35
MISSION PLANNING AND ANALYSIS DIVISION N74-70678 Unclas 00/99 16319 April 9,1969 MANNED SPACECRAFT CENTER HOUSTON,TEXAS AERONAUTICS AND SPACE ADMINISTRATION APOllO 10 (MISSION F) SPACECRAFT OPERATIONAL ALTERNATE MISSION PLANS MSC INTERNAL NOTE NO. 69-FM-85 VOLUME III lUNAR ALTERNATE RENDEZVOUS ::::::::::::::;::: -(N ASA-TM- x -69816) APOLLC 10 (MISSION F) ::::::::::::::::::SfACECBAFT OPERATIONAL ALTEBNAT EMISSION :::::::::::::::::: PLANS. VOLUME 3: LUN AR ALT ERN AT E ::::::::::::::::::BENDEZVOUS (NASA) 35 P .................. ·- I 90::::::::::::::::::::::: fJ' , {', -•. ,'\ NATIONAL f .. ; ....................... :::::::::;::::::::::::: ::::::::::::::::::::::: :.:.:.:.:.:.:.:.:.:.:..: ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. : ..:.:.:.;.:.: ..:.:.:.:.: ........................ ::::::::::::::::::::::: ..:.:.:.: .. :.:.:.:.:.:.:. ::::::::::::::::::::::: :::::::::::::::::::::: : :.:..:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: ........................ '" .......... ::::::::::::::::::::::: ........................ ......................... . :.:.:.:.:.:.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: ;.;.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: ::::::::::::::::::::::: . . . ::::::::::::::::::::::: .:.:.:. :.:-:-:.:. :.;.:. :.:.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: ::::::::::::::::::::::: ....................... . :.:.:.:.:.:.:.:.. :.:.:. :.:.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: :=::::::::::::::::::::: .:.:.:.:.:.:.:.;.:.:.:. ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::= :.:.:.:.:.;.:.:.:.:.:.: ::::::::::::::::::::::: ....................... )ifIWtW .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: .:.:.:.:.: -: .:.:.:.:.:. :.:.:.: .:.:.: .:-:.: .:.: ::::::::.:.:.:.::::::::

90::::::::::::::::::::::: fJ' ~:~:.~{:::::::t} · RCS backup capability will be maintained on any APS-only rendezvous. Sources of input data used to design the alternate rendezvous

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

MISSION PLANNING AND ANALYSIS DIVISION

N74-70678

Unclas00/99 16319

April 9,1969

MANNED SPACECRAFT CENTERHOUSTON,TEXAS

AERONAUTICS AND SPACE ADMINISTRATION

APOllO 10 (MISSION F)

SPACECRAFT OPERATIONAL

ALTERNATE MISSION PLANS

MSC INTERNAL NOTE NO. 69-FM-85

VOLUME III

lUNAR ALTERNATE RENDEZVOUS

::::::::::::::;::: -(N ASA-TM-x-69816) APOLLC 10 (MISSION F)::::::::::::::::::SfACECBAFT OPERATIONAL ALTEBNAT EMISSION:::::::::::::::::: PLANS. VOLUME 3: LUN AR ALT ERN AT E::::::::::::::::::BENDEZVOUS (NASA) 35 P..................

·- I~:.:.:.:.:.:.:.:.:.:.:.:90:::::::::::::::::::::::

•~t~~ttt~~.~~~ fJ'~ :~:.~{:::::::t} ,~ {', -•. ,'\ NATIONAL

~ f ..; ::::~:~~.:.:.:.:.:.:.:.:.:.:.:.

~~~~j:j:j[j:j:j:~:j:j:j:.......................:::::::::;:::::::::::::::::::::::::::::::::::::.:.:.:.:.:.:.:.:.:.:..::::::::::::::::::::::::.:.:.:.:.:.:.:.:.:.:.:.:..:.:.:.;.:.: ..:.:.:.:.:........................:::::::::::::::::::::::..:.:.:.: ..:.:.:.:.:.:.:.:::::::::::::::::::::::::::::::::::::::::::::::.:..:.:.:.:.:.:.:.:.:.::::::::::::::::::::::::........................'"..........~ :::::::::::::::::::::::..................................................:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.::::::::::::::::::::::::.:.:.:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::;.;.:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::::::::::::::::::::::::::. . .• :::::::::::::::::::::::.:.:.:.:.:-:-:.:.:.;.:.:.:.:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::::::::::::::::::::::::::........................:.:.:.:.:.:.:.:..:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::::=:::::::::::::::::::::.:.:.:.:.:.:.:.;.:.:.:.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=:.:.:.:.:.;.:.:.:.:.:.::::::::::::::::::::::::.......................

)ifIWtW.:.:.:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:::::::::.:.:.:.::::::::

••

MSC INTERNAL NOTE NO. 69-FM-85

PROJECT APOLLO

APOLLO 10 (MISSION F) SPACECRAFT OPERATIONALALTERNATE MISSION PLANS

VOLUME III - LUNAR ALTERNATE RENDEZVOUS

By Ronny H. MooreOrbital Mission Analysis Branch

April 9, 1969

MISSION PLANNING AND ANALYSIS DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

APproved:~co...J C~Edgar C. Lineberry, ChiefOrbita' 'ssion Anal sis Branch

Approved: ,in., J.,-o..,..h....n~.:...:r-a-lyr-'-,~C""'·:""::e~"""""-""":;;....a",-----r -Mission Planning and Analysis Division

••

••

Section

1.0

2.0

3.0

4.0

5.0

6.0

7.0

CONTENTS

SUMMARY

INTRODUCTION

SYMBOLS AND DEFINITIONS

INPUT DATA, GUIDELINES, AND ASSUMPTIONS

BASIC RENDEZVOUS TECllliIQUES . . . . . .

ALTERNATE RENDEZVOUS PLANS AND PROCEDURES FORVARIOUS SITUATIONS . . . .

6.1 Alt.ernate la, DPS Unstaged .

6.2 P~ternate lb, APS Inoperative

6.3 Alternate 2, APS Rendezvous

6.4 Alternate 3, Modified Football

CONCLUSION

REFERENCES

iii

Page

1

1

2

5

6

6

7

8

9

10

30

TABLES

Table

I MANEUVER SUMMARY FOR OPERATIONAL APOLLO 10(MISSION F) RENDEZVOUS . . .

II MANEUVER SUMMARY FOR ALTERNATE la, DPS UNSTAGED

•Page

11 •12

III

IV

V

VI

MANEUVER SUMMARY FOR ALTERNATE lb, APSINOPERATIVE .

MANEUVER SUMMARY FOR ALTERNATE RENDEZVOUS 2,APS ONLY .

MANEUVER SUMMARY FOR ALTERNATE RENDEZVOUS 3,MODIFIED FOOTBALL

TEST OBJECTIVE SUMMARY

iv

113

14

15

16

••

FIGURES

Figure Page•

1

2

3

4

5

6

Relative motion nominal rendezvous and alternatesla and lb .. ... . ..

Relative motion alternate 2, APS only

Relative motion alternate 3, modified football

Relative motion of descent stage with respect tothe ascent stage for alternatelb ....

Relative motion of descent stage with respect toCSM for alternate 2 " .... .

Relative motion of descent stage with respect tothe CSM for alternate 3 . .

19

20

21

22

7 MSFN coverage and daylight/darkness summary foralternate la, DPS unstaged

(a) 98:00 to 103:~0

(b) 103:00 to 106:20(c) 108:00 to 109:40

8 MSFN coverage and daylight/darkness summary foralternate lb, APS inoperative

(a) 98:00 to 103:00(b) 103:00 to 108:00

232425

2627

•9

10

MSFN coverage and daylight/darkness summary foralternate rendezvous 2, APS only .

MSFN coverage and daylight/darkness summary foralternate rendezvous 3, modified football

v

28

29

••

••

••

APOLLO 10 (MISSION F) SPACECRAFT OPERATIONAL.

ALTERNATE MISSION PLANS

VOLUME III - LUNAR ALTERNATE RENDEZVOUS

By Ronny H. Moore

1.0 SUMMARY

This document, which is VolUIlle III of the operational alternatemission plan for Apollo 10 (Mission F), presents the operational lunarorbital alternate rendezvous plans. Four 1M-active alternate rendezvousplans and procedures which fulfill mission test objectives are pre­sented. With the exception of the LM-active modified football alter­nate, the alternate plans are based on various postulated nonnominalsituat~ons in wh~ch the basic coelliptic rendezvous s~que~ce is used.

Although the operational plans were generated for the May 17 missionlaunch date, they are generally applicable to ar"y launch date a.nd time.Based on formulated ground rules and known constraints, the operationalplans are feasible from a trajectory standpoint; that is, the plans donot impose unique maneuvers or procedures, additional crew training,or new software requirements for the onboard or the ground supportcapabilities. The plans update those published in the pr-eliminaryalternate mission plan (ref. 1).

2.0 INTRODUCTION

The total mission planning effort for Apollo 10 (Mission F)includes alternate mission plans for both the earth orbital and thelunar orbital mission phases. The preflight planning effort is significantbecause certain mission test objectives can be accomplished if properpreparations are made for development of the operational alternatemission plans, techniques, procedures, and mission rules. Therefore,the purpose of this document is to present four operational alternateplans which are feasible based on certain ground rules and knownconstraints.

The ground rules and rendezvous techniques and the operationallunar orbital alternate rendezvous plans are presented for the followingnonnominal situations.

2

1. Inflbility (or nondesire) to jettison the descent stage

2. Loss of useful APS only,

3. Loss of useful DPS only

4. Loss of both APS and DPS

Maneuver summaries, relative motion plots, daylight/darkness histories,and MSFN tracking summaries are presented for all the alternate rendezvousplans.

3.0 SYMBOLS AND DEFINITIONS

AGS abort guidance system

••

APS ascent propulsion system

CDR constant differential height

CES control electronics system •CSI coelliptic sequence initiation

CSM command and service modules

~h differential altitude between active and inactive vehicle orbits

~v total change in velocity caused by thrusting

DOl descent orbit insertion

DPS descent propulsion system

F.T. full throttle

G.m.t.

g.e.t.

Greenwich mean time

ground elapsed time from earth lift-off •h apocynthion altitude referenced to the landing site

a

h pericynthion altitude referenced to the landing sitep

••

••

lMU

1M

LPO

MSFN

PDl

PGNCS

RCS

RTCC

SM

SPS

TEl

TM

TPl

TPF

VHF

alternate rendezvous

APS rendezvous

coelliptic sequence

DPS rendezvous

---------------

3

inertial measurement unit

lunar module

lunar parking orbit

Manned-Space Flight Network

powered descent initiation

primary guidance and navigation control subsystem

reaction control system

Real-Time Computer Complex

service module

service propulsion system

transearth injection

telemetry

terminal phase initiation

terminal phase finalization

very high frequency

any deviation from the nominal rendezvous toaccomplish mission objectives

any rendezvous during which the APS is theprimary propulsion system and no DPS isavailable

a rendezvous technique to establish, prior toTPl and at a different altitude, an active­vehicle (chaser) orbit and to establish adesired relative condition at a selectedtime forTPl

any rendezvous during which the DPS is theprimary propulsion system and no APS is re­quired

football rendezvous

4

a relative condition between the CSM and LMinitiated by a radial separation which placesthe vehicles in equiperiod orbits such thatrendezvous occurs one orbit later

••

4.0 INPUT DATA, GUIDELINES, AND ASSUMPTIONS

The following guidelines and assumptions were used to design thealternate rendezvous plans.

1. LM test objectives will have first priority.

2. Alternate rendezvous time lines will not exceed the nominalrendezvous time line.

3. No additional crew training will be required for alternates.

4. No additional RTCC or onboard processors will be necessary .

5. Alternate plans will be consistent with current spacecraft,crew, and operational constraints.

6. The CSM will be nominal in all alternates.

7. The sequence of events will contain no more maneuvers thanthe nominal rendezvous.

8. The CSI-CDH coelliptic sequence will be used whenever possible.

9. RCS backup capability will be maintained on any APS-onlyrendezvous.

Sources of input data used to design the alternate rendezvousare summarized as follows. 1M test objectives are discussed in detailin the mission requirements document (ref. 2), while the LM operationalconstraints were obtained from the Apollo Operations Handbook (ref. 3).The spacecraft operational trajectory (ref. 4) presented the operationalrendezvous time line and the initial vectors used to generate thealternate plans. Weights and engine performance parameters were obtainedfrom the Spacecraft Operational Data Books (refs. 5, 6, and 7) andfrom reference 8. The MSFN tracking was generated based on requirementsdefined by Flight Control Division (ref. 9) and by use of MSFN stationsdefined by Goddard in reference 10.

••

• 5

••

5.0 BASIC RENDEZVOUS TECHNIQUES

Except for the modified football rendezvous, the basic rendezvoustechnique that is used for the alternate rendezvous plans is the CSl-CDRcoelliptic sequence. The objective of the pre-CSl logic is to applya maneuver (CSl) which will result in the desired TPl conditions beingobtained by the active vehicle at a selected TPl time after a coellipticmaneuver (CDR) has been performed at a selected time after CSI. Thistechnique is used in the Apollo 10 (Mission F) rendezvous. A maneuversummary of the Apollo 10 (Mission F) rendezvous is presented in table I.Although the CSI-CDR technique is used, two preceding maneuvers(phasing and insertion) are required to establish the proper conditionsso that the coelliptic sequence of the Apollo 10 (Mission F) rendezvouswill be nearly identical to the planned lunar landing mission sequence.A similar scheme is used in the alternate plans when advisable; however,a CSl-CDR rendezvous sequence may be arranged with only one maneuver(phasing) so that rendezvous can occur one revolution earlier. Thissingle pre-CSl maneuver technique is used in the APS-only alternaterendezvous to conserve APS power and time. The DOl is a maneuverdesigned to enable the 1M to brake out of the LPO and to descend overa specific landing site. Although it is not designed specifically asa rendezvous maneuver, it may be altered to arrange for more favorableconditions for some alternates. The phasing maneuver and, wheredesirable, insertion are planned so that certain conditions are obtainedduring the rendezvous sequence. The conditions are as follows.

1. The TPI maneuver will occur at the midpoint of darkness on aLM-to-CSM elevation angle of 26.6°.

2. Coelliptic ~h will be 15 n. mi. with the 1M below the CSM.

3. The CSI maneuver wil~ occur at the first apocynthion afterinsertion or' after phasing on the shortened rendezvous sequence.

4. The CDR will occur one-half period after CSI.

All of these conditions exist during the nominal Apollo 10 (Mission F)rendezvous.

The other rendezvous technique considered is the modified football,which is initiated by a radial separation maneuver. Rendezvous couldbe accomplishea exactly one revolution after the radial separationmaneuver if an identical radial maneuver is performed in the oppositedirection along with terminal line-of-sight br~~ing. However, the ~V

requirement for braking is reduced if a standard TPI is performed atthe chaser pericynthion to increase the travel angle during terminalphase from 90° to 130°. The football technique is suggested as an

6

alternate exercise if neither main LM propulsion system is usableor if a complete rendezvous is not allowed for some other reason.

6.0 ALTERNATE RENDEZVOUS PlANS ANDPROCEDURES FOR VARIOUS SITUATIOfS

The alternate rendezvous plans are designed for situations duringthe Apollo 10 (Mission F) lunar orbit when the nominal 'rendezvous cannotbe attempted.

6.1 Alternate la, DPS Unstaged

A DPS rendezvous alternate la may be flown if it is apparent thatthe descent stage cannot be staged, either because of a failure of thestaging mechanism or because of a desire to retain the DPS for laterdocked maneuvers (i.e., a docked DPS TEl). The sequence of events forthis alternate rendezvous is presented in table II.

The alternate la sequence is exactly the same as the nominalrendezvous sequence presented in table I except that descent staging,which occurs nominally 10 minutes prior to insertion" is not performed.All maneuvers prior to insertion are performed as in the operationalsequence. Insertion, CSI, and TPI are performed with DPS. The CDHis performed with the 1M RCS because it will normally be a smallmaneuver. However, if the required 1M RCS burn time is greater thanor equal to 10.0 seconds (~V ~ 4 fps), the maneuver will be performedwith the DPS at 10 percent thrust to avoid approaching the four-jet+X RCS impingement limit of 15-seconds for burn duration.

Because the unstaged LM is somewhat difficult and inefficient tomaneuver during the braking phase, the CSM will perform the brakingmaneuvers and docking. Thus, after this rendezvous, the orbit will beapproximately 43 n. mi. by 62 n. mi. If it is not desirable to performTEl in this orbit, a docked circularization maneuver would be performedat apogee approximately one revolution later. The posigrade SPS burnof 26.1 fps will be approximately 2.2 seconds in duration in the dockedconfiguration. The 1M might not be jettisoned prior to circularizationbecause it may be desirable to perform TEl with the DPS. All the rendezvousalternate la parameters and relative motion will be the same as for thenominal rendezvous. The only differences in profiles are the burn timesof insertion and subsequent maneuvers caused by use of different pro­pulsion systems and a heavier vehicle. A maneuver smnmary foralternate la is presented in table II, and the relative motion is pre­sented in figure 1. The MSFN coverage and the daylight/darkness history

••

••

••

••

7

are showni~ figure 7. Note that TPI, nominally performed with the RCS,will be executed with the DPS at 10 percent full thrust to avoid a lengthyRCS burn. As a result, radar lock-on must be broken to perform TPI.However, the current nominal plan is to execute TPI with the +X RCS;with open interconnect, which also requires momentary loss of radarlock-on.

6.2 Alternate Ib, APS Inoperative

The DPS rendezvous alternate Ib, maybe flown if the APS enginecannot be used or if ascent battery power is limited. The latter situa­tion would make it desirable to remain on descent power as long aspossible. The sequence of events is identical to a DPS rendezvousalternate la except that descent staging can occur when the descentstage is no longer needed. Staging is planned to occur after CDR so thatTPI and braking (TPF) can be performed with the LM RCS and, therefore, anominal terminal phase can be accomplished.

The recommended staging sequence is as follows.

1. Perform a 2-fps retrograde maneuver with 1M RCS -x jets ata convenient time after the CDR maneuver.

2. Stage.

3. Perform a 2-fps posigrade maneuver with the +X thrusters.

The staging sequence will place the descent stage below both the 1Mand the CSM and will prevent any recontact problem. The 2-fps retrogrademaneuver places the 1M on a slightly different ellipse, and by stagingand performing a 2-fps posigrade maneuver with the ascent stage,'_taeascent stage will return to the original ellipse. The relative motionof the descent stage with respect to the ascent stage is shown infigure 4. The staging sequence is performed at a convenient time afterthe CDH maneuver such that tracking and pre-TPI procedures between CDHand TPI are not disturbed. The DPS stage is retained until after theCDH maneuver to conserve APS power. The maneuver summary for alternate Ibis presented in table III, and the relative motion, which is the same asthat for DPS rendezvous alternate la, is shown in figure 1. The MSFNcoverage summary and the daylight/darkness history are presented infigure 8.

8

6.3 Alternate 2, APS Rendezvous

An APS rendezvous may be flown when the DPS cannot be used. Thesequence of events for this rendezvous is presented in table IV.

To provide adequate separation distance at DOl, theCSM performsthe minifootball maneuver as in the nominal sequence. The stagingsequence recommended during +-he mini football is the following.

1. Approximately 15 minutes prior to DOl, perform a 2-fps posi­grade maneuver with the LM RCS (-X jets).

2. Stage the DPS.

3. Perform a 2-fps retrograde maneuver (+X jets).

The sequence of maneuvers will place the descent stage behind and aboveboth the CSM and 1M and will prevent any recontact problems. The re­lative motion of the descent stage with respect +-0 th,= CSM is shownin fig"L'.re 5. By comparison of this figure with figure 2, it isapparent that no recontact problems should occur. To conserve APSpower, the DPS stage is retained 1.lIltil just prior to DOl. Because DOl,which is performed with the APS, is targeted to achieve a 40-n. mi.pericynthion altitude, any slight perturbations in the 1M traj ectory"­caused by the staging sequence will not be significant.

Approximately 195° prior to the landing site, the APS performsDOl to approximately a 40-n. mi. pericynthion altitude. The choice ofpericynthion altitude is based on the 1M RCS impingement limit for theascent stage (a continuous burn of approximately 55 sec). If the APSis lost, any backup RCS burns must be less tha.n this limit. With a40-n. mi. pericynthion altitude, the largest possible RCS burn (CDR)is approximately 50.4 seconds in duration. At pericynthion after DOl,the APS performs a phasing maneuver targeted to set up relative condi­tions so that the coelliptic rendezvous sequence to place TPI at themidpoint of darkness will result in a ~R of 15 n. mi. when CSI and CDRare performed on the next. apsis crossings. Phasing raises LM apocynthionaltitude to approximately 102 n. mi., at which point CSI is performed.The CDR maneuver is performed one-half period later at pericynthion.The CSI maneuver raises pericynthion altitude to approximately 46 n. mi.so that the retrograde APS CDR can place the 1M in a coelliptic orbit15 n. mi. below the CSM. The CSI and CDR maneuvers could be performedby use of the RCS thrusters with the APS interconnect because sufficientAPS propellant will still be available. The TPI maneuver occursapproximately 35 minutes after CDR on a 1M-to-CSM elevation angle of26.6°. Terminal phase occurs as in the nominal rendezvous profile,although one revolution sooner. Alternate 2 contains one less maneuver

••

••

••

••

9

(insertion} than the operational sequence to permit rendezvous onerevolution earlier, which conserves the APS power supply. A similarsequence is planned as part of the nominal PDI abort procedure forboth the F and G missions; therefore, no new crew training or uniqueprocedures are introduced here. For alternate 2, the maneuver summaryis shown in table IV, the relative motion in figure 2, the MSFNcoverage and the daylight/darkness history in figure 9.

6.4 Alternate 3, Modified Football

In all rendezvous plans, the sequence is begun with a separationmaneuver. The maneuver is a small radial maneuver that places the CSMand LM in equiperiod orbits to enable the vehicles to arrive at thesame position one orbit later. The relative motion caused by themaneuver is termed minifootball. A 2.5-fps radially-down maneuverperformed by the eSM will place the eSM approximately 1.9 n. mi. aheadof the 1M at DOI. The DOI maneuver normally is performed 180° afterthe separation maneuver or halfway through the minifootb~ll. Likewise,a 2.5-fps radially-up maneuver will place the CSM approximately 1.9 n. mi.behind the .LM at DOI. If no other type of rendezvous is possible becauseof unusable DPS and APS engines or for some other reason, a modifiedfootball could be performed to check out the rendezvous radar and theVHF ranging. If the radial separation is 80 fps instead of 2.5 fps,the maximum range obtained is approximately 61 n. mi. .Close approachwould occur one orbit later if no maneuvers were performed. A nearnominal terminal phase can be accomplished by performing TPI on anelevation angle of 26.6° and at the midpoint of darkness but with a~h at TPI of approximately 14.6 n. mi. instead of the nominal 15.0 n. mi.Performance of the standard 1300 transfer from TPI rendezvous lengthensthe transfer time by approximately 15 minutes but lessens the ~V re­quired. An 80-fps radial maneuver was chosen so that the maximum rangepossible would be obtained without violation of the 1M ReS impingementlimit on the APS (55-sec burn duration). The 80-fps separation ma­neuver is 51.9 seconds in duration. Descent staging occurs 15 minutesprior to the 80-fps separation maneuver. The recommended sequence isas follows.

1. Perform 2-fps retrograde maneuver (eSM +X jets).

2. Stage.

3. Perform 2-fps posigrade maneuver (eSM -X jets).

Performance of this sequence will place the'descent stage below and infront of the eSM as shown by the relative motion in figure 6.

10

Because the separation maneuver will place the ascent stage ahead andabove the CSM, no recontact problems exist. The relative motion isshown in figure 4; the maneuver summary, in table V; MSFN tracking anddaylight/darkness history, in figure 10.

7.0 CONCLUSION

The data and procedures presented in this document represent theoperational lunar orbital alternate rendezvous plans for Apollo 10(Mission F). The purpose of the document was to propose alternatesthat are feasible from a trajectory standpoint. The RTCC and RTACFprocedures and processors will be used to compute the maneuvers inreal time, and real-time maneuver targeting rather than preflightgenerated data will be relied upon for the alternate missions. Theprocedures and' data do not vary significantly within the launch windowwith the exception of the g.e.t. of the maneuvers and the MSFN coverage.The plans were generated based on a launch date of May 17,1969, and a

lift-off time of l6h

33m

49.37ls G.m.t.; however, the plans are basicallyapplicable to any launch date and time. These plans were designed tosatisfy certain test objectives. A summary of test objectives relatedto the nominal rendezvous are presented in table VI, along with theauthor's estimated accomplishment of each test objective during eachalternate rendezvous.

••

••

••

•TA

BLE

I.~

MAN

EUVE

RSU

MM

ARY

FOR

OPE

RATI

ON

AL

APO

LLO

10(M

ISSI

ON

F)

REN

DEZ

VO

US

••

Tim

esi

nce

Ull

age

Th

rust

Resu

ltan

to

rbit

C,

Tim

e,p

rev

iou

sf::

,V,

man

euve

rM

ain

eng

ine

dir

ecti

on

bP

rop

uls

ion

h/h

,M

aneu

ver

day

:hr:

min

:sec

,fp

sf::

,ta,

f::,t,

,sy

stem

ap

g.e

.t.

man

euv

er,

sec

deg

mi.

min

:sec

n.

sec

Min

ifo

otb

all

4:0

2:5

5:4

0.0

--2

.5--

7.2

27

0.0

-xRC

S6

1.2

/57

.8(C

SM)

(fo

ur-

jet)

DO

l4

:03

:54

:12

.058

:32

.07

2.8

8.0

15

.0(1

0%)

18

0.0

DPS

58

.2/8

.21

1.5

(40%

)

Ph

asin

g4

:05

:06

:35

.07

2:2

3.0

19

3.5

8.0

26

.0(1

0%)

26

.0D

PS1

94

.4/9

.81

5.0

(F.T

.P.

)

Des

cen

t4

:06

:53

:29

.01

06

:54

.0--

----

----

--

stag

ing

In

serti

on

4:0

7:0

3:2

9.0

10

:00

.02

13

.34

.01

4.4

15

2.6

AP

S4

3.6

/9.8

CSI

4:0

7:5

4:4

0.0

51

:11

.05

0.5

--3

2.1

0.0

+xRC

S4

5.9

/43

.1(f

ou

r-je

t)

CDR

4:0

8:5

2:4

1.0

58

:01

.05

.8--

3.7

27

0.0

-xRC

S4

6.2

/42

.8(f

ou

r-je

t)

TPI

4:0

9:2

9:1

6.0

36

:35

.02

4.9

--1

5.8

27

.1+X

RCS

62

.3/4

3.0

(fo

ur-

jet)

TPF

4:1

0:1

1:4

1.0

42

:25

.031

.5--

39

.83

05

.3-Z

RCS

61

.2/5

7.8

(tw

o-j

et)

aln

clu

des

0.5

-sec

on

du

llag

eo

ver

lap

.

bMea

sure

dco

un

terc

lock

wis

efr

omd

irecti

on

of

mo

tio

n.

cMea

sure

dab

ove

lan

din

gsit

era

diu

s(0

.8n

.m

i.be

low

mea

nra

diu

s).

TABL

EII

.-M

ANEU

VER

SUM

MAR

YFO

RA

LTER

NA

TEla

,D

PSU

NST

AG

ED

Tim

esi

nce

Ull

age

Th

rust

Resu

ltan

to

rbit

C,

Tim

e,p

rev

iou

s6V

,m

aneu

ver

Mai

nen

gin

ed

irecti

on

bP

rop

uls

ion

h/h

Man

euve

rd

ay

:hr:

min

:sec,

fps

nta

,6

t,,

syst

ema

p'

g.e

.t.

man

euv

er,

sec

deg

mi.

min

:sec

n.

sec

Min

ifo

otb

all

4:0

2:5

5:4

0.6

--2

.5--

7.1

27

0.0

-xRC

S6

1.2

/57

.8(C

SM)

(fo

ur-

jet)

DO

l4

:03

:54

:11

.658

:31

.07

2.7

8.0

15

.0(1

0%)

18

0.0

DPS

58

.2/8

.21

2.5

(40%

)

Ph

asin

g4

:05

:06

:34

.47

2:2

2.8

19

3.5

8.0

26

.0(1

0%)

26

.0D

PS1

94

.7/9

.61

5.9

(F.T

.P.)

Inse

rtio

n4

:07

:03

:02

.31

16

:27

.92

13

.28

.01

5.0

(10%

)1

51

.1D

PS4

3.6

/9.9

42

.9(4

0%)

CSI

4:0

7:5

5:2

1.2

52

:18

.95

0.3

8.0

42

.3(1

0%)

0.0

DPS

43

.8/4

3.6

CDH

d4

:08

:53

:22

.35

8:0

1.1

6.1

8.0

3.7

(10%

)2

70

.0D

PS4

6.2

/42

.8

TP

I4

:09

:29

:15

.63

5:5

3.3

24

.88

.01

6.8

(10%

)2

7.1

DPS

62

.3/4

2.9

TPF

(CSM

)4

:10

:11

:26

.64

2:1

1.0

31

.6--

90

.01

26

.3+X

RCS

62

.3/4

2.9

(fo

ur-

jet)

Cir

cu

lar-

4:1

2:2

3:0

3.1

13

1:3

6.5

26

.12

0.0

2.2

0.0

SPS

62

.3/6

2.2

izati

on

(CSM

)

aln

clu

des

0.5

-sec

on

du

llag

eo

verl

ap

.

bMea

sure

dco

un

terc

lock

wis

efr

omd

irecti

on

of

mo

tio

n.

cA

ltit

ud

em

easu

red

abov

ela

nd

ing

sit

era

diu

s(0

.8n

.m

i.b

elo

wm

ean

rad

ius)

.

dlf

6V<

4.0

sec,

the

bu

rnw

ill

be

done

wit

h-X

fou

r-je

tR

CS.

••

••

••

•TA

BLE

nI.

-M

ANEU

VER

SUM

MAR

YFO

RA

LTER

NA

TE1

b,

APS

INO

PER

ATI

VE

••

Tim

esi

nce

Ull

age

Th

rust

Resu

ltan

to

rbit

C,

Tim

e,p

rev

iou

sf::

,V,

man

euve

rM

ain

eng

ine

dir

ecti

on

bP

rop

uls

ion

h/h

,M

aneu

ver

day

:hr

:min

:sec,

man

euv

er,

fps

f::,ta

,f::

,t,se

c,

syst

ema

pg

.e.t

.de

gn

.m

i.m

in:s

ecse

c

Min

ifo

otb

all

4:0

2:5

5:4

0.6

--

2.5

--

7.1

27

0.0

-xRC

S6

1.2

/57

.8(C

SM)

(fo

ur-

jet)

DO

l4

:03

:54

:11

.65

8:3

1.0

72

.78

.01

5.0

(10%

)1

80

.0D

PS5

8.2

/8.2

12

.5(4

0%)

Ph

asin

g4

:05

:06

:34

.47

2:2

2.8

19

3.5

8.0

26

.0(1

0%)

26

.0D

PS1

94

.7/9

.61

5.9

(F.T

.P.)

Inse

rtio

n4

:07

:03

:02

.31

16

:27

.92

13

.28

.01

5.0

(10%

)1

51

.1D

PS4

3.6

/9.9

42

.9(4

0%)

CSI

4:0

7:5

5:2

1.2

52

:18

.95

0.3

8.0

21

.8(1

0%)

0.0

DPS

45

.8/4

3.6

CDH

d4

:08

:53

:22

.35

8:0

1.1

6.1

8.0

3.7

(lO

%)

27

0.0

DPS

46

.2/4

2.8

Des

cen

t4

:09

:08

:22

.3l5

:00

.0--

----

----

--st

ag

ing

e

TP

I4

:09

:29

:l8

.02

0:5

5.7

24

.8--

l6.1

27

.l+X

RC

S6

2.3

/43

.0(f

ou

r-je

t)

TPF

4:1

0:1

1:4

3.4

42

:25

.43

1.6

--4

1.0

30

5.3

-zRC

S6

1.2

/57

.8(t

wo

-jet)

aln

clu

des

0.5

-sec

on

du

llag

eo

verl

ap

.

bMea

sure

dco

un

terc

lock

wis

efr

omd

irecti

on

of

mo

tio

n.

CA

ltit

ud

em

easu

red

abov

ela

nd

ing

sit

era

diu

s(0

.8n

.m

i.b

elo

wm

ean

rad

ius)

.

dIf

f::,V

<4

.0fp

s,th

eb

urn

wil

lb

edo

new

ith

+Xfo

ur-

jet

RC

S.

eSee

secti

on

6.2

for

stag

ing

pro

ced

ure

s.

TAB

LEIV

.-M

AN

ElN

ERSU

MM

ARY

FOR

ALT

ERN

ATE

REN

DEZ

VO

US

2,

APS

ONLY

Tim

esi

nce

Ull

age

Th

rust

Resu

ltan

to

rbit

C,

Tim

e,p

rev

iou

s6V

,m

aneu

ver

Mai

nen

gin

e,

dir

ecti

on

bP

rop

uls

ion

h/h

,M

aneu

ver

day

:hr:

min

:sec,

6ta

,m

an

euv

er,

fps

6t,

sec

,sy

stem

ap

g.e

.t.

deg

n.

mi.

min

:sec

sec

Min

ifo

otb

all

4:0

2:5

5:4

0.6

--

2.5

--

7.1

270.

0-x

RCS

61

.2/5

7.8

(CSM

)(f

ou

r-je

t)

Des

cen

td

4:0

3:3

9:2

8.7

43

:48

.1--

--

--

--

--

--

stag

ing

DO

l4

:03

:54

:28

.71

5:0

0.0

28

.24

.01

.91

80

.0A

PS5

8.2

/40

.0

Ph

asin

g4

:04

:53

:56

.05

9:2

7.3

57

.74

.04

.00

.0A

PS1

02

.2/4

0.0

CSI

4:0

5:5

4:2

4.2

60

:28

.27

.7--

5.0

0.0

+XR

CS

10

2.2

/45

.7(f

ou

r-je

t)

CDH

4:0

6:5

5:0

1.9

60

:37

.87

8.3

4.0

5.5

4.4

APS

46

.1/4

2.8

TP

I4

:07

:30

:10

.93

5:0

9.0

24

.9--

15

.92

7.2

+XR

CS

62

.2/4

2.9

(fo

ur-

jet)

TPF

4:0

8:1

2.3

6.4

42

:25

.53

1.8

--

40.5

305.

3-Z

RC

S6

1.2

/57

.8(t

wo

-jet)

aln

clu

des

0.5

seco

nd

ull

ag

eo

verl

ap

.

bM

easu

red

cou

nte

rclo

ckw

ise

from

dir

ecti

on

of

mo

tio

n.

CA

ltit

ud

esm

easu

red

abov

ela

nd

ing

sit

era

diu

s(0

.8n

.m

i.b

elo

wm

ean

rad

ius)

.

dS

eese

cti

on

6.3

for

stag

ing

pro

ced

ure

s.

••

••

••

••

TABL

EV

.-M

AN

EtN

ERSU

MM

ARY

FOR

ALT

ERN

ATE

REN

DEZ

VO

US

3,

MO

DIF

IED

FOO

TBA

LL

Tim

e,T

ime

sin

ce

Ull

age

Th

rust

Resu

ltan

to

rbit

b,

pre

vio

us

6V,

man

euve

ra

Pro

pu

lsio

nh

/h,

Man

euve

rd

ay

:hr:

min

:sec,

fps

6t,

dir

ecti

on

,sy

stem

ap

g.e

.t.

ma

neu

ver

,d

egn

.m

i.m

in:s

ecse

c

Des

cen

t4

:03

:44

:03

.7--

--

--

--

--

--

stag

ing

c

Sep

arat

ion

4:0

3:5

9:0

3.7

15

:00

.08

0.0

51.9

88

.7+X

Res

75

.6/4

3.9

(fo

ur-

jet)

TP

I4

:05

:31

:18

.392

:14.

61

8.5

11

.917

5.2

+XRC

S6

1.8

/43

.9(f

ou

r-je

t)

TPF

4:0

6:1

3:4

4.3

42

:26

.030

.839

.630

5.1

-ZRC

S6

0.9

/58

.1(t

wo

-jet)

~easured

cou

nte

rclo

ckw

ise

from

dir

ecti

on

of

mo

tio

n.

bA

ltit

ud

es

mea

sure

dab

ove

lan

din

gsit

era

diu

s(0

.8n

.m

i.b

elo

wm

ean

rad

ius)

.

c See

secti

on

6.4

for

stag

ing

pro

ced

ure

s.

f-J VI

TABL

EV

I.-

TEST

OB

JEC

TIV

ESU

MM

ARY

Est

imat

edp

erc

en

tac

com

pli

shed

Deta

iled

test

ob

jecti

ve

Mo

dif

ied

DPS

APS

foo

tball

lalb

23

l.L

M-a

ctiv

ere

nd

ezv

ou

s70

9555

20

2.

PGN

CSu

nd

ock

edp

erfo

rman

ce1

00

10

0--

--

3.

LM/C

SM/M

SFN

VO

ICE/

TM1

00

10

01

00

10

0

4.

Lu

nar

orb

itv

isib

ilit

y1

00

10

040

40

5.

Ren

dezv

ous

rad

ar

per

form

ance

10

01

00

251

5

6.L

and

ing

rad

ar

test

10

01

00

----

7.

1Msu

perc

riti

cal

hel

ium

10

01

00

----

8.

AG

S/C

ESatt

itu

de/t

ran

sla

tio

nco

ntr

ol

75

10

01

00

10

0

9.

1M/A

GS

ren

dez

vo

us

ev

alu

ati

on

10

01

00

9520

10

.PG

NC

S/A

GS

mo

nit

ori

ng

10

01

00

8530

ll.

VH

Fra

ng

ing

10

01

00

10

01

00

12

.G

roun

dsu

pp

ort

lun

ar

dis

tan

ce

10

01

00

10

01

00

13

.1M

IMU

per

form

ance

10

01

00

10

01

00

14

.A

GS

per

form

ance

10

01

00

5050

••

••

•.\

••

••

•...

......

uDar

knes

s

t--~

r-- r

--- !'...

. ..........

.

"'\ 1\ t

I--'

----:]

II1/

CSI1

J""

("'1

,V

~I"I

I.....

. ...-I-

'"

"'-

I'-In

sert

ion

_f..---Ii J

DOl

1.6

2.0

•••

.. ::

",,'1

",'"

.... .... ....

- _0E

:,.._

_,-..~I.l1JU.U

••u.t

,......

c·4

1--'...

.

-N~

MilifO

O~ball

-.

o.4

.81.

2-

X,n.

mi.

I--P

hasi

ngm

aneu

ver

"'"_

/TP

I......I

I"CD

H/'

f---t--+--f-O"!b"".t;o-+--+-t---+---+-+--+--:::;;j,...-""~=+-----l~-+--+--+--+-+

;.,...

...,-"

--1-

+--

-1--

+--

-1--

--

200

160

120

'E C80

"E Q.) E

40Q

.) u '"Q

.)

"i5.

> 0V

>.c

:c«

'"0

u t;;: 0

Q.)

Q.)

>co

40 80 120

360

320

280

240

200

160

120

8080

120

160

200

240

140

'----'-

---'-

---J'-

---'-

---'-

---'_

-'-

-..

....

L..

---l.

_-'-

---'-

----'-

_'-

----L

---'-

_'-

--'-

---'-

---'_

-'-

-..

....

L..

---l.

_-'-

---'-

---'-

_'-

---'-

------'-

_'-

--'-

---..

....

L..

--1

280

Hor

izon

tald

ispl

acem

ent.

n.m

i.

Figu

re1.

-R

elat

ive

mot

ion

nom

inal

rend

ezvo

usan

dal

tern

ates

laan

dlb

.

'")\--

'O

J

/.-

"

"......

CDH

2.0

\/0

01

1.6

TP

F""

",,/

f-D0

1

.81.

2X,

n.m

i.o

.4

N-

o60I--

I40

,,+.~"

~"~"~~

~I"~"~

"~'t'~

"~"~"+

'=~~~;

=F=:::

:::::t

--~:::

::::-+

--~-J-

-~----

t--L-l

-l-J

1--+

--+

---t-

-I---+

.-••-.

.-••....j

. iPb..·

..·-

~CS

I.....

.••--~

f--+

--+

--+

-:o

>.'·

...···i-

-r--

i-t-

-t--

t---

-lr-

--l'-

----

t--+

--4-

-+--

+I -~---+!---...-:::

:::"

,.J-

--+-

-+--

-+--

-!--

-L-J

"~I

20i-1

-7i"c-

"-"-"'

t-t-i-

ir--t-

-t--t-

---Jf-

--t--t

--+---

-J--+-

-+--I-

----l"

'--=:~

~+---l

-----1

--L-J

" ..' ..' l :

I--

0E...

......

.Dar

knes

s

80I--

C.4

I---

+-~.

~"...

ttI

....

....

...

....

....

....

...

".~-

'....~-----j--t---t---+----1--t--+--+--i--t----1---J---I-----I

,I"~

••.••

,••.""

..........

~#,.,.

, '.

°E c .... c w E w u co Ci.

V1 :c

w >c;

;0 .c

:e w >

4011

1-t-

--t-

t-t-

+-+

----

-f-+

-++

-+-f

-+-+

---I

---J

--+

----

1---

-l--

--L

-J--

---J 14

012

010

080

60~...L--~----L-~~L..---;;---.L~---..l-~--l----!.:---l~~~--L---.L--l-LL---L--l-----l--.-J

100

8060

4020

Ahea

d0

Beh

ind

2040

60

Hor

izon

tald

ispl

acem

ent

n.m

i.

Figu

re2.

-R

elat

ive

mot

ion

alte

rnat

e2,

APS

only

.

••

••

••

••

•3

0

20

E s::: ..1

0..... s::: .Q

) E Q)

Q)

u>

lI:l

00

....

0

VI

<X:

-0 lI:

l0

u t Q)

s:>

0 Q)

OJ 1

0

...U

IIU

Dar

knes

s

..--- -

r---

~r---

......

./

~V

........

~/

Via

dia

,se

para

tion

, ,I

,I

TP

Fj

~;

/~'

"....~

~"'-

......~

~

'-.""

lrTP

1~'

~,.....

''''',...

......

...,

IIIII

••·.....1

••••

••••

11••

··'~"""

20 1

0A

head

oB

ehin

d1

02

03

040

50

60

70

Hor

izon

tal

disp

lace

men

t,n

.m

i.

Fig

ure

3.-

Rel

ativ

em

otio

nal

tern

ate

3,

mod

ified

foo

tba

ll.

1

E

..T

ime

tick

sev

ery

20

min

with

resp

ect

tode

scen

tst

agin

g

..D

esce

ntst

agin

gJ

1~

\.

~~

V/

...""

'--~

I--"

-----~

-

2 o13 2

Q) >

~0

~.0

a:;<

!E Q

)

U I1l

a. '" -0

:;; oI1

lQ

)U

OJ

~ W >

76

54

32

1A

head

oB

ehin

d1

Hor

izon

tal

disp

'lace

men

t,n

.m

i.

Fig

ure

4.-

Rel

ativ

em

otio

no

fde

scen

tst

age

with

resp

ect

toth

eas

cent

stag

efo

ral

tern

ate

lb.

••

••

••

••

• f\)

I-'

•T

ime

tick

sev

ery

20

min

wit

hre

spec

tto

des

cen

tst

agin

g,

y19

'

.-

----r-

--~

Des

cent

sta

gin

g7y~

~.....

......

/"- r«

v.

I

'-M

inif

oo

tball

23

s:::E

:;: o QJ co

4

, =QJ E ~1

a.

III

-Q

J-0

>-

0~

..0

~eu

Q; >

20

Beh

ind

12

34

56

78

Hor

izon

tal

disp

lace

men

t,n

.m

i.

Fig

ure

5.-

Rel

ativ

em

otio

nof

des

cen

tst

age

wit

hre

spec

tto

CSM

for

alte

rnat

e2

.

o 23

I•

Tim

eti

cks

ever

y2

0m

inw

ith

2re

spec

tto

desc

ent

stag

ing

1

~ JD

esce

ntst

agin

gJ

12~

~V

-'"

~I-

-.~

~

r-- t

--

--1.-

--•

1

E

76

54

32

1A

head

0B

ehin

d1

Hor

izon

tal

disp

lace

men

t,n

.m

i.

Fig

ure

6.-

Rel

ativ

em

otio

no

fde

scen

tst

age

with

resp

ect

toth

eC

SM

for

alte

rnat

e3

.

••

••

••

Min

ifoot

ball

•00

1

••

Hr

AC

NC

YI

M"n

MIL

ANG

BO

A

TEX

GY

MG

DS

DA

YLI

GH

TD

AR

KN

ES

SD

AY

liGH

T

98:0

098

:10

98:2

098

:30

98:4

098

:50

99:0

099

:10

99:2

099

:30

99:4

099

:50

100:

0010

0:10

100:

2010

0:30

Pha

sing

Gro

und

elap

sed

time,

hr:m

in

AC

N

CY

IC

YI

MA

DA

NG

ANG

MA

D

BOA

BOA

MIL

TEX

TEX

M

GYM

GY

M

GD

SG

DS

HAW

-H

AW

DA

YliG

HT

DA

RK

NE

SS

DA

YLI

GH

T

l\)

\.)j

100:

3010

0:40

100:

5010

1:00

101:

1010

1:20

101:

3010

1:40

101:

5010

2:00

102:

1010

2:20

102:

3010

2:40

102:

5010

3:00

Gro

und

elap

sed

time,

hr:m

in

(a)

98:0

0to

103:

00.

Figu

re7.

-M

SFN

cove

rage

and

dayl

ight

/dar

knes

ssu

mm

ary

for

alte

rnat

ela

,D

PSun

stag

ed.

TPI

CSI

COH

CY

I

IAN

GI

ANG

MAD

BOA

BOA

:TE

X

TEX

GY

M

MIL

GD

S

GYM

MIL

GO

SI

HAW

IH

AW

OARKNES~

GW

M

DA

YLI

GH

TD

AY

LIG

HT

DA

RK

NE

SS

_

Inse

rtio

n

103:

0010

3:10

103:

2010

3:30

103:

4010

3:50

104:

0010

4:10

104:

2010

4:30

104:

4010

4:50

105:

0010

5:10

105:

2010

5:30

Gro

und

elap

sed

tim

e,hr

:min

I\)

+""

.--

eRO

.•

TPF

-,

ANG

ANG

TEX

IB

DA

BD

A

TEX

GYM

GY

MG

DS

GD

SM

IL

MIL

HAW

HAW

HSK

GW

MG

WM

DA

RK

NE

S_

DA

YLI

GH

TD

AR

KN

ES

SD

AY

LIG

HT

105:

3010

5:40

105:

5010

6:00

106:

1010

6:20

106:

3010

6:40

106:

5010

7:00

107:

1010

7:20

107:

3010

7:40

107:5

010

8:00

Gro

und

elap

sed

time,

hr:m

in

ltl}10

3:00

to10

6:20

.

Figu

re7.

-C

ontin

ued.

••

••

••

Cir

cula

riza

tio

n

••

TEX

1GY

MGD

SHA

WHS

KGW

MCR

ODA

YLIG

HTDA

RKNE

SSI\

)V

l

108:

0010

8:10

108:

2010

8:30

108:

4010

8:50

109:

0010

9:10

109:

2010

9:30

109:

40

Gro

und

elap

sed

time,

hr:m

in

(c)

108:

00to

109:

40.

Figu

re7.

-C

oncl

uded

.

Min

ifo

otb

all

001

HaW

ACN

CYI

MAD

MIL

ANG

BOA

TEX

GYM

GDS

DAYL

IGHT

DARK

NESS

DAYL

IGHT

II

II

II

II

II

II

II

III

II

II

II

II

II

II

II

II

II

JI

JI

JJ

II

II

JI

II

JJ

JJ

II

II

JI

JI

IIII

II

II

II

II

I98

:00

98:1

098

:20

98:3

098

:40

98:5

099

:00

99:1

099

:20

99:3

099

:40

99:5

010

0:00

100:

1010

0:20

100:

30

Gro

und

elap

sed

time,

hr:m

in

Pha

sing

I\)

0'\

AN

CYI

CYI

MAD

ANG

ANG

MAD

BOA

BOA

MIL

EXEX

Mil

GYM

MGD

SGD

SHA

WHA

W

100:

3010

0:40

100:

5010

1:00

101:

1010

1:20

101:

3010

1:40

101:

5010

2:00

102:

1010

2:20

102:

3010

2:40

102:

5010

3:00

Gro

und

elap

sed

time,

hr:m

in

(a)98

:00

to10

3:00

.

Figu

re8.

-M

SFN

cove

rage

and

dayl

ight

ldar

knes

ssu

mm

ary

for

alte

rnat

eIb

,A

PSin

qler

ativ

e.

••

••

••

••

•C

SI

Inse

rtio

nC

DH

Des

cen

tst

agin

gTP

I

CY

I

ANG

ANG

"AB

DA

BD

ATE

X

TEX

GYM

MIL

GD

SG

YMM

ILG

DS

HA

WH

AWG

WM

_D

AY

LIG

HT

DA

RK

NE

SS

DA

YLI

GH

TD

AR

KN

ES

SI

II

II

II

III~I

II

II

II

II

II

II

II

IIIlfflll

IIT

IT

II

II

II

II

II

II

II

II

II

II

II

II

II

103:

0010

3:10

103:

2010

3:30

103:

4010

3:50

104:

0010

4:10

104:

2010

4:30

104:

4010

4:50

105:

0010

5:10

105:

2010

5:30

Gro

und

elap

sed

time,

hr:m

in

TPF

ANG

BD

A

TEX

GYM

GD

S

MIL

HAW

GW

M

105:

3010

5:40

105:

5010

6:00

106:

1010

6:20

Gro

und

elap

sed

time,

hr:m

in

(bl

103:

00to

108:

oo.

Figu

re8.

-C

oncl

uded

.

Min

ifco

tbal

lD

esce

ntst

agin

gDO

l

IHA

WAC

NCY

IM

ADM

ILAN

GBD

ATE

XGY

MGD

SDA

YLIG

HTDA

RKNE

SSDA

YLIG

HT

98:0

098

:10

98:2

098

:30

98:4

098

:50

99:0

099

:10

99:2

099

:30

99:4

099

:50

100:

0010

0:10

100:

2010

0:30

Pha

sing

Gro

und

elap

sed

time,

hr:m

in

CSI

CDH

ACN

CYI

CYI

MAD

ANG

MIL

MAD

ANG

BOA

BDA

TEX

TEX

MIL

GYM

GYM

GDS

GDS

HAW

HAW

DAYL

IGHT

DARK

NESS

DAYL

IGHT

.f\

)C

P

100:

3010

0:40

100:

5010

1:00

10U

O10

1:20

101:

3010

1:40

101:

5010

2:00

102:

1010

2:20

102:

3010

2:40

102:

5010

3:00

TPI

Gro

und

elap

sed

time,

hr:m

in

TPF

CYI

1AN

G-.

"An

1BD

ATE

XM

ILGY

Mf:D

C;HA

WDARKNES~

DAYL

IGHT

103:

0010

3:10

103:

2010

3:30

103:

4010

3:50

104:

0010

4:10

104:

20

••G

roun

del

apse

dtim

e,hr

:min

Figu

re9.

-M

SFN

cove

rage

and

dayl

ight

/dar

knes

ssu

mm

ary

for

alte

rnat

ere

ndez

vous

2,AP

Son

ly.

••

••

•D

esce

nt

stag

ing

Sep

arat

ion

••

nHA

WAC

NCY

IM

ADM

ILAN

GBO

ATE

XGY

MGD

SDA

YLIG

HTDA

RKNE

SDA

YLIG

HTI

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

ITT

TT

TT

II

II

III

II

II

II

II

II

II

II

98:0

098

:10

98:2

098

:30

98:4

098

:50

99:0

099

:10

99:2

099

:30

99:4

099

:50

100:

0010

0:10

100:

2010

0:30

Gro

und

elap

sed

time,

hr:m

in

TI

TPF

ACN

CYI

MAD

MIL

ANG

BDA

TEX

GYM

GDS

HAW

DAYL

IGHT

DARK

NESS

DAYL

IGHT

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

I\)

\0

100:

3010

0:40

100:

5010

1:00

101:

1010

1:20

101:

3010

1:40

101:

5010

2:00

102:

1010

2:20

Gro

und

elap

sed

time,

hr:m

in

Figu

re10

.-M

SFN

cove

rage

and

dayl

ight

/dar

knes

ssu

mm

ary

for

alte

rnat

ere

ndez

vous

3,m

odifi

edfo

otba

ll.

30

REFERENCES

1. Moore, R. H.; and Miller, S. L.: Preliminary Alternate MissionPlan for Apollo Mission F, Volume III - Lunar AlternateRendezvous. MSC IN 69-FM-38, March 4, 1969.

2. TRW: Mission Requirements SA-505/CSM-106/LM-4 F Type MissionLunar Orbit. SPS9-R-037, February 11,1969.

3. Grumman Aircraft Engineering Corporation: Apollo OperationsHandbook, Lunar Module 4, Volume I - Subsystems Data.NAS-9-1100, June 15, 1968.

4. OMAB; LMAB; and LAB: Spacecraft Operational Trajectory for ApolloMission F, Volume II - Operational Mission Profile TrajectoryParameters Launched May 17, 1969. MSC IN 69-~1-66, March 10,1969.

5. CSM/LM Operational Data Book, Volume I - CSM Data Book.SNA-8-D-027, May 1968.

6. CSM/LM Spacecraft Operational Data Book, Volume II - LM Data Book.SNA-8-D-027, May 1968.

7. CSM/LM Spacecraft Operational Data Book, Volume III - MassProperties. SNA-8-D-027, March 1968.

8. Peterson, D. G.: Monthly Propellant Status Report for MainPropulsion SUbsystems (SPS, DPS, APS). MSC memo 69-FM74-90,February 26, 1969.

9. Flight Control Division: Flight Control Network SupportRequirements, Missions F and G, Ref. A. FC031, January 15,1969.

10. Goddard Space Flight Center: Goddard Directory of TrackingStation Locations.· July 1, 1964.

••

••