56
911213.....56 slides http:\\aliasadipour.kmu.ac.ir 1

911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir1

Embed Size (px)

Citation preview

  • Slide 1

Slide 2 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir1 Slide 3 The End!!!!!!! 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir2 Slide 4 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir3 Slide 5 www.asadipour.kmu.ac.ir 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir4 Slide 6 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or a product with time (M/s). A B rate = - [A] tt rate = [B] tt [A] = change in concentration of A over time period t [B] = change in concentration of B over time period t Because [A] decreases with time, [A] is negative. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir5 Slide 7 A B rate = - [A] tt rate = [B][B] tt time 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir6 Slide 8 Reaction rate = change in concentration of a reactant or product with time. Reaction rate = change in concentration of a reactant or product with time. Three types of rates Three types of rates initial rate initial rate average rate average rate instantaneous rate instantaneous rate 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir7 Reaction Rates Slide 9 Br 2 (aq) + HCOOH (aq) 2Br - (aq) + 2H + (aq) + CO 2 (g) average rate = - [Br 2 ] tt = - [Br 2 ] final [Br 2 ] initial t final - t initial slope of tangent slope of tangent slope of tangent instantaneous rate = rate for specific instance in time 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir8 Slide 10 2NO2 2NO+O2 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir9 Slide 11 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir10 Slide 12 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir11 Slide 13 Concentrations & Rates 0.3 M HCl6 M HCl Mg(s) + 2 HCl(aq) ---> MgCl 2 (aq) + H 2 (g) 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir12 Slide 14 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir13 Slide 15 Reaction Order What is the rate expression for aA + bB cC + dD Rate = k[A] x [B] y where x=1 and y=2.5? Rate = k[A][B] 2.5 What is the reaction order? First in A, 2.5 in B Overall reaction order? 2.5 +1 = 3.5 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir14 Slide 16 Interpreting Rate Laws Rate = k [A] m [B] n [C] p If m = 1, rxn. is 1st order in A If m = 1, rxn. is 1st order in A Rate = k [A] 1 If [A] doubles, then rate goes up by factor of __ If [A] doubles, then rate goes up by factor of __ If m = 2, rxn. is 2nd order in A. If m = 2, rxn. is 2nd order in A. Rate = k [A] 2 Rate = k [A] 2 Doubling [A] increases rate by ________ If m = 0, rxn. is zero order. If m = 0, rxn. is zero order. Rate = k [A] 0 Rate = k [A] 0 If [A] doubles, rate ________ 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir15 Slide 17 Deriving Rate Laws Expt. [CH 3 CHO] Disappear of CH 3 CHO (mol/L) (mol/Lsec) 10.100.020 20.200.081 30.300.182 40.400.318 911213.....56 slides http:\\aliasadipour.kmu.ac.ir16 Derive rate law and k for CH 3 CHO(g) CH 4 (g) + CO(g) from experimental data for rate of disappearance of CH 3 CHO Rate of rxn = k [CH 3 CHO] 2 ???? Therefore, we say this reaction is _____ order. Here the rate goes up by _____ when initial conc. doubles. Now determine the value of k. Use expt. #3 data 1,2,3 or 4 R= k [CH 3 CHO] 2 0.182 mol/Ls = k (0.30 mol/L) 2 k = 2.0 (L / mols) k = 2.0 (L / mols) Using k you can calc. rate at other values of [CH 3 CHO] at same T. Slide 18 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1417 A series of four experiments was run at different concentrations, and the initial rates of X formation were determined. From the following data, obtain the reaction orders with respect to A, B, and H +. Calculate the numerical value of the rate constant. Slide 19 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1418 Initial Concentrations (mol/L) ABH+H+ Initial Rate [mol/(L. s)] Exp. 10.010 0.000501.15 x 10 -6 Exp. 20.0200.0100.000502.30 x 10 -6 Exp. 30.0100.0200.000502.30 x 10 -6 Exp. 40.010 0.001001.15 x 10 -6 Comparing Experiment 1 and Experiment 2, you see that when the A concentration doubles (with other concentrations constant), the rate doubles. This implies a first-order dependence with respect to A. Slide 20 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1419 Initial Concentrations (mol/L) ABH+H+ Initial Rate [mol/(L. s)] Exp. 10.010 0.000501.15 x 10 -6 Exp. 20.0200.0100.000502.30 x 10 -6 Exp. 30.0100.0200.000504.60 x 10 -6 Exp. 40.010 0.001001.15 x 10 -6 Comparing Experiment 1 and Experiment 3, you see that when the B concentration doubles (with other concentrations constant), the rate 4 times. This implies a second-order dependence with respect to B. Slide 21 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1420 Initial Concentrations (mol/L) ABH+H+ Initial Rate [mol/(L. s)] Exp. 10.010 0.000501.15 x 10 -6 Exp. 20.0200.0100.000502.30 x 10 -6 Exp. 30.0100.0200.000504.60 x 10 -6 Exp. 40.010 0.001001.15 x 10 -6 Comparing Experiment 1 and Experiment 4, you see that when the H + concentration doubles (with other concentrations constant), the rate is the same. This implies a zero-order dependence with respect to H +. Slide 22 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1421 Initial Concentrations (mol/L) ABH+H+ Initial Rate [mol/(L. s)] Exp. 10.010 0.000501.15 x 10 -6 Exp. 20.0200.0100.000502.30 x 10 -6 Exp. 30.0100.0200.000504.60 x 10 -6 Exp. 40.010 0.001001.15 x 10 -6 Slide 23 Expression of R &K 911213.....56 slideshttp:\\aliasadipour.kmu.ac.irPresentation of Lecture Outlines, 1422 Initial Concentrations (mol/L) ABH+H+ Initial Rate [mol/(L. s)] Exp. 10.010 0.000501.15 x 10 -6 Exp. 20.0200.0100.000502.30 x 10 -6 Exp. 30.0100.0200.000504.60 x 10 -6 Exp. 40.010 0.001001.15 x 10 -6 You can now calculate the rate constant by substituting values from any of the experiments. Using Experiment 1 you obtain: Slide 24 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir23 Slide 25 Zero-Order Reactions A product rate = rate = k [A] 0 = k k = rate [A] 0 =RATE= M/s [A] tt = k - [A] is the concentration of A at any time t [A] 0 is the concentration of A at time t=0 t = t when [A] = [A] 0 /2 t = [A] 0 2k2k [A] = [A] 0 - kt 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir24 Slide 26 First-Order Reactions A product rate = k [A] k = rate [A] = 1/s or s -1 M/sM/s M = [A] tt = k [A] - [A] is the concentration of A at any time t [A] 0 is the concentration of A at time t=0 [A] = [A] 0 exp(-kt) ln[A] = ln[A] 0 - kt t = 0.693 k 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir25 rate = - [A] tt t = t when [A] = [A] 0 /2 Slide 27 Second-Order Reactions 13.3 A productrate = k [A] 2 k = rate [A] 2 = 1/M s M/sM/s M2M2 = [A] tt = k [A] 2 - [A] is the concentration of A at any time t [A] 0 is the concentration of A at time t=0 1 [A] = 1 [A] 0 + kt t = t when [A] = [A] 0 /2 t = 1 k[A] 0 rate = - [A] tt 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir26 Slide 28 First step in evaluating rate data is to graphically interpret the order of rxn Zeroth order: rate does not change with lower concentration First, second orders: Rate changes as a function of concentration 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir27 Slide 29 Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions OrderRate Law Concentration-Time Equation Half-Life 0 1 2 rate = k rate = k [A] rate = k [A] 2 ln[A] = ln[A] 0 - kt 1 [A] = 1 [A] 0 + kt [A] = [A] 0 - kt tt ln2 k = t = [A] 0 2k2k t = 1 k[A] 0 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir28 Slide 30 Collision Theory O 3 (g) + NO(g) O 2 (g) + NO 2 (g) 10 31 Collisin/Lit.S Reactions require (A) geometry (A) geometry (B) Activation energy (B) Activation energy 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir29 Slide 31 Three possible collision orientations-- a & b produce reactions, c does not. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir30 Slide 32 Collision Theory TEMPERATURE 10 c 0 T 100-300% RATE 25 c 0 T 35 c 0 2% COLLISIN EFFECTIVE COLLISIONS 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir31 Slide 33 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir32 Slide 34 with sufficient energy The colliding molecules must have a total kinetic energy equal to or greater than the activation energy, Ea. Ea is the minimum energy of collision required for two molecules to initiate a chemical reaction. It can be thought of as the hill in below. Regardless of whether the elevation of the ground on the other side is lower than the original position, there must be enough energy imparted to the golf ball to get it over the hill. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir33 Slide 35 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir34 Slide 36 The Collision Theory of Chemical Kinetics Activation Energy (E a )- the minimum amount of energy required to initiate a chemical reaction. Activated Complex (Transition State)- a temporary species formed by the reactant molecules as a result of the collision before they form the product. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir35 Exothermic ReactionEndothermic Reaction Slide 37 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir36 Slide 38 Temperature Dependence of the Rate Constant k = A exp( -E a /RT ) E a is the activation energy (J/mol) R is the gas constant (8.314 J/Kmol) T is the absolute temperature A is the frequency factor 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir37 (Arrhenius equation) Slide 39 Arrhenius Equation k = A exp( -E a /RT ) Can be arranged in the form of a straight line ln k = ln A-Ea/RT=(-E a /R)(1/T) + ln A Plot ln k vs. 1/T slope = -E a /R 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir38 Slide 40 k = A e ( -Ea/RT ) ln k = ln A-Ea/RT=(-E a /R)(1/T) + ln A 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir39 300 400C 0 Rate20000 Times 400 500C 0 Rate400 Times Ea=60KJ/mol 300 310C 0 Rate2 Times Ea=260KJ/mol 300 310C 0 Rate25 Times Slide 41 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir40 Ln(K2/K1)=-Ea/R(1/T2-1/T1) Log(K2/K1) = Ea/2.303R(T2-T1)/T1T2 K in different T Log(K2/K1)=-Ea/2.303R(1/T2-1/T1) Log(K2/K1) = H /2.303R(T2-T1)/T1T2 Slide 42 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir41 Slide 43 Mechanisms Proposed Mechanism Step 1 slowHOOH + I - --> HOI + OH - Step 2 fastHOI + I - --> I 2 + OH - Step 3 fast2 OH - + 2 H + --> 2 H 2 O ------------------------------------------------------------------- 2 I - + H 2 O 2 + 2 H + ---> I 2 + 2 H 2 O 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir42 Most rxns. involve a sequence of elementary steps. 2 I - + H 2 O 2 + 2 H + ---> I 2 + 2 H 2 O 2 I - + H 2 O 2 + 2 H + ---> I 2 + 2 H 2 O Rate can be no faster than slow step RATE DETERMINING STEP,( rds.) The species HOI and OH - are intermediates. Rate = k [H 2 O 2 ] [I - ] Slide 44 Mechanisms NOTE 1. Rate law comes from experiment 2. Order and stoichiometric coefficients not necessarily the same! 3.Rate law reflects all chemistry including the slowest step in multistep reaction. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir43 Slide 45 Mechanisms 2NO+F2 2NOF R=K[NO][F2] 1=NO+F2 NOF+F R1=K1[NO][F2] Rate limiting step(RDS) R=R1 2=NO+F NOF R2=K2[NO][F] 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir44 Slide 46 SN1 OH- + (CH3)3CBr (CH3)3COH + Br- R=K[(CH 3 ) 3 CBr] 1)(CH 3 ) 3 CBr (CH 3 ) 3 C + +Br- R1=K1[(CH 3 ) 3 CBr ] 2) (CH 3 ) 3 C + +OH- (CH 3 ) 3 COH R2=K2[(CH 3 ) 3 C+] +[OH-] 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir45 Slide 47 SN2 OH- +CH 3 Br CH 3 OH + Br- R=K[CH 3 Br][OH-] 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir46 Slide 48 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir47 Slide 49 NO 2 + CO NO (g) + CO 2(g) Rate = k[NO 2 ] 2 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir48 Single step Two possible mechanisms Two steps is rational mechanism Experimental Rate Laws andMechanisms Proposed Slide 50 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir49 Slide 51 A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed. k = A exp( -E a /RT ) EaEa k uncatalyzedcatalyzed rate catalyzed > rate uncatalyzed 911213.....56 slides http:\\aliasadipour.kmu.ac.ir 50 Slide 52 For the decomposition of hydrogen peroxide: A catalyst(Br - ) speeds up a reaction by lowering the activation energy. It does this by providing a different mechanism by which the reaction can occur. The energy profiles for both the catalyzed and uncatalyzed reactions of decomposition of hydrogen peroxide are shown in Figure below. 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir51 Br - Slide 53 1)Homogeneous Catalysis N2O (g) N 2 (g) + O 2 (g) 1) N2O (g) N2 (g) + O (g) 2) O (g) + N2O (g) N2(g)+ O 2 (g) Ea=240KJ/mol ------------------------------------------------------- Cl2(g) 2Cl(g) N2O(g)+Cl(g) N2(g)+ClO(g) 2ClO Cl2(g)+O2(g) Ea=140KJ/mol 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir52 Cl 2 Catal. Slide 54 C 2 H 4 + H 2 C 2 H 6 with a metal catalyst a. reactants b. adsorption c. migration/reaction d. desorption 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir53 2)Heterogeneous Catalysis Slide 55 Enzyme Catalysis 13.6 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir54 Slide 56 Catalytic Converters 13.6 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir55 CO + Unburned Hydrocarbons + O 2 CO 2 + H 2 O catalytic converter catalytic converter 2NO + 2NO 2 2N 2 + 3O 2 Slide 57 The End!!!!!!! 911213.....56 slideshttp:\\aliasadipour.kmu.ac.ir56