10MHz offset frequency,PN= -86.04 dBc/Hz @ 30.3GHz oscillation frequencyPN= -102.2 dBc/Hz @ 2.9GHz oscillation frequency

Dec.12-15, 2010 15

17th IEEE International Conference on Electronics, Circuits and Systems

30.3GHz oscillation frequency, -86.04 dBc/Hz @10MHz offset frequency

Page 16: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Conclusions

Dec.12-15, 2010 16

17th IEEE International Conference on Electronics, Circuits and Systems

Topology A ring QVCO + An XOR + A push-push frequency doubler

Performance The widest tuning range in the 130nm ring VCOs reported

Tuning Range (GHz) 2.9 to 30.3 (165%)

Dissipated Power (mW) 34.2 @ 30.3GHz, 32.89 @ 2.9GHz

Output Power to a 50Ω load (dBm)

-33.5 @ 30.3GHz, -56.5 @ 2.9GHz

Phase noise @ 10MHz offset (dBc/Hz)

-86.04 @ 30.3GHz, -102.2 @ 2.9GHz

Microchip Area 750µm×500µm

Page 17: A 2.9-30.3GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering

Thank you very much!Thank you very much!

Dec.12-15, 2010 17

17th IEEE International Conference on Electronics, Circuits and Systems