98-6

Embed Size (px)

Citation preview

  • 7/30/2019 98-6

    1/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    1 (20)

    a

    m

    FL

    FLP

    UTSY

    a FL=

    m = 0

    t ime

    a FLP=

    a

    m FLP=

    Plasticdeformations

    FLP

    a

    mFLP

    UTSY

    FL

    FLP

    Loadedvolume

    Surface roughness

    Size of raw

    material

    Haigh diagram I

    YY

    Haigh diagramReduced Haigh diagram

  • 7/30/2019 98-6

    2/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    2 (20)

    a

    m

    UTSY

    P

    a

    mP

    ( , )K Kt m f a

    Haigh diagram II

    A

    A

    C

    OB

    SFaAA'

    AP=

    SFmOB'

    OA=

    SFam

    OC'

    OP=

    m const=

    a const=

    K

    K

    f a

    t m const

    =

    K q K

    K K

    f t

    f t

    = +

    1 1( )

    Service stress Safety factors

  • 7/30/2019 98-6

    3/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    3 (20)

    Modern Fatigue Design

    Background

    Evolution in structural design due to increased computat ional power CA D /CA E - software

    Need for new fatigue design methods that are va lid for a general type of loading easy to implement in a computer code

    Several options, but no method with general validity

    HCF: equivalent stress is defined and compared to afatigue limit (expressed in the equivalent stress)

    LCF: ca lcula tion of damage connected to theconstitutive model of the materia l. Fat igue damageconnected to the plastic deformation

    LEFM: effective stress intensity range

  • 7/30/2019 98-6

    4/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    4 (20)

    Multiaxial high cycle fatigue initiation

    Problem:

    The H aigh diagra m is valid for

    U niaxia l loading

    O ne stress component

    Solution:

    Assume that, in the general case,

    fatigue behaviour is influenced by

    Applied shear stress amplitude

    Hydrostatic stress

    B ased on these assumptions, derive a fa tigue initiationcriterion that defines a limiting stress magnitude forwhich fatigue cracks will develop) for a general type ofloading.

    Assumes undamaged material (continuum mechanics)

  • 7/30/2019 98-6

    5/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    5 (20)

    Hydrostatic stress

    The hydrostatic stress is the mean valueof normal stressesacting on the materialpoint (positive in tension)

    A tensile (positive) hydrostatic stressopens up microscopic cracks (Stage IIcrack growth)

    h = + +( )1

    3x y z

    The hydrostatic stress is a stress invariant

    ij =

    11 12 13

    21 22 23

    31 32 33

    h = = + +( )1

    3

    1

    311 22 33ii

    regardless of coordinate system

  • 7/30/2019 98-6

    6/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    6 (20)

    Shear stress measures

    The shear stress initiates slip bands whichleads to microscopic cracks (stage I crackgrowth)

    Since a static shear stress have noinfluence on the fatigue damage, theshear stress amplitude is employed

    Two measures

    Tresca shear stress

    Tresca =1 32

    von Mises stress

    We need to define the amplitudes of these

    vM = ( ) + ( ) + ( )1

    21 2

    22 3

    23 1

    2

  • 7/30/2019 98-6

    7/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    7 (20)

    Equivalent Stress Measures

    Uniaxial CaseOne stress component

    Mid value and amplitude of this stresscomponent are taken to reflect thefatigue properties

    The stresses during a load cycles are

    defined by a service stress

    Multiaxial CaseSix stress components (general case)

    Hydrostatic stress and shear stressamplitude are taken to reflect thefatigue properties

    The stresses during a load cycles are

    defined by a closed curve

    Y

    FLP

    m

    Plastic

    zone

    UTSY

    FL

    Service

    stress

    a

    FATIGUE

    NO FATIGUE

    FATIGUE

    FATIGUE

    NO

    FATIGUE

    Shear stressamplitude

    NO

    FATIGUE

    Stressesduring oneload cycle

    Plasticzone

    Plasticzone

    e3

    c3

    e3

    e3

  • 7/30/2019 98-6

    8/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    8 (20)

    Shear Stress Amplitude

    General

    I t ha s been found empirically tha t a superposed staticshear stressdoes not ha ve any influence on the fa tigue

    initiation FL FLP= whereas FL FLP

    In order to eliminate the influence of a superposed shear

    stress, the shear stress amplitude is norma lly used inmultiaxia l H C F-criteria

    This amplitude is the difference between the currentshear stressmagnitude and the mid value of the shear

    stress for the current stress cycleFor the genera l case, this amplitude is rathercomplicated to compute (see Fat igue a Sur vey,Appendix I)

  • 7/30/2019 98-6

    9/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    9 (20)

    Shear stress Uniaxial case

    Mohrs stress circle for loa ding in a uniaxia l case

    2 = 0

    max

    1 = max

    x

    2 = 0

    max

    1 = max

    x

    2 = 0

    max

    1 = max

    x

    time

    Ma x normal and shear stress correspond to the samedirections throughout the loa d cycle

    45 45 45

    t i m e

    maxt i m e

    P

    t i m e

    maxmid

  • 7/30/2019 98-6

    10/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    10 (20)

    The deviatoric stress tensor

    The stress tensor

    ij

    xx xy xz

    yz yy yz

    zx zy zz

    =

    Split into volumetric and a deviatoricpart

    ij

    xx xy xz

    yz yy yz

    zx zy zz

    xx xy xz

    yz yy yz

    zx zy zz

    =

    =

    +

    = +

    h

    h

    h

    h

    hd

    1 0 0

    0 1 0

    0 0 1

    I

    The volumetricpart conta ins the hydrostatic stress

    The deviatoricpart reflects influence of shear stresses

  • 7/30/2019 98-6

    11/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    11 (20)

    Mid value of the deviatoric stress tensor

    In-phaseij ij ija c f t = + ( )

    aij and cij are consta nts

    f t( ) is a common t ime dependent functionFixed principal directionsE very component of corresponds to a fixed directionthroughout the loading

    ij

    xx xy xz

    yx yy yz

    zx zy zz

    t

    t t t

    t t t

    t t t

    t

    t

    t

    a

    a

    d

    d d d

    d d d

    d d d

    d

    d

    d

    d

    ( ) =

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    =

    ( )

    ( )

    ( )

    =

    1

    2

    3

    11

    22

    0 0

    0 0

    0 0

    0 0

    0dd

    d

    d

    d

    d

    0

    0 0

    0 0

    0 0

    0 033

    11

    22

    33a

    c

    c

    c

    f t

    +

    ( )

  • 7/30/2019 98-6

    12/20

    High Cycle Fatigue (HCF) part IISol id Mechanics An der s Ekber g

    12 (20)

    Movie 1 Click me!

    http://www.am.chalmers.se/~anek/teaching/fatfract/Movie1.movhttp://www.am.chalmers.se/~anek/teaching/fatfract/Movie1.movhttp://www.am.chalmers.se/~anek/teaching/fatfract/Movie1.mov
  • 7/30/2019 98-6

    13/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    13 (20)

    Mid value of the deviatoric stress tensor III

    Limitations In-phase loading

    In in-phase loading, thestresscomponents have their

    max- and min-magnitudes atthe same instant in time

    In out-of-phase loa ding, max-and min magnitudes occur a t

    different instants of time fordifferent stress components

    time

    stress

    time

    stress

    The case of out-of-phase loading is much more difficult toana lyse, for insta nce due to difficulties in

    D efining a stress cycle D efining a mid value of the shear stress

  • 7/30/2019 98-6

    14/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    14 (20)

    Mid value of the deviatoric stress tensor IV

    Limitations Fixed principal directions

    Rotating principal directions

    " "

    ij,pd

    d

    d

    d

    =

    1

    1

    3

    0 0

    0 0

    0 0

    corresponds to a rotating coordinate system

    Instead w e have to look a t the full devia toric stress tensor a ndfind its mid va lue

    ij

    xx xy xz

    yz yy yz

    zx zy zz

    ,md

    md

    h

    h

    h m

    = =

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

  • 7/30/2019 98-6

    15/20

  • 7/30/2019 98-6

    16/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    16 (20)

    Amplitude of the deviatoric stress tensor

    The mid value of the deviatoric stress tensor is found as

    ij,md

    md

    dm

    dm

    dm

    = =

    1

    1

    3

    0 0

    0 0

    0 0

    (proportional loading)

    ( m denotes mid-value of component during stress cycle)

    or as

    ij

    xx xy xz

    yz yy yz

    zx zy zz

    ,md

    md

    h

    h

    h m

    = =

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    (general)

    the amplitude of the deviatoric stress tensor is defined as

    ij ij ijt t,ad d

    ,md( ) = ( ) (or a

    d dmd

    t t( ) = ( ) )

  • 7/30/2019 98-6

    17/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    17 (20)

    Amplitude of the deviatoric stress tensor II

    For in-phase loading with fixed principal directions (proportionalloading), we can express the amplitude of the Tresca a nd von Misesstress using the amplitude of the devia toric stress tensor

    Tresca,a 1,a

    d

    3,a

    d

    2( ) ( ) ( )t t t=

    where ( 1,ad 1d 1,md( ) ( )t t= etc)

    vM,a a a a a a a( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,t t t t t t t = ( ) + ( ) + ( )1

    21 2

    22 3

    23 1

    2

    (it can be shown tha t using a or ad

    gives the same results)

    The ma x values are given a s

    Tresca,a1,a

    d

    3,a

    d

    2= where (

    1,ad 1,max

    d

    1,min

    d

    2= )

    vM,a a a a a a a= ( ) + ( ) + ( )1

    21 2

    22 3

    23 1

    2, , , , , ,

    Amplitude of the deviatoric stress tensor II

    For in-phase loading with fixed principal directions (proportionalloading), we can express the amplitude of the Tresca a nd von Misesstress using the amplitude of the devia toric stress tensor

    Tresca,a 1,a

    d

    3,a

    d

    2( ) ( ) ( )t t t=

    where ( 1,ad 1d 1,md( ) ( )t t= etc)

    vM,a a a a a a a( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,t t t t t t t = ( ) + ( ) + ( )1

    21 2

    22 3

    23 1

    2

    (it can be shown tha t using a or ad

    gives the same results)

    The ma x values are given a s

    Tresca,a1,a

    d

    3,a

    d

    2= where (

    1,ad 1,max

    d

    1,min

    d

    2= )

    vM,a a a a a a a= ( ) + ( ) + ( )1

    21 2

    22 3

    23 1

    2, , , , , ,

  • 7/30/2019 98-6

    18/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    18 (20)

    Equivalent stress criteria

    Sines criterion

    EQS ad

    ad

    ad

    ad

    ad

    ad

    S h,mid eS= ( ) + ( ) + ( ) + >1

    21 2

    2

    2 3

    2

    3 1

    2

    , , , , , , c

    Crossland criterion

    EQC a a a a a a C h,max eC= ( ) + ( ) + ( ) + >1

    2

    1 2

    2

    2 3

    2

    3 1

    2

    , , , , , , c

    Dang van criterion

    EQDV

    1,a 3,a

    DV h,max eDV2=

    + >c

    19 (20)

  • 7/30/2019 98-6

    19/20

    High Cycle Fatigue (HCF) part IISol id Mechanics An der s Ekber g

    19 (20)

    Concluding remarks

    Fatigue analysis

    C alcula te the state of stress

    Apply the equivalent stress criterion, fatigue if

    eq e>

    In the case of no f at igue, ca lculate safety coefficient a s

    SF=

    e

    EQ

    Pros Cons

    Suitable for computer ana lysis C orrosion correction etc.

    G eneral state of stress La ck of empirical knowledge

    Id entify critical parts of component Separa tes betw een fa tigue /no fa tigue

    Have a physical basis

  • 7/30/2019 98-6

    20/20

    High Cycle Fatigue (HCF) part IISol id Mechan ics Ander s Ekber g

    20 (20)

    Lunch