21
7/29/2019 92010_ Low Temperature Issues http://slidepdf.com/reader/full/92010-low-temperature-issues 1/21 part of Aker © 2010 Aker Solutions Depressurisation  of wet gas segment  Low temperature issues Leif Ernstsen Stavanger 21. October, 2010

92010_ Low Temperature Issues

  • Upload
    -

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 1/21

part of Aker 

© 2010 Aker Solutions

Depressurisation  of wet gas segment  Low temperature issues

Leif Ernstsen

Stavanger 

21. October, 2010

Page 2: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 2/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 2 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Background

• AkerSolutions performed

 a tie-in

 study

 for Gudrun to Sleipner.

• Static

 simulations

 indicated

 low

 fluid temperatures

 during

blowdown

 of 

 inlet

 gas segment.

• The

 project

 wanted

 to examine

 the

 low

 temperature

 issue

 with

dynamic

 OLGA simulations.

Page 3: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 3/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 3 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Field Overview

PARTIAL

STABILIZATION

PROCESS

FLARE

14”

 WET GAS

PIPELINE

~ 55 km

GUDRUN

SLEIPNER

GAS

SEGMENT

BLOWDOWN LINE

Receiving

 conditions:

90 bar 

4 °C

92 kg/s

Page 4: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 4/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 4 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Objectives

• Find

 locations with

 minimum wall

 temperatures.

• Examine

 mechanism

 of 

 thermal

 process.

• Investigate

 effect

 of 

 boiling

 of 

 liquid

 pockets.

Page 5: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 5/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 5 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Height / Length Geometry from ISOs

Geometry of OLGA network model

-2

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

X [m]

   Y   [  m   ] Gas segment

Blowdown line

Drain

Page 6: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 6/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 6 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 OLGA Schematics of Simulated Network

12”

2”

3”

8”-12”-20”

14”

Page 7: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 7/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 7 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Simulated Scenarios

General sequence

 of 

 events:

• Normal production• Shut-in

  / cooldown

 of 

 Gas Segment

• Blowdown

Cases presented

 here:

Case 1: Blowdown

 from 142 bara, -7 °C (immediate

 shut-in)

Case 2: Blowdown  from 170 bara, -7 °C (shut-in  after   temp.equilization)

Page 8: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 8/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 8 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Minimum Wall Temperatures Found (worst case)

2”

 drain

 pipe,

Case 1:

 Min. wall

 temp.:

 -27,8 ºC

Concurrent

 fluid temp.:

 -28,9 ºC

Inner   wall  film HTC:  125 W/(m2*K)Location: DRAIN, Pipe 1, Segment 2

3”

 BD pipe,

Case 2:   Min. wall  temp.:   -44,7 ºCConcurrent

 fluid temp.:

 -45,3 ºC

Inner 

 wall

 film HTC:

 523 W/(m2*K)

Location: BLOWDOWN, Pipe 4, Segment 1

12”

 main

 line,

Case 1:

 Min. wall

 temp.:

 -37,8 ºC

Concurrent

 fluid temp.:

 -39,1 ºC

Inner 

 wall

 film HTC:

 137 W/(m2*K)

Location: SEG_2, Pipe 7, Segment 1

Page 9: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 9/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 9 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Time Curves, 2”

 Drain

 Pipe, Case 1

Page 10: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 10/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 10 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Time Curves, 3”

 Blowdown

 Pipe, Case 2

Page 11: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 11/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 11 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Time Curves, 12”

 Main Line, Case 1

Page 12: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 12/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 12 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Video Clip of 2”

 Drain and 12”

 Main Line, Case 1

Page 13: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 13/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 13 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 “Findings”: Pipe Spec. and Low Temperatures

• OLGA simulations

 have indicated, where

 low

 temperatures

 occur,

and how  low  they  go  during Gas Segment blowdown.

• Cost

 saving

 can

 be achieved

 by selecting

 pipe spec. in line with

simulation  results.

In this

 actual

 case the

 client

 have chosen

 to maintain

 the

originally

 planned

 -100 °C spec.

• Existing

 pipe spec. may

 be kept

 in modification

 projects,

where

 new

 operating conditions

 indicate

 lower 

 temperatures

 (dynamic

simulations)

Page 14: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 14/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 14 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Additional Info

More simulation

  / modelling

 details

 in the

 following

 slides…

Page 15: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 15/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 15 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Modelling Premisses

• Segment consists

 of 

 bare pipes of 

 duplex

 steel

 with

 properties:

Spec. heat capacity:

 460 J/(kg*K)

Therm. conductivity:

 21 W/(m*K)

Density:

 7850 kg/m3

Inside

 roughness:

 0,05 mm

• Pipe dimensions, Gas Segment, spec. FS30A (-100 °C, 258,6 barg):2”:

 ID=49.22 mm

 WT=5.54 mm

3”:

 ID=73.66 mm

 WT=7.62 mm

12”:

 ID=273.1 mm

 WT=25.4 mm

14”:

 ID=300.02 mm

 WT=27.79 mm

Page 16: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 16/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 16 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Modelling Premisses, cont’d

• Blowdown

 orifice

 ID = 14 mm, simulated

 with

 Cd=0,84.

• In real life

 blowdown

 is initiated

 by opening

 a block

 valve

 upstream

the

 orifice. In the

 simulations, however, no

 block

 valve

 was

 included,

and the

 blowdown

 was

 started

 by ”opening”

 the

 orifice

 over 2 s.

This

 approach

 is deemed

 to be a very

 close

 approximation

 to the

 real

life  process.

Page 17: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 17/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 17 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Modelling Premisses, cont’d

Fluid: Gudrun gas, year 

 2013

Component Mole fraction

Methane 0.686732

Ethane 0.104944

Propane 0.056470

i-Butane 0.005997

n-Butane 0.015792

i-Pentane 0.003798

n-Pentane 0.004598

H2O 0.000626

CO2 0.096044

N2 0.005296

C6* 0.007196

C7* 0.005097

C8* 0.003798

C9* 0.001699

C10-C11* 0.001199

C12-C13* 0.000400

C14-C15* 0.000100

Eglycol 0.000163

H2S 0.000051

Page 18: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 18/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 18 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Modelling Premisses, cont’d

• Ambient

 air conditions:

Velocity:

 0,5 m/s

Temperature:

 0 °C and -7 °C

• Pipeline receiving

 conditions:

Pressure:

 90 bara

Temperature:

 4 °C

Rate:   92 kg/sShut-in

 pressure:

 170 bara

• Simulation

 programs:

OLGA 5.3.2

PVTsim

 17.0.0

HYSYS 2006.5

Page 19: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 19/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 19 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Simulated Scenarios

Case 1: Normal production

 at 4 ºC, ambient

 temp. -7 ºC, mass

 flow

 92,3 kg/s,

outlet

 pressure

 90 bara

Shut-in: Close

 outlet, maintain

 mass

 flow

 until

 170 bara, then

 close

 inlet

Cooldown

 until

 equilibrium

  pressure=142 bara

Blowdown: Open

 blowdown

 valve

Case 2: Normal production

 at 4 ºC, ambient

 temp. -7 ºC, mass

 flow

 92,3 kg/s,

outlet

 pressure

 90 bara

Set

 inlet

 pressure

 to 90,4247 bara same production

Shut-in: Close

 outlet, set

 inlet

 conditions

 to 170 bara / -7 ºC

Cooldown

 until

 equilibrium

  pressure=170,1 bara

Blowdown: Close

 inlet, open

 blowdown

 valve

Page 20: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 20/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 20 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Other Simulated Scenarios

Case 3: Normal production

 at -7 ºC, ambient

 temp. -7 ºC, mass

 flow

 92,3 kg/s,

outlet

 pressure

 90 bara

Shut-in: Close  outlet, maintain  mass  flow  until  170 bara, then  close  inletCooldown

 until

 equilibrium

  pressure=169,7 bara

Blowdown: Open

 blowdown

 valve

Case 4: Normal production

 at 0 ºC, ambient

 temp. 0 ºC, mass

 flow

 92,3 kg/s,

outlet

 pressure

 90 bara

Shut-in: Close

 outlet, maintain

 mass

 flow

 until

 170 bara, then

 close

 inlet

Cooldown

 until

 equilibrium

  pressure=170,5 bara

Blowdown: Open

 blowdown

 valve

Page 21: 92010_ Low Temperature Issues

7/29/2019 92010_ Low Temperature Issues

http://slidepdf.com/reader/full/92010-low-temperature-issues 21/21

Flow Assurance and Dynamic Simulation Seminar 2010

Slide 21 © 2010 Aker Solutions part of Aker 

Gudrun Gas Segment Blowdown

 Simulation Difficulties

The

 simulations

 turned

 out

 to be very

 prone

 to crash. The

 P/T trajectory

passes close

 to the

 critical

 point

 and through

 areas with

 steep

 gradients

in the

 properties. The

 following

 measures

 were

 employed

 in attempting

 to

avoid  crash:

• Selecting

 small time steps. However, there

 turned

 out

 to be a certain

 lower 

 limit,

below

 which

 the

 algorithm

 became

 unstable.

• Removing  liquid  water, but  still simulate  with  3 phases  and WATERFLASH=ON:This

 helped

 in some

 cases. Removal

 of 

 the

 small trace of 

 liquid

 water was

 deemed

to have only

 a marginal effect

 on

 the

 results.

• Changing

 the

 downstream

 boundary

 pressure

 and temperature

 (!!) during the

blowdown: This

 clearly

 made

 the

 algorithm

 survive

 in some

 cases.

• Refining

 the

 P/T grid in the

 PVT-table: This

 method

 had

 the

 best effect.

With ΔP=2 bar and ΔT=2 °C in the

 operating region, crash

 were

 generally

 avoided.

The

 PVT-table, however, included

 also

 some

 extreme

 high

 and low

 values

 of 

P and T to give

 room

 for algorithm

 excursions.