293
1 1. INTRODUCTION The population explosion and advent of industrial revolution led to the exodus of  people from villages to urban areas. This urbanisat ion led to a new problem   less space for housing, work and more people. Because of the demand of the land, the land costs got skyrocketed. So, under the changed circumstances, the vertical growth of buildings i.e. constructions of multi-storeyed buildings has become inevitable both for residential and as well as office purposes. For multi-storeyed buildings, the conventional load bearing structures become uneconomical as they require larger sections to resist huge moments and loads. But in a framed structure, the building frame consists of a network of beams and columns which are  built monolithicall y and rigidly with each other at their joints. Because of this rigidity at the  joints, there will be reducti on in moments and also the str ucture tends to distribute t he loads more uniformly and eliminate the excessive effects of localised loads. Therefore in non-load  bearing framed structures, the moments and forces become less which in turn reduces the sections of the members. As the walls dont take any load, they are also of thinner dimensions. So, the lighter structural components and walls reduce the self weight of the whole structure which necessitates a cheaper foundation. Also, the lighter walls which can easily be shifted about provide flexibility in space utilisation. In addition to the above mentioned advantages the framed structure is more effective in resisting wind loads and earth quake loads. Work done in this project: A plot of 369.75 m 2 has been selected for the construction of a multi-storeyed office  building. In the office building the functions will be different and it plays a major role  because of dif ferent loads acts on different slabs. The frame analysis requires the dimensions of the members. For the analysis, 6 substitute frames taken in transverse direction and in longitudinal direction the net moment acting is zero because of the same span and assumed as a simply supported. For the maximum mid span moment obtained from the analysis, a T-  beam has been designed and for the support moment „doubly reinforcedsection has been  provided. Stair case has also been designed. Isolated rectangular sloped footings have been designed to transfer the load to the ground strata. Analysis of structure:

9. Final Project Report

Embed Size (px)

Citation preview

Page 1: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 1/293

1

1.  INTRODUCTION

The population explosion and advent of industrial revolution led to the exodus of 

 people from villages to urban areas. This urbanisation led to a new problem  – less space for 

housing, work and more people. Because of the demand of the land, the land costs got

skyrocketed. So, under the changed circumstances, the vertical growth of buildings i.e.

constructions of multi-storeyed buildings has become inevitable both for residential and as

well as office purposes.

For multi-storeyed buildings, the conventional load bearing structures become

uneconomical as they require larger sections to resist huge moments and loads. But in a

framed structure, the building frame consists of a network of beams and columns which are

 built monolithically and rigidly with each other at their joints. Because of this rigidity at the

 joints, there will be reduction in moments and also the structure tends to distribute the loads

more uniformly and eliminate the excessive effects of localised loads. Therefore in non-load

 bearing framed structures, the moments and forces become less which in turn reduces the

sections of the members. As the walls don‟t take any load, they are also of thinner 

dimensions. So, the lighter structural components and walls reduce the self weight of the

whole structure which necessitates a cheaper foundation. Also, the lighter walls which can

easily be shifted about provide flexibility in space utilisation. In addition to the above

mentioned advantages the framed structure is more effective in resisting wind loads and earth

quake loads.

Work done in this project:

A plot of 369.75 m2 has been selected for the construction of a multi-storeyed office

 building. In the office building the functions will be different and it plays a major role

 because of different loads acts on different slabs. The frame analysis requires the dimensions

of the members. For the analysis, 6 substitute frames taken in transverse direction and in

longitudinal direction the net moment acting is zero because of the same span and assumed as

a simply supported. For the maximum mid span moment obtained from the analysis, a T-

 beam has been designed and for the support moment „doubly reinforced‟ section has been

 provided. Stair case has also been designed. Isolated rectangular sloped footings have been

designed to transfer the load to the ground strata.

Analysis of structure:

Page 2: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 2/293

2

Kani‟s method and substitute frame method is generally used to analyse a multi -

storeyed frame. The substitute frame method requires less computations and easier to carry

out the analysis. Therefore, here substitute frame method has been employed to carry out the

frame analysis and method is discussed in the following paragraphs.

Theoretically, a load applied at any point of the structure cause reactions at all

sections of the frame, but a close study of this aspect has shown that the moments in any

 beam or column are mainly due to the loads on spans very close to it. The effect of loads on

distant panels is small. To facilitate the determination of moments in any member of a frame,

it is usual to analyse only a small portion of the frame consisting of adjacent members only.

Such a small portions are termed „SUBSTITUTE FRAMES‟. Their form and the end

conditions of their members are so adopted that the reaction in question works out to be the

greatest.

The reactions worked out with the help of substitute frame may sometimes appear to

 be lower by about 10% compared with the value obtained from exact analysis. But it may be

mentioned that for analysis all the panels are located at the same time. Such a combination of 

loading is highly improbable in practice. Thus the substitute frames give results are safe for 

all practical purposes.

Design concept:

There are three design philosophies to design a reinforced concrete structures. They

are:

1.  Working stress method,

2.  Ultimate load method and

3.  Limit state method.

In the „working stress‟ method it is seen that the permissible stresses for concrete and

steel are not exceeded anywhere in the structure when it is subjected to the worst

combination of working loads. A linear variation stress form zero at the neutral axis to the

maximum stress at the extreme fibre is assumed.

Practically, the stress strain curve for concrete is not linear as it was assumed in

working stress method. So, in „ultimate load‟ design an idealised form of actual stress

Page 3: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 3/293

3

strain diagram is used and the working loads are increased by multiplying them with the

load factors.

The basis for „limit state‟ method is a structure with appropriate degrees of reliability 

should be able to withstand safely all loads that are liable to act on it throughout its life

and it should also satisfy the serviceability requirements such as limitations on deflection

and cracking.

Limit state method is the most rational method of the three methods. It considers the

actual behaviour of the materials at failure and also it takes serviceability also into

consideration. Therefore, limit state method has been employed in this work.

Page 4: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 4/293

4

2.  DESIGN OF SLABS

Typically we divided the slabs into two types:

i. 

Roof Slab andii.  Floor Slab

In case of roof slab the live load obtained is less compared to the floor slab. Therefore we

first design the roof slab and then floor slabs.

We have two types of supports. They are:

1.  Ultimate support and

2.  Penultimate support

Ultimate support is the end support and the penultimate supports are the intermediate

supports.

Ultimate support tends to have a bending moment of Wu x L

2

10  and the penultimate supports

haveWu x L

2

12 

Design of roof slab:

It is a continuous slab on the top of the building which is also known as terrace.

Generally terrace has less live load and it is empty in most of the time except some occasions

in case of any residential building. In case of office buildings it will be empty and live load

act is very less.

According to the end conditions and the dimensions, the slabs are divided into 4 types. They

are Roof S1, Roof S2, Roof S3 and Roof S4.

Slab Dimensions (M x M)

Roof S1 8.62 X 3.05

Roof S2 8.62 X 3.05

Roof S3 5.78 X 3.05

Roof S4 5.78 X 3.05

Page 5: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 5/293

5

We can observe the slab panels in the above figure and all the slabs are designed as one way

slab for the easy arrangement of the reinforcement and ease of work.

Roof S1 and Roof S2 are the slabs with same dimensions but different in end conditions.

Roof S3 and Roof S4 are also the slabs with the same conditions as mentioned above.

But the point to be noted is that all the Slabs have same shorter span and in design of one way

slab shorter span is of more importance. Therefore we design any two slabs with different end

conditions and the remaining two slabs also follow same design.

Design of Roof Slab S1:

Calculation of Depth (D) by using modification factor:

Assume the percentage of the tension reinforcement (P t) provided is 0.4%

From IS456-2000, P38 Fig4, we get the modification factor (α) = 1.4 

Required Depth (D) =

L

ra + d

1

 

Page 6: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 6/293

6

Where,L

r a=

Span

allowableL

dratio

 

d1 = Centre of the reinforcement to the end fibre (= 20mm for slab)

From IS456-2000, P39, Clause 24 & Clause 23.2 for continuous span we have

Span

Effective depth=

L

d= 26

r a = 26 x 1.4 = 36.4

Therefore, D =3.05 x 103

36.4

+ 20 = 103.79mm say 110 mm

Effective depth (d) = D – d1 = 110 – 20 = 90mm

Loads:

Dead loads (From IS875 – Part 1):

Terrace water proofing = 2.5 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 = 1101000

x 25

= 2.75 KN/m2 

Live loads (From IS875 – Part 2):

Roof = 1.5 KN/m2 

Total load (W) = 2.5 +2.75 + 1.5 = 6.75 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 6.75

=10.125 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

10=

10.125 x (3.05)2

10= 9.42 KN-m 

Page 7: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 7/293

7

Calculation of area of steel:

From IS456-2000, P96, Clause G-1.1 (b) we have

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d )

Or

Ast = 0.5 xf ck 

f y(1-(1-4.6

Mu

f ck x b x d)1/2

) b x d

9.42 x 106 = 0.87 x 415 x Ast x 90 x (1 -415 x Ast

20 x 1000 x 90)

Ast = 312.4 mm2 

Spacing of 8mm φ bars =ast x 1000

Ast=

π4

x 82 x1000

312.4= 160.9mm

Therefore, Provide 8mm φ @ 150mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 110 x 1000 = 132 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

132=380mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 8: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 8/293

8

Design of Roof slab S2:

Depth D = 110mm

Total load (W) = 6.75 KN/m2

Limit state load (Wu) = 1.5 x 6.75 = 10.125 KN/m2

Design moment: (for intermediate panel)

Mu =Wu x L2

12=

10.125 x (3.05)2

12= 7.85 KN-m 

Calculation of area of steel: 

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

7.85 x 106 = 0.87 x 415 x Ast x 90 x (1 -415 x Ast

20 x 1000 x 90)

Ast = 256.78 mm2 

Spacing of 8mm φ bars =π

4x 82 x

1000

256.78= 195.75mm

Therefore, Provide 8mm φ @ 190mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 110 x 1000 = 132 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

132=380mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 9: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 9/293

9

Design of Roof Slab S3 is same as Roof Slab S1.

Design of Roof Slab S4 is same as Roof Slab S2.

Area of steel at support next to end support:

From IS 456-2000, moment = Wu x L2

10 

Total Load acting on the support (Wu) = 10.125 KN/m

Therefore, Moment =10.125 x (3.05)2

10= 9.42 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

9.42 x 106 = 0.87 x 415 x Ast x 90 x (1 -415 x Ast

20 x 1000 x 90)

Ast = 312.4 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S1 =1

2x 312.4 = 160.7 mm2 

From Slab S2 =1

2x 256.78 = 128.39 mm2 

Total Ast (available) = 160.7 + 128.39 = 284.59 mm2 

Therefore, extra bars required for Ast = 312.4 – 284.59 = 27.81 mm2 

Page 10: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 10/293

10

Area of steel at any other interior support:

From IS 456-2000, moment =Wu x L2

12 

Total Load acting on the support (Wu) = 10.125 KN/m

Therefore, Moment =10.125 x (3.05)2

12= 7.85 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

7.85 x 106 = 0.87 x 415 x Ast x 90 x (1 -415 x Ast

20 x 1000 x 90)

Ast = 256.78 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S2 =1

2x 256.78 = 128.39 mm2 

From Slab S2 =1

2x 256.78 = 128.39 mm2 

Total Ast (available) = 128.39 + 128.39 = 284.59 mm2 

Therefore Ast (available) = Ast (required)

 No need of providing extra bars.

Page 11: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 11/293

11

Design of Floor Slab:

It is the slab in which live load is more when compared to the roof slab. In this projectthe slab is divided into 9 types according to the end condition and function of slab.

S1 - Toilet and WC‟s 

S2 - Office

S3 - Office sup dept.

S4 - Assembly hall

S5 (a), S5 (b) - Office chamber and waiting chamber 

S6 (a), S6 (b) - Office

S7 - Library

S8 - Secretary Room

S9 (a), S9 (b) - Officers chamber 

Page 12: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 12/293

12

Floor Slab Dimensions

S1 to S5 (b) 8.62 x 3.05

S6 (a) to S9 (b) 5.78 x 3.05

DESIGN OF FLOOR SLAB (S1):

Calculation of Depth (D) by using modification factor:

Assume the percentage of the tension reinforcement (P t) provided is 0.4%

From IS456-2000, P38 Fig4, we get the modification factor (α) = 1.4 

Required Depth (D) = Lra

+ d1 

Where,L

r a=

Span

allowableL

dratio

 

d1 = Centre of the reinforcement to the end fibre (= 20mm for slab)

From IS456-2000, P39, Clause 24 & Clause 23.2 for continuous span we have

Span

Effective depth=

L

d= 26

r a = 26 x 1.4 = 36.4

Therefore, D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Sanitary Blocks including filling = 2.5 KN/m2 

Page 13: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 13/293

13

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Sanitary blocks public = 3 KN/m2

Corridor = 5 KN/m2 

Maximum = 5 KN/m2 

For Partition Wall = 1.5 KN/m2 

Total load (W) = 1 + 2.5 +3 + 5 + 1.5 = 13 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 13

=19.5 KN/m2 

Design moment: (for end panel)

Mu =

Wu x L2

10 =

19.5 x (3.05)2

10 = 18.14 KN-m 

Calculation of area of steel:

From IS456-2000, P96, Clause G-1.1 (b) we have

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

Or

Ast = 0.5 xf ck 

f y(1-(1-4.6

Mu

f ck x b x d)1/2

) b x d

18.14 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 569.79 mm2 

Spacing of 10mm φ bars =a

stx 1000

Ast=

π4 x 102 x

1000

569.79 = 137.83mm

Page 14: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 14/293

14

Therefore, Provide 10mm φ @ 130mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

DESIGN OF FLOOR SLAB (S2):

D =3.05 x 103

36.4 + 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Office = 4 KN/m2 

Corridor = 5KN/m2 

Page 15: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 15/293

15

Therefore, Maximum load = 5 KN/m2 

For Partition wall = 1.5 KN/m2 

Total load (W) = 5 +3 + 1 + 1.5 = 10.5 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 10.5

=15.75 KN/m2 

Design moment:

Mu =Wu x L2

12=

15.75 x (3.05)2

12= 12.21 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

12.21 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 365.97 mm2 

Spacing of 10mm φ bars = π4

x 102 x1000

365.97= 214.61mm

Therefore, Provide 10mm φ @ 210mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

= 0.121000 x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 16: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 16/293

16

Area of steel at support next to end support (between S1 and S2):

From IS 456-2000, moment =Wu x L2

10 

Total Load acting on the support (Wu) =

13

2 +

15.75

2 = 14.375 KN/m

Therefore, Moment =14.375 x (3.05)2

10= 13.372 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

13.372 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 404.28 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S1 =1

2x 569.79 = 284.895 mm2 

From Slab S2 =1

2x 365.97 = 182.985 mm2 

Total Ast (available) = 284.895 + 182.985 = 467.88 mm2 

Therefore, extra bars required for Ast = 312.4 – 284.59 = 27.81 mm2 

DESIGN OF FLOOR SLAB (S3):

D = 3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Page 17: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 17/293

17

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2): 

Private = 2 KN/m2 

Corridor = 5 KN/m2 

Maximum load = 5 KN/m2 

For Partition wall = 1.5 KN/m2 

Total load (W) = 5 +3 + 1 + 1.5 = 10.5 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 10.5

=15.75 KN/m2 

Design moment:

Mu =Wu x L2

12=

15.75 x (3.05)2

12= 12.21 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

12.21 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 365.97 mm2 

Page 18: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 18/293

18

Spacing of 10mm φ bars =π4

x 102 x1000

365.97= 214.61mm

Therefore, Provide 10mm φ @ 210mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Area of steel at any other interior support: (Between S2 and S3)

From IS 456-2000, moment =Wu x L2

12 

Total Load acting on the support (Wu) =15.75

2+

15.75

2= 15.75 KN/m

Therefore, Moment = 15.75 x (3.05)

2

12= 12.21 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

12.21 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 365.97 mm2 

Page 19: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 19/293

19

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S2 =1

2x 365.97 = 182.985 mm2 

From Slab S3 =1

2x 365.97 = 182.985 mm2 

Total Ast (available) = 182.985 + 182.985 = 365.97 mm2 

Therefore Ast (available) = Ast (required)

 No need of providing extra bars.

DESIGN OF FLOOR SLAB (S4):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Assembly = 5 KN/m2 

Corridor = 5 KN/m2 

Maximum load = 5 KN/m2 

For Partition wall = 1.5 KN/m2 

Total load (W) = 5 +3 + 1 + 1.5 = 10.5 KN/m2 

Page 20: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 20/293

20

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 10.5

=15.75 KN/m2 

Design moment:

Mu =Wu x L2

12=

15.75 x (3.05)2

12= 12.21 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

12.21 x 106 = 0.87 x 415 x Ast x 100 x (1 - 415 x Ast20 x 1000 x 100 )

Ast = 365.97 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

365.97= 214.61mm

Therefore, Provide 10mm φ @ 210mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 21: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 21/293

21

Area of steel at any other interior support: (Between S3 and S4)

Same as between S2 and S3

DESIGN OF FLOOR SLAB (S5 (a)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Office chamber = 4 KN/m2 

Private = 2 KN/m2 

For Partition wall = 1.5 KN/m2 

Total load (W) = 2 + 4 +3 + 1 + 1.5 = 11.5 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 11.5

=17.25 KN/m2 

Design moment:

Mu =Wu x L2

12=

17.25 x (3.05)2

12= 13.372 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 - f y x Astf ck x b x d )

Page 22: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 22/293

22

13.372 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 404.27 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

347.05= 194.27mm

Therefore, Provide 10mm φ @ 190mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

= 0.121000 x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Area of steel at any other interior support: (Between S4 and S5 (a))

From IS 456-2000, moment =Wu x L2

12 

Total Load acting on the support (Wu) =15.75

2+

17.25

2= 16.5 KN/m

Therefore, Moment =16.5 x (3.05)2

12= 12.79 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -

f y x Ast

f ck x b x d )

Page 23: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 23/293

23

12.79 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 385 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S4 =1

2x 365.97 = 182.985 mm2 

From Slab S5 (a) =1

2x 404.27 = 202.135 mm2 

Total Ast (available) = 182.985 + 202.135 = 385.12 mm2 

Therefore Ast (available) = Ast (required)

 No need of providing extra bars.

DESIGN OF FLOOR SLAB (S5 (b)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1

= 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2): 

Office chamber = 4 KN/m2 

Private = 2 KN/m2 

For Partition wall = 1.5 KN/m2 

Page 24: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 24/293

24

Total load (W) = 2 + 4 +3 + 1 + 1.5 = 11.5 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 11.5

=17.25 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

10=

17.25 x (3.05)2

10= 16.047 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d

)

16.047 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 495.37 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

495.37= 158.55mm

Therefore, Provide 10mm φ @ 150mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =

π4 x 8

2

x

1000

144 =349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 25: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 25/293

25

Area of steel at support next to end support (between S5 (a) and S5 (b)):

From IS 456-2000, moment =Wu x L2

10 

Total Load acting on the support (Wu) =17.25

2+

17.25

2= 17.25 KN/m

Therefore, Moment =17.25 x (3.05)2

10= 16.05 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d

)

16.05 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 495.47 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S5 (a) =1

2x 404.27 = 202.135 mm2 

From Slab S5 (b) =1

2x 495.47 = 247.735 mm2 

Total Ast (available) = 202.135 + 247.735 = 449.87 mm2 

Therefore, extra bars required for Ast = 495.47 – 449.87 = 45.6 mm2 

DESIGN OF FLOOR SLAB (S6 (a)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Page 26: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 26/293

26

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Office = 4 KN/m2 

Total load (W) = 4 +3 + 1 = 8 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 8

=12 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

10=

12 x (3.05)2

10= 11.163 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

11.163 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 332.06 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

332.06= 236.53mm

Therefore, Provide 10mm φ @ 230mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Page 27: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 27/293

27

Therefore, Provide 8mm φ @ 300mm c/c. 

DESIGN OF FLOOR SLAB (S6 (b)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 = 1201000 x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Office = 4 KN/m2 

Total load (W) = 4 +3 + 1 = 8 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 8

=12 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

12=

12 x (3.05)2

12= 9.3025 KN-m 

Page 28: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 28/293

28

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

9.3025 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 273.13 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

273.13= 287.55mm

Therefore, Provide 10mm φ @ 280mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Area of steel at support next to end support (between S6 (a) and S6 (b)):

From IS 456-2000, moment =Wu x L2

10 

Total Load acting on the support (Wu) = 12 KN/m

Therefore, Moment =12 x (3.05)2

10= 11.163 KN-m

Page 29: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 29/293

29

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

11.163 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 332.06 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S6 (a) =1

2x 332.06 = 166.03 mm2 

From Slab S6 (b) =1

2x 273.23 = 136.565 mm2 

Total Ast (available) = 166.03 + 136.565 = 302.595 mm2 

Therefore, extra bars required for Ast = 332.06 – 302.595 = 29.465 mm2 

DESIGN OF FLOOR SLAB (S7):

D = 3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2): 

Library = 10 KN/m2 

Total load (W) = 10 +3 + 1 = 14 KN/m2 

Page 30: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 30/293

30

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 14

=21 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

10=

12 x (3.05)2

10= 19.54 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

19.54 x 106 = 0.87 x 415 x Ast x 100 x (1 - 415 x Ast20 x 1000 x 100 )

Ast = 621.3 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

621.3= 126.41mm

Therefore, Provide 10mm φ @ 120mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 31: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 31/293

31

DESIGN OF FLOOR SLAB (S8):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000

x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Private = 2 KN/m2 

Total load (W) = 2 +3 + 1 = 6 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 6

= 9 KN/m2 

Design moment:

Mu =Wu x L2

12=

9 x (3.05)2

12= 6.97 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

6.97 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 201.47 mm2 

Spacing of 10mm φ bars =π4 x 102 x

1000

201.47 = 389.8mm

Page 32: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 32/293

32

Therefore, Provide 10mm φ @ 300mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Area of steel at support next to end support (between S7and S8):

From IS 456-2000, moment =Wu x L2

10 

Total Load acting on the support (Wu) =21

2+

9

2= 15 KN/m

Therefore, Moment =15 x (3.05)2

10= 13.95 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

13.95 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 423.61 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

Page 33: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 33/293

33

From Slab S7 =1

2x 621.3 = 310.65 mm2 

From Slab S8 =1

2x 201.47 = 100.735 mm2 

Total Ast (available) = 310.65 + 100.735 = 411.385 mm2 

Therefore, extra bars required for Ast = 423.61 – 411.385 = 12.225 mm2 

DESIGN OF FLOOR SLAB (S9 (a)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2):

Office chamber = 3 KN/m2 

Total load (W) = 3 +3 + 1 = 7 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 7

= 10.5 KN/m2 

Design moment:

Mu =Wu x L2

12=

10.5 x (3.05)2

12= 8.14 KN-m 

Page 34: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 34/293

34

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

8.14 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 237.12 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

237.12= 331.23mm

Therefore, Provide 10mm φ @ 300mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

144=349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Area of steel at any other interior support: (Between S8 and S9 (a))

From IS 456-2000, moment =Wu x L2

12 

Total Load acting on the support (Wu) =9

2+

10.5

2= 9.75 KN/m

Therefore, Moment = 9.75 x (3.05)2

12= 7.56 KN-m

Page 35: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 35/293

35

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

7.56 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 219.38 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S8 =1

2x 201.47 = 100.735 mm2 

From Slab S9 (a) =1

2x 237.12 = 118.56 mm2 

Total Ast (available) = 100.735 + 118.56 = 219.3 mm2 

Therefore Ast (available) = Ast (required)

 No need of providing extra bars.

DESIGN OF FLOOR SLAB (S9 (b)):

D =3.05 x 103

36.4+ 20 = 103.79mm say 120 mm

Effective depth (d) = D – d1 = 120 – 20 = 100mm

Loads:

Dead loads (From IS875 – Part 1):

Floor finish = 1 KN/m2 

Self weight of the slab = 1 x 1 x D x 25 =120

1000x 25

= 3 KN/m2 

Live loads (From IS875 – Part 2): 

Office chamber = 3 KN/m2 

Page 36: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 36/293

36

Total load (W) = 3 +3 + 1 = 7 KN/m2 

Ultimate load or limit state load or design load (Wu) = 1.5 x W = 1.5 x 7

= 10.5 KN/m2 

Design moment: (for end panel)

Mu =Wu x L2

10=

10.5 x (3.05)2

10= 9.77 KN-m 

Calculation of area of steel:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d

)

9.77 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 287.79 mm2 

Spacing of 10mm φ bars =π4

x 102 x1000

287.79= 272.91mm

Therefore, Provide 10mm φ @ 270mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 120 x 1000 = 144 mm2.

Spacing of 8mm φ bars =

π4 x 8

2

x

1000

144 =349mm

Therefore, Provide 8mm φ @ 300mm c/c. 

Page 37: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 37/293

37

Area of steel at support next to end support (between S9 (a) and S9 (b)):

From IS 456-2000, moment =Wu x L2

10 

Total Load acting on the support (Wu) = 10.5 KN/m

Therefore, Moment =10.5 x (3.05)2

10= 9.77 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

9.77 x 106 = 0.87 x 415 x Ast x 100 x (1 -415 x Ast

20 x 1000 x 100)

Ast = 287.79 mm2 

Area of steel available by bending up the alternate bars of mid span steel:

From Slab S9 (a) =1

2x 237.12 = 118.56 mm2 

From Slab S9 (b) =1

2x 287.79 = 143.895 mm2 

Total Ast (available) = 118.56 + 143.895 = 262.455 mm2 

Therefore, extra bars required for Ast = 287.79 – 262.455 = 25.335 mm2 

Detail of reinforcement provided in slabs:

Slab Function Main steel Distribution steel End shears

Long

span

(Wu x L

2)

KN/m

Short

span

(Wu x L

6)

KN/m

Roof S1 and

Roof S3

Terrace 8mmφ bars @

150mm c/c

8mmφ bars @

300mm c/c 15.441 5.1467

Page 38: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 38/293

38

Roof S2 and

Roof S4

Terrace 8mmφ bars @

190mm c/c

8mmφ bars @

300mm c/c 15.441 5.1467

Floor S1 Toilet 10mmφ bars @

130mm c/c

8mmφ bars @

300mm c/c

29.738 9.913

Floor S2 Office 10mmφ bars @

210mm c/c

8mmφ bars @

300mm c/c

24.019 8

Floor S3 Office SupDt. 10mmφ bars @

210mm c/c

8mmφ bars @

300mm c/c

24.019  8

Floor S4 Assembly Hall 10mmφ bars @

210mm c/c

8mmφ bars @

300mm c/c

24.019  8

Floor S5 (a) Office chamber 

and Waiting space

10mmφ bars @

190mm c/c

8mmφ bars @

300mm c/c 26.306 8.77

Floor S5 (b) Office chamber 

and Waiting space

10mmφ bars @

150mm c/c

8mmφ bars @

300mm c/c 26.306 8.77

Floor S6 (a) Office 10mmφ bars @

230mm c/c

8mmφ bars @

300mm c/c

18.3 6.1

Floor S6 (b) Office 10mmφ bars @

280mm c/c

8mmφ bars @

300mm c/c

18.3 6.1

Floor S7 Library 10mmφ bars @

120mm c/c

8mmφ bars @

300mm c/c

32.025 10.675

Floor S8 Secretary room 10mmφ bars @

300mm c/c

8mmφ bars @

300mm c/c

13.725 4.575

Floor S9 (a) Office chamber  10mmφ bars @

300mm c/c

8mmφ bars @

300mm c/c

16.01 5.3375

Floor S9 (b) Office chamber  10mmφ bars @

270mm c/c

8mmφ bars @

300mm c/c

16.01 5.3375

Page 39: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 39/293

39

3. Analysis of frames

We have many number frames from the plan and the need to be analysed. We have two

different types of frames:

1.  Longitudinal direction frame

2.  Transverse direction frame

Transverse frame:

The frames are chosen in such a way that the loads vary from one frame to the other and we

have 6 transverse frames.

i.  Frame 19-10-01

ii.  Frame 20-11-02

iii.  Frame 24-15-06

iv.  Frame 25-16-07

v.  Frame 26-17-08

vi.  Frame 27-18-09

In every frame we need to analyse the three types of loading cases and each frame consists of 

roof and floor analysis.

Here we assumed the cross sections of beams and columns in advance and with the help of 

the assumed dimensions, we calculate the stiffness of the members and there by the

distribution factors for the members especially at the joints.

To analyse the frame we use the substitute frame method and there by applying the moment

distribution method to know the moments carried by the member at the joints.

We take each floor span and we assume the top and bottom storeys are fixed by the substitute

frame principle.

Page 40: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 40/293

40

Typical building frame:

We have G+5frame with all the details shown in the above figure.

Page 41: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 41/293

41

Type of 

member 

 b(mm) x

D(mm)

Length

(mm)

M.O.I

(mm4) =

 b x D3

12 

Multiplying

factor for 

flanged

section

Final

M.O.I

(mm4)

K =

final M.O.I

LENGTH 

(mm3)

Beam 230 x

300

6000 517.5 x

106 

2 1035 x 10 172.5 x 10

230 x

300

8410 517.5 x

106 

2 1035 x 10 123.07 x 10

Beam 230 x

450

6000 1746.56 x

106 

2 3493.125

x 106 

582.18 x 10

230 x

450

8410 1746.56 x

106 

2 3493.125

x 106 

415.35 x 10

Beam 230 x

600

6000 4140 x

106 

2 8280 x 10 1.38 x 10

230 x

600

8410 4140 x

106 

2 8280 x 10 0.985 x 10

Column 230 x

600

3350 4140 x

106 

- 4140 x 106 1235.82 x

103 

Frame 19-10-01:

Calculation of loads:

Roof:

Slab: 110mm

Dead load = self weight + F.F

= (0.11 x 25) + 2.5 = 5.25 KN/m2 

Live load = 1.5 KN/m2 

Beam (19-10) (230mm X 300mm)

Dead load:

Self weight = 0.23 x 25 x (0.3-0.11) = 1.1 KN/m

Page 42: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 42/293

42

Due to Slab =W x L

2=

5.25 x 3.05

2= 8 KN/m

250mm thick wall of 1m height = 0.25 x 1 x 20 = 5 KN/m

Live load:

Due to Slab =W x L

2=

1.5 x 3.05

2= 2.29KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.1 + 8 + 2.29 + 5)

= 24.6 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (1.1 + 8 + 5) = 13 KN/m 

Beam (10-01) (230mm X 300mm)

Dead load:

Self weight = 0.23 x 25 x (0.3-0.11) = 1.1 KN/m

Due to Slab =W x L

2=

5.25 x 3.05

2= 8 KN/m

250mm thick wall of 1m height = 0.25 x 1 x 20 = 5 KN/m

Live load:

Due to Slab =W x L

2=

1.5 x 3.05

2= 2.29KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.1 + 8 + 2.29 + 5)

= 24.6 KN/m

Minimum load = 0.9 x D.L = 0.9 x (1.1 + 8 + 5) = 13 KN/m 

Case 1:

Maximum load on beam 19-10 and minimum load beam 10-01

Page 43: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 43/293

43

Calculation of distribution factors:

Joint Member K  ΣK  D.F

1 Column 1235.82 x 10 1.41 x 10 0.88

Beam 172.5 x 10 0.12

2 Beam 172.5 x 10 1.53 x 10 0.11

Column 1235.82 x 10 0.81

Beam 123.07 x 103 0.08

3 Beam 123.07 x 103 1.35 x 106 0.09

column 1235.82 x 10 0.91

Calculation of moments:

 

Page 44: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 44/293

44

Calculation of support reactions:

From beam 1-2, ΣM1=0

64.85 + V2 x 6 = 24.6 x 6 x6

2+ 78.52

V2 = 76.07 KN

V1 + V2 = 24.6 x 6 = 147.6 KN

V1 = 71.54 KN

Maximum Span moment,

X=71.54

24.6= 2.91m from the left support

Therefore, maximum moment =71.54 x 2.91

2- 64.85 = 39.24 KN-m

From beam 2-3, ΣM2=0

79.93 + V3 x 8.41 = 69.78 + 13 x 8.41 x8.41

V3 = 53.46 KN

V2 + V3 = 13 x 8.41 =109.33 KN

V2 = 55.87 KN

Page 45: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 45/293

45

Maximum Span moment,

X=53.46

13= 4.12m from the right support

Therefore, maximum moment =53.46 x 4.12

2- 69.78 = 40.35 KN-m

Case 2:

Minimum load on beam 19-10 and maximum load on 10-01

Distribution factors are same as calculate in case 1.

Calculation of moments:

Page 46: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 46/293

46

Calculation of support reactions:

From beam 1-2, ΣM1=0

28.96 + V2 x 6 = 13 x 6 x

6

2 + 53.16

V2 = 42.87 KN

V1 + V2 = 13 x 6 = 78 KN

V1 = 35.13 KN

Maximum Span moment,

X=35.13

13= 2.7m from the left support

Therefore, maximum moment =35.13 x 2.7

2- 28.16 = 19.27 KN-m

From beam 2-3, ΣM2=0

142.85 + V3 x 8.41 = 136.01 + 24.6 x 8.41 x8.41

2

 

V3 = 102.63 KN

V2 + V3 = 24.6 x 8.41 = 206.89 KN

V2 = 104.26 KN

Maximum Span moment,

X= 102.6324.6

= 4.17m from the right support

Page 47: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 47/293

47

Therefore, maximum moment =102.63 x 4.17

2- 136.01 = 77.97 KN-m

Case 3:

Max load on beam 19-10 and beam 10-01

Distribution factors are same as calculated in case 1.

Calculations of moments:

Page 48: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 48/293

48

Calculation of support reactions:

From beam 1-2, ΣM1=0

61.38 + V2 x 6 = 24.6 x 6 x6

2 + 86.09

V2 = 77.92 KN

V1 + V2 = 24.6 x 6 = 147.6 KN

V1 = 69.68 KN

Maximum Span moment,

X=69.68

24.6= 2.83m from the left support

Therefore, maximum moment =69.68 x 2.83

2- 61.38 = 37.22 KN-m

From beam 2-3, ΣM2=0

145.76 + V3 x 8.41 = 134.65 + 24.6 x 8.41 x8.41

V3 = 102.05 KN

V2 + V3 = 24.6 x 8.41 = 206.89 KN

V2 = 104.84 KN

Maximum Span moment,

X=102.05

24.6= 4.15m from the right support

Therefore, maximum moment =102.05 x 4.15

2- 134.65 = 77.1 KN-m

Page 49: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 49/293

Page 50: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 50/293

50

Due to Slab =W x L

2=

4 x 3.05

2= 6.1 KN/m

250mm thick wall = 0.25 x 20 x (3.35-0.3) = 15.25 KN/m

Live load:

Due to Slab =W x L

2=

4 x 3.05

2= 6.1KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.9+6.1+15.25+6.1)

= 44.025 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (1.9+6.1+15.25) = 21 KN/m 

Beam (10-01) (230mm X 450mm)

Dead load:

Self weight = 0.23 x 25 x (0.45-0.12) = 1.9 KN/m

Due to Slab =W x L

2=

4 x 3.05

2= 6.1 KN/m

250mm thick wall = 0.25 x 20 x (3.35-0.3) = 15.25 KN/m

Live load:

Due to Slab =W x L

2=

5 x 3.05

2= 7.625KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.9+6.1+15.25+7.625)

= 46.5 KN/m

Minimum load = 0.9 x D.L = 0.9 x (1.9+6.1+15.25) = 21KN/m 

Page 51: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 51/293

51

Case 1:

Maximum load on beam 19-10 and minimum load on beam 10-01

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 10 3.05 x 10 0.4

Beam 582.18 x 10 0.2

Column 1235.82 x 10 0.4

5 Beam 582.18 x 10 3.47 x 10 0.17

Column 1235.82 x 103 0.36

Beam 415.35 x 103 0.11

Column 1235.82 x 10 0.36

6 Beam 415.35 x 10 2.89 x 10 0.14

Column 1235.82 x 10 0.43

Column 1235.82 x 10 0.43

Page 52: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 52/293

52

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

106.54 + V5 x 6 = 44.025 x 6 x 62

+ 143.19

V5 = 138.18 KN

V4 + V5 = 44.025 x 6 = 264.15 KN

V4 = 125.97 KN

Page 53: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 53/293

53

Maximum Span moment,

X=125.97

44.025= 2.86m from the left support

Therefore, maximum moment =125.96 x 2.86

2- 106.54 = 73.58 KN-m

From beam 4-5, ΣM5=0

133.85 + V6 x 8.41 = 105.76 + 21 x 8.41 x8.41

V6 = 84.96 KN

V5 + V6 = 21 x 8.41 = 176.61 KN

V5 = 91.65 KN

Maximum Span moment,

X=84.96

21= 4.05m from the right support

Therefore, maximum moment = 84.96 x 4.052

- 105.76 = 66.28 KN-m

Case 2:

Minimum load on beam 19-10 and maximum load on beam 10-01

Distribution factors are same as calculated in case-1.

Page 54: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 54/293

54

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

34.99 + V5 x 6 = 21 x 6 x 62 + 105.91

V5 = 74.81 KN

V4 + V5 = 21 x 6 = 126 KN

V4 = 51.19 KN

Page 55: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 55/293

55

Maximum Span moment,

X=51.19

21= 2.45m from the left support

Therefore, maximum moment =51.19 x 2.45

2- 34.99 = 27.72 KN-m

From beam 4-5, ΣM5=0

269.10 + V6 x 8.41 = 246.62 + 46.5 x 8.41 x8.41

V6 = 192.86 KN

V5 + V6 = 46.5 x 8.41 = 391.07 KN

V5 = 198.21 KN

Maximum Span moment,

X=192.86

46.5= 4.15m from the right support

Therefore, maximum moment = 192.86 x 4.152

- 246.62= 153.57 KN-m

Case 3:

Maximum load on both beams

Distribution factors are same as calculated in case 1.

Page 56: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 56/293

56

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

96.02 + V5

x 6 = 44.025 x 6 x6

2+ 169.53

V5 = 144.33 KN

V4 + V5 = 44.025 x 6 = 264.15 KN

V4 = 119.82 KN

Maximum Span moment,

X=119.82

44.025= 2.72m from the left support

Page 57: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 57/293

57

Therefore, maximum moment =119.82 x 2.72

2- 96.02 = 66.94 KN-m

From beam 4-5, ΣM5=0

277.32 + V6 x 8.41 = 242.87 + 46.5 x 8.41 x8.41

V6 = 191.43 KN

V5 + V6 = 46.5 x 8.41 = 391.07 KN

V5 = 199.64 KN

Maximum Span moment,

X=191.43

46.5= 4.12m from the right support

Therefore, maximum moment =191.43 x 4.12

2- 242.87= 151.48 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 53.27 106.54 73.58 143.19 4.67 133.84 65.86 105.75 53.13

2 17.5 34.99 27.2 105.91 81.6 269.1 153.57 246.62 122.6

3 48.01 96.02 66.94 169.53 53.9 277.32 151.48 242.87 121.11

Max 53.27 106.54 73.58 169.53 81.6 277.32 153.57 246.62 122.6

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 125.6 138.18 91.65 84.96

2 51.19 74.81 198.21 192.85

3 119.82 144.33 199.64 191.43

Maximum shear 125.6 144.33 199.64 192.85

Maximum column load 125.6 343.97 192.85

Page 58: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 58/293

58

Frame 20-11-02:

Calculation of loads:

Roof:

Slab: 110mm

Dead load = self weight + F.F

= (0.11 x 25) + 2.5 = 5.25 KN/m2 

Live load = 1.5 KN/m2 

Beam (20-11) (230mm X 450mm)

Dead load:

Self weight = 0.23 x 25 x (0.45-0.11) = 1.2 KN/m

Due to Slab = W x L= 5.25 x 3.05= 16.0125 KN/m

Live load:

Due to Slab = W x L= 1.5 x 3.05= 4.6 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.2+16.0125+4.6)

= 33 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (1.2+16.0125) = 15.49 KN/m 

Beam (11-02) (230mm X 450mm)

Dead load:

Self weight = 0.23 x 25 x (0.45-0.11) = 1.2 KN/m

Due to Slab = W x L= 5.25 x 3.05= 16.0125 KN/m

Live load:

Due to Slab = W x L= 1.5 x 3.05= 4.6 KN/m

Page 59: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 59/293

59

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.2+16.0125+4.6)

= 33 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (1.2+16.0125) = 15.49 KN/m 

Case 1:

Maximum load on beam 20-11 and minimum load beam 11-02

Calculation of distribution factors:

Joint Member K  ΣK  D.F

1 Column 1235.82 x 10 1.818 x 10 0.68

Beam 582.18 x 10 0.32

2 Beam 582.18 x 10 2.234 x 10 0.26

Column 1235.82 x 10 0.55

Beam 415.35 x 10 0.19

3 Beam 415.35 x 10 1.651 x 10 0.25

column 1235.82 x 103 0.75

Page 60: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 60/293

60

Calculation of moments:

Calculation of support reactions:

From beam 1-2, ΣM1=0

68.42 + V2 x 6 = 33 x 6 x6

2+ 111.87

V2 = 106.24 KN

V1 + V2 = 33 x 6 = 198 KN

V1 = 91.76 KN

Page 61: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 61/293

61

Maximum Span moment,

X=91.76

33= 2.78m from the left support

Therefore, maximum moment =91.76 x 2.78

2- 68.42 = 59.13 KN-m

From beam 2-3, ΣM2=0

105.03 + V3 x 8.41 = 67.38 + 15.49 x 8.41 x8.41

V3 = 60.66 KN

V2 + V3 = 15.49 x 8.41 =130.27 KN

V2 = 69.61 KN

Maximum Span moment,

X=60.66

15.49= 3.92m from the right support

Therefore, maximum moment = 60.66 x 3.922

- 67.38 = 51.51 KN-m

Case 2:

Minimum load on beam 20-11 and maximum load on 11-02

Distribution factors are same as calculate in case 1.

Page 62: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 62/293

62

Calculation of moments:

Calculation of support reactions:

From beam 1-2, ΣM1=0

16.56 + V2 x 6 = 15.49 x 6 x 62

+ 94.59

V2 = 59.48 KN

V1 + V2 = 15.49 x 6 = 92.94 KN

V1 = 33.46 KN

Page 63: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 63/293

63

Maximum Span moment,

X=33.46

15.49= 2.16m from the left support

Therefore, maximum moment =33.46 x 2.16

2- 16.56 = 19.58 KN-m

From beam 2-3, ΣM2=0

188.13 + V3 x 8.41 = 158.87 + 33 x 8.41 x8.41

V3 = 135.28 KN

V2 + V3 = 33 x 8.41 = 277.53 KN

V2 = 142.25 KN

Maximum Span moment,

X=135.28

33= 4.1m from the right support

Therefore, maximum moment = 135.28 x 4.12

- 158.81 = 118.52 KN-m

Case 3:

Max load on beam 20-11 and beam 11-02

Distribution factors are same as calculated in case 1.

Calculations of moments:

Page 64: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 64/293

64

Calculation of support reactions:

From beam 1-2, ΣM1=0

57.83 + V2 x 6 = 33 x 6 x6

2+ 140.51

V2 = 112.78 KN

V1 + V2 = 33 x 6 = 198 KN

V1 = 85.22 KN

Maximum Span moment,

X= 85.2233

= 2.58m from the left support

Page 65: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 65/293

65

Therefore, maximum moment =85.22 x 2.58

2- 57.83 = 52.1 KN-m

From beam 2-3, ΣM2=0

199.52 + V3 x 8.41 = 153.93 + 33 x 8.41 x8.41

V3 = 133.34 KN

V2 + V3 = 33 x 8.41 = 277.53 KN

V2 = 144.19 KN

Maximum Span moment,

X=133.34

33= 4.04m from the right support

Therefore, maximum moment =133.34 x 4.04

2- 153.93 = 115.42 KN-m

Beam and column bending moments (KN-m):

Joint 1 Joint 2 Joint 3

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 68.42 68.42 59.13 111.87 6.84 105.0 51.51 67.38 68.22

2 16.58 16.58 19.58 94.59 93.54 188.13 118.52 158.81 155.58

3 57.85 57.83 52.1 140.51 59 199.51 115.42 153.93 152.3

Max 68.42 68.42 59.13 140.51 93.54 199.51 118.52 158.81 155.58

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 91.76 106.24 69.61 60.66

2 33.46 59.48 142.25 135.28

3 85.22 112.78 144.11 133.34

Maximum shear 91.76 112.78 144.11 135.28

Maximum column load 91.76 256.89 135.28

Page 66: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 66/293

Page 67: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 67/293

67

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x(2.76+12.2+14.5+15.25)

= 67.1 KN/m

Minimum load = 0.9 x D.L = 0.9x(2.76+12.2+14.5) = 26.5 KN/m 

Case 1:

Maximum load on beam 20-11 and minimum load on beam 11-02

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 10

3.85 x 106 

0.32

Beam 1.38 x 10 0.36

Column 1235.82 x 10 0.32

5 Beam 1.38 x 10

4.84 x 106 

0.29

Column 1235.82 x 10 0.26

Beam 0.985 x 106 0.19

Column 1235.82 x 103 0.26

6 Beam 0.985 x 10

3.46 x 106 

0.28

Column 1235.82 x 10 0.36

Column 1235.82 x 10 0.36

Page 68: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 68/293

68

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

75.53 + V5 x 6 = 41 x 6 x6

2+ 154.22

V5 = 136.12 KN

V4 + V5 = 41 x 6 = 246 KN

V4 = 109.88 KN

Page 69: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 69/293

69

Maximum Span moment,

X=109.88

41= 2.68m from the left support

Therefore, maximum moment =109.88 x 2.68

2- 75.53 = 71.71 KN-m

From beam 4-5, ΣM5=0

172.08 + V6 x 8.41 = 114.85 + 26.5 x 8.41 x8.41

V6 = 104.63 KN

V5 + V6 = 26.5 x 8.41 = 222.87 KN

V5 = 118.24 KN

Maximum Span moment,

X=104.63

26.5= 3.95m from the right support

Therefore, maximum moment = 104.63 x 3.952

- 114.85 = 91.8 KN-m

Case 2:

Minimum load on beam 20-11 and maximum load on beam 11-02

Distribution factors are same as calculated in case-1.

Page 70: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 70/293

70

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

16.29 + V5 x 6 = 13.5 x 6 x6

2+ 158.17

V5 = 64.15 KN

V4 + V5 = 13.5 x 6 = 81 KN

V4 = 16.85 KN

Maximum Span moment,

X= 16.8513.5

= 1.25m from the left support

Page 71: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 71/293

71

Therefore, maximum moment =16.85 x 1.25

2- 12.92 = -2.39 KN-m

From beam 4-5, ΣM5=0

375.67 + V6 x 8.41 = 315.93 + 67.1 x 8.41 x8.41

V6 = 275.05 KN

V5 + V6 = 67.1 x 8.41 = 564.31 KN

V5 = 289.26 KN

Maximum Span moment,

X=275.05

67.1= 4.1m from the right support

Therefore, maximum moment =275.05 x 4.1

2- 315.93= 247.92 KN-m

Case 3:

Maximum load on both beams

Distribution factors are same as calculated in case 1.

Page 72: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 72/293

72

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

49.25 + V5 x 6 = 41 x 6 x6

2 + 228.89

V5 = 152.94 KN

V4 + V5 = 41 x 6 = 246 KN

V4 = 93.06 KN

Maximum Span moment,

X= 93.0641

= 2.27m from the left support

Page 73: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 73/293

73

Therefore, maximum moment =93.06 x 2.27

2- 49.25 = 56.37 KN-m

From beam 4-5, ΣM5=0

393.9 + V6 x 8.41 = 308.24 + 67.1 x 8.41 x8.41

V6 = 271.97 KN

V5 + V6 = 67.1 x 8.41 = 564.31 KN

V5 = 292.34 KN

Maximum Span moment,

X=271.97

67.1= 4.05m from the right support

Therefore, maximum moment =271.97 x 4.05

2- 308.24= 242.5 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 37.77 75.53 71.71 154.21 8.9 172.08 91.8 114.85 57.45

2 6.42 12.92 3.092 158.17 108.74 375.67 247.92 315.93 153.37

3 24.66 49.25 56.37 228.89 82.5 393.9 242.5 308.24 150.94

Max 37.77 75.53 71.71 228.89 108.74 393.9 247.92 315.93 153.37

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 109.8 136.12 118.24 104.63

2 16.85 64.15 289.26 275.05

3 93.06 152.94 292.34 271.97

Maximum shear 109.8 152.94 292.34 275.05

Maximum column load 109.8 445.28 275.05

Page 74: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 74/293

74

Frame 24-15-06

Roof:

Same as frame 20-11-02

Floor:

Slab = 120mm

Dead load = self weight + F.F

= (0.12 x 25) + 1 = 4 KN/m2 

Live load = 10 KN/m2

for Beam 24-15

= 2 KN/m2 for Beam 24-15

= 5 KN/m2 for Beam 15-06

Beam (24-15) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

150mm wall of 2.2m height = 0.15 x 20 x 2.2 = 6.6 KN/m

Live load:

Due to Slab =5 x 3.05

2+

2 x 3.05

2= 10.675 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x(2.76+12.2+6.6+10.675)

= 48.5 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2+6.6) = 19.5 KN/m 

Page 75: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 75/293

75

Beam (15-06) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

Live load:

Due to Slab = W x L= 5 x 3.05= 15.25KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (2.76+12.2+15.25)

= 45.5 KN/m

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2) = 22.5 KN/m 

Case 1:

Maximum load on beam 24-15 and minimum load on beam 15-06

Page 76: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 76/293

76

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 103 

3.85 x 106 

0.32

Beam 1.38 x 10 0.36

Column 1235.82 x 10 0.32

5 Beam 1.38 x 10

4.84 x 106 

0.29

Column 1235.82 x 10 0.26

Beam 0.985 x 10 0.19

Column 1235.82 x 10 0.26

6 Beam 0.985 x 106 

3.46 x 106 

0.28

Column 1235.82 x 10 0.36

Column 1235.82 x 10 0.36

Calculation of moments:

Page 77: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 77/293

77

Calculation of support reactions:

From beam 4-5, ΣM4=0

95.08 + V5 x 6 = 48.5 x 6 x62

+ 166.11

V5 = 157.34 KN

V4 + V5 = 48.5 x 6 = 291 KN

V4 = 133.66 KN

Maximum Span moment,

X=133.66

48.5= 2.76m from the left support

Therefore, maximum moment =133.66 x 2.76

2- 95.08 = 89.37 KN-m

From beam 4-5, ΣM5=0

155.12 + V6 x 8.41 = 93.64 + 22.5 x 8.41 x 8.412

 

V6 = 87.3 KN

V5 + V6 = 22.5 x 8.41 = 189.23 KN

V5 = 101.93 KN

Page 78: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 78/293

78

Maximum Span moment,

X=87.3

22.5= 3.88m from the right support

Therefore, maximum moment =87.3 x 3.88

2- 93.64 = 75.72 KN-m

Case 2:

Minimum load on beam 24-15 and maximum load on beam 15-06

Distribution factors are same as calculated in case-1.

Calculation of moments:

Page 79: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 79/293

79

Calculation of support reactions:

From beam 4-5, ΣM4=0

14.68 + V5 x 6 = 19.5 x 6 x6

2+ 133.86

V5 = 78.37 KN

V4 + V5 = 19.5 x 6 = 117 KN

V4 = 38.63 KN

Maximum Span moment,

X=38.63

19.5= 1.98m from the left support

Therefore, maximum moment =38.63 x 1.98

2- 14.68 = 23.56 KN-m

From beam 4-5, ΣM5=0

261.6 + V6 x 8.41 = 211.34 + 45.5 x 8.41 x 8.412

 

V6 = 185.35 KN

V5 + V6 = 45.5 x 8.41 = 382.66 KN

V5 = 197.31 KN

Page 80: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 80/293

80

Maximum Span moment,

X=185.35

45.5= 4.07m from the right support

Therefore, maximum moment =185.35 x 4.07

2- 211.34= 165.85 KN-m

Case 3:

Maximum load on both beams

Distribution factors are same as calculated in case 1.

Calculation of moments:

Page 81: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 81/293

81

Calculation of support reactions:

From beam 4-5, ΣM4=0

80.19 + V5 x 6 = 44.5 x 6 x 62

+ 208.43

V5 = 166.87 KN

V4 + V5 = 48.5 x 6 = 291 KN

V4 = 124.13 KN

Maximum Span moment,

X=124.13

48.5= 2.56m from the left support

Therefore, maximum moment =124.13 x 2.56

2- 80.19 = 78.7 KN-m

From beam 4-5, ΣM5=0

280.82 + V6 x 8.41 = 203.22 + 45.5 x 8.41 x 8.412  

V6 = 182.1 KN

V5 + V6 = 67.1 x 8.41 = 382.66 KN

V5 = 200.56 KN

Maximum Span moment,

X=182.145.5

= 4m from the right support

Page 82: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 82/293

82

Therefore, maximum moment =182.1 x 4

2- 203.22= 160.98 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 47.54 95.08 89.37 166.11 5.5 155.12 75.72 93.64 47.54

2 7.34 14.63 23.56 133.86 63.86 261.6 166.85 211.34 103.08

3 40.11 80.19 78.7 208.43 36.19 280.82 160.98 203.22 100.52

Max 47.54 95.08 89.37 208.43 63.86 280.82 166.85 211.34 103.08

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 133.66 157.34 101.93 87.3

2 38.63 78.37 197.31 185.35

3 124.13 166.87 200.56 182.1

Maximum shear 133.66 166.87 200.56 185.35

Maximum column load 133.66 367.43 185.35

Frame 25-16-07

Roof:

Same as frame 20-11-02

Floor:

Slab = 120mm

Dead load = self weight + F.F

= (0.12 x 25) + 1 = 4 KN/m2 

Live load = 2 KN/m2 for Beam 25-16

Page 83: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 83/293

83

= 4 KN/m2 for Beam 25-16

= 6 KN/m2 for Beam 16-07

= 5 KN/m2 for Beam 16-07

Beam (25-16) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

150mm wall of 2.2m height = 0.15 x 20 x 2.2 = 6.6 KN/m

Live load:

Due to Slab =2 x 3.05

2+

3 x 3.05

2= 7.625 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x(2.76+12.2+6.6+7.625)

= 44 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2+6.6) = 19.5 KN/m 

Beam (16-07) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

150mm wall of 2.2m height = 0.15 x 20 x 2.2 = 6.6 KN/m

Live load:

Due to Slab =5 x 3.05

2+

6 x 3.05

2= 16.775 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x(2.76+12.2+6.6+16.775)

= 57.51 KN/m

Page 84: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 84/293

84

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2+6.6) = 21.3 KN/m 

Case 1:

Maximum load on beam 25-16 and minimum load on beam 16-07

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 10

3.85 x 106 

0.32

Beam 1.38 x 10 0.36

Column 1235.82 x 10 0.32

5 Beam 1.38 x 10

4.84 x 106 

0.29

Column 1235.82 x 10 0.26

Beam 0.985 x 10 0.19

Column 1235.82 x 103 0.26

6 Beam 0.985 x 106 

3.46 x 106 

0.28

Column 1235.82 x 10 0.36

Column 1235.82 x 10 0.36

Page 85: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 85/293

85

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

85.69 + V5 x 6 = 44 x 6 x6

2+ 152.33

V5 = 143.11 KN

V4 + V5 = 44 x 6 = 264 KN

V4 = 120.89 KN

Page 86: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 86/293

86

Maximum Span moment,

X=120.89

44= 2.75m from the left support

Therefore, maximum moment =120.89 x 2.75

2- 85.69 = 80.45 KN-m

From beam 4-5, ΣM5=0

145.58 + V6 x 8.41 = 89.17 + 21.3 x 8.41 x8.41

V6 = 82.86 KN

V5 + V6 = 21.3 x 8.41 = 179.13 KN

V5 = 96.27 KN

Maximum Span moment,

X=82.86

21.3= 3.89m from the right support

Therefore, maximum moment = 82.86 x 3.892

- 89.17 = 72 KN-m

Case 2:

Minimum load on beam 25-16 and maximum load on beam 16-07

Page 87: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 87/293

87

Distribution factors are same as calculated in case-1.

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

6.85 + V5 x 6 = 19.5 x 6 x6

2+ 155.96

V5 = 83.35 KN

V4 + V5 = 19.5 x 6 = 117 KN

V4 = 33.65 KN

Page 88: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 88/293

88

Maximum Span moment,

X=33.65

19.5= 1.73m from the left support

Therefore, maximum moment =33.65 x 1.73

2- 6.85 = 22.26 KN-m

From beam 4-5, ΣM5=0

327.23 + V6 x 8.41 = 268.6 + 57.51 x 8.41 x8.41

V6 = 234.86 KN

V5 + V6 = 57.51 x 8.41 = 483.66 KN

V5 = 248.8 KN

Maximum Span moment,

X=234.86

57.51= 4.08m from the right support

Therefore, maximum moment = 234.86 x 4.082

- 268.6= 210.5 KN-m

Case 3:

Maximum load on both beams

Distribution factors are same as calculated in case 1.

Page 89: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 89/293

89

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

62.24 + V5 x 6 = 44 x 6 x6

2+ 218.95

V5 = 158.11 KN

V4 + V5 = 48.5 x 6 = 264 KN

V4 = 105.89 K 

Page 90: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 90/293

90

Maximum Span moment,

X=105.89

44= 2.41m from the left support

Therefore, maximum moment =105.89 x 2.41

2- 62.24 = 65.36 KN-m

From beam 4-5, ΣM5=0

343.47 + V6 x 8.41 = 257.17 + 57.51 x 8.41 x8.41

V6 = 231.56 KN

V5 + V6 = 67.1 x 8.41 = 483.66 KN

V5 = 252.1 KN

Maximum Span moment,

X=231.56

57.51= 4.03m from the right support

Therefore, maximum moment = 231.56 x 4.032

- 257.17= 209.42 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 42.84 85.69 80.45 152.33 3.38 145.56 72 89.17 45.17

2 3.46 6.85 22.26 155.96 85.63 327.23 210.5 268.55 130.75

3 31.15 62.24 65.36 218.95 62.25 343.47 209.42 261.7 128.6

Max 42.84 85.69 80.45 218.95 85.63 343.47 210.5 268.55 130.75

Page 91: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 91/293

91

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 120.89 143.11 96.27 82.86

2 33.65 83.35 248.8 234.86

3 105.89 158.11 251.1 231.56

Maximum shear 120.89  158.11 251.1 234.86

Maximum column load 120.89  409.21 234.86

Frame 26-17-08

Roof:

Same as frame 20-11-02

Floor:

Slab = 120mm

Dead load = self weight + F.F

= (0.12 x 25) + 1 = 4 KN/m2 

Live load = 3 KN/m2 for Beam 26-17

= 6 KN/m2 for Beam 17-08

Beam (26-17) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

Live load:

Due to Slab = 3 x 3.05= 9.15 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x (2.76+12.2+9.15)

= 36.2 KN/m 

Page 92: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 92/293

92

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2) = 13.5 KN/m 

Beam (17-08) (230mm X 600mm)

Dead load:

Self weight = 0.23 x 25 x (0.6-0.12) = 2.76 KN/m

Due to Slab = W x L= 4 x 3.05= 12.2 KN/m

Live load:

Due to Slab = 6 x 3.05= 18.3 KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5x (2.76+12.2+18.3)

= 50 KN/m

Minimum load = 0.9 x D.L = 0.9 x (2.76+12.2) = 13.5 KN/m 

Case 1:

Maximum load on beam 26-17 and minimum load on beam 17-08

Page 93: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 93/293

93

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 10

3.85 x 106 

0.32

Beam 1.38 x 10 0.36

Column 1235.82 x 10 0.32

5 Beam 1.38 x 106 

4.84 x 106 

0.29

Column 1235.82 x 103 0.26

Beam 0.985 x 10 0.19

Column 1235.82 x 10 0.26

6 Beam 0.985 x 10

3.46 x 106 

0.28

Column 1235.82 x 10 0.36

Column 1235.82 x 10 0.36

Calculation of moments:

Page 94: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 94/293

94

Calculation of support reactions:

From beam 4-5, ΣM4=0

73.1+ V5 x 6 = 36.2 x 6 x6

2+ 117.93

V5 = 116.07 KN

V4 + V5 = 46.2 x 6 = 217.2 KN

V4 = 101.13 KN

Maximum Span moment,

X=101.13

36.2= 2.8m from the left support

Therefore, maximum moment =101.13 x 2.8

2- 73.1 = 68.48 KN-m

From beam 4-5, ΣM5=0

97.78 + V6 x 8.41 = 54.2 + 13.5 x 8.41 x

8.41

2  

V6 = 51.59KN

V5 + V6 = 13.5 x 8.41 = 113.54 KN

V5 = 61.95 KN

Maximum Span moment,

X= 51.5913.5

= 3.82m from the right support

Page 95: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 95/293

95

Therefore, maximum moment =51.59 x 3.82

2- 54.2 = 44.34 KN-m

Case 2:

Minimum load on beam 26-17 and maximum load on beam 17-08

Distribution factors are same as calculated in case-1.

Calculation of moments:

Page 96: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 96/293

96

Calculation of support reactions:

From beam 4-5, ΣM4=0

1.84 + V5 x 6 = 13.5 x 6 x62

+ 126.71

V5 = 61.31 KN

V4 + V5 = 13.5 x 6 = 81 KN

V4 = 19.69 KN

Maximum Span moment,

X=19.69

13.5= 1.46m from the left support

Therefore, maximum moment =19.69 x 1.46

2- 1.84 = 12.54 KN-m

From beam 4-5, ΣM5=0

282.21 + V6

x 8.41 = 234.45 + 50 x 8.41 x8.41

V6 = 204.57 KN

V5 + V6 = 50 x 8.41 = 420.5 KN

V5 = 215.93 KN

Maximum Span moment,

X=204.57

50= 4.09m from the right support

Page 97: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 97/293

97

Therefore, maximum moment =204.57 x 4.09

2- 234.45= 183.9 KN-m

Case 3:

Maximum load on both beams

Distribution factors are same as calculated in case 1.

Calculation of moments:

Page 98: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 98/293

98

Calculation of support reactions:

From beam 4-5, ΣM4=0

49.5 + V5 x 6 = 36.2 x 6 x6

2+ 185.08

V5 = 131.2 KN

V4 + V5 = 36.2 x 6 = 217.2 KN

V4 = 86 KN

Maximum Span moment,

X=86

36.2= 2.38m from the left support

Therefore, maximum moment =86 x 2.38

2- 49.5 = 52.84 KN-m

From beam 4-5, ΣM5=0

297.26 + V6 x 8.41 = 228.1 + 50 x 8.41 x

8.41

2  

V6 = 202.03 KN

V5 + V6 = 50 x 8.41 = 420.5 KN

V5 = 218.47 KN

Maximum Span moment,

X= 202.0350

= 4.04m from the right support

Page 99: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 99/293

99

Therefore, maximum moment =202.03 x 4.04

2- 228.1= 180 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 36.55 73.1 68.48 117.93 10.07 97.78 44.34 54.2 27.9

2 0.9 1.85 12.54 126.71 77.74 282.21 183.9 234.45 113.98

3 24.76 49.5 52.84 185.08 56.08 297.26 180 228.1 111.97

Max 36.55 73.1 68.48 185.08 77.74 297.26 183.9 234.45 113.98

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 101.13 116.07 61.95 51.59

2 19.69 61.31 215.93 204.57

3 86 131.2 218.47 202.03

Maximum shear 101.13  131.2 218.47 204.57

Maximum column load 101.13  349.67 204.57

Frame 27-18-09

Roof:

Same as of roof frame 19-10-01

Floor:

Slab: 120mm

Dead load = self weight + F.F

= (0.12 x 25) + 1 = 4 KN/m2 

Live load = 3 KN/m2 for Beam 27-18

Page 100: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 100/293

100

= 6 KN/m2 for Beam 18-09

Beam (27-18) (230mm X 450mm)

Dead load:

Self weight = 0.23 x 25 x (0.45-0.12) = 1.9 KN/m

Due to Slab =W x L

2=

4 x 3.05

2= 6.1 KN/m

250mm thick wall = 0.25 x 20 x (3.35-0.3) = 15.25 KN/m

Live load:

Due to Slab =W x L

2=

3 x 3.05

2= 4.6KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.9+6.1+15.25+4.6)

= 42 KN/m 

Minimum load = 0.9 x D.L = 0.9 x (1.9+6.1+15.25) = 21 KN/m 

Beam (18-09) (230mm X 450mm)

Dead load:

Self weight = 0.23 x 25 x (0.45-0.12) = 1.9 KN/m

Due to Slab =W x L

2=

4 x 3.05

2= 6.1 KN/m

250mm thick wall = 0.25 x 20 x (3.35-0.3) = 15.25 KN/m

Live load:

Due to Slab =W x L

2=

6 x 3.05

2= 9.15KN/m

Therefore, Maximum load = 1.5 x (D.L + L.L) = 1.5 x (1.9+6.1+15.25+9.15)

= 48.6 KN/m

Minimum load = 0.9 x D.L = 0.9 x (1.9+6.1+15.25) = 21KN/m 

Page 101: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 101/293

101

Case 1:

Maximum load on beam 27-18 and minimum load on beam 18-09

Calculation of distribution factors:

Joint Member K  ΣK  D.F

4 Column 1235.82 x 10 3.05 x 10 0.4

Beam 582.18 x 10 0.2

Column 1235.82 x 103 0.4

5 Beam 582.18 x 10 3.47 x 10 0.17

Column 1235.82 x 10 0.36

Beam 415.35 x 10 0.11

Column 1235.82 x 10 0.36

6 Beam 415.35 x 10 2.89 x 10 0.14

Column 1235.82 x 10 0.43

Column 1235.82 x 10 0.43

Page 102: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 102/293

102

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

101.22 + V5 x 6 = 42 x 6 x6

2+ 137.6

V5 = 132.06 KN

V4 + V5 = 42 x 6 = 252 KN

V4 = 119.94 KN

Page 103: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 103/293

103

Maximum Span moment,

X=119.94

42= 2.86m from the left support

Therefore, maximum moment =119.94 x 2.86

2- 101.22 = 70.3 KN-m

From beam 4-5, ΣM5=0

133.13 + V6 x 8.41 = 106.52 + 21 x 8.41 x8.41

V6 = 85.14 KN

V5 + V6 = 21 x 8.41 = 176.61 KN

V5 = 91.47 KN

Maximum Span moment,

X=85.14

21= 4.05m from the right support

Therefore, maximum moment = 85.14 x 4.052

- 106.52 = 65.89 KN-m

Case 2:

Minimum load on beam 27-18 and maximum load on beam 18-09

Page 104: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 104/293

104

Distribution factors are same as calculated in case-1.

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

34.07 + V5 x 6 = 21 x 6 x6

2+ 108.08

V5 = 75.34 KN

V4 + V5 = 21 x 6 = 126 KN

V4 = 50.66 KN

Page 105: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 105/293

105

Maximum Span moment,

X=50.66

21= 2.41m from the left support

Therefore, maximum moment =50.66 x 2.41

2- 34.07 = 26.98 KN-m

From beam 4-5, ΣM5=0

280.96 + V6 x 8.41 = 257.96 + 48.6 x 8.41 x8.41

V6 = 201.63 KN

V5 + V6 = 48.6 x 8.41 = 408.73 KN

V5 = 207.1 KN

Maximum Span moment,

X=201.63

48.6= 4.15m from the right support

Therefore, maximum moment = 201.63 x 4.152

- 257.96= 160.42 KN-m

Case 3:

Maximum load on both beams

Page 106: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 106/293

106

Distribution factors are same as calculated in case 1.

Calculation of moments:

Calculation of support reactions:

From beam 4-5, ΣM4=0

89.24 + V5 x 6 = 42 x 6 x6

2+ 166.05

V5 = 138.8 KN

V4 + V5 = 42 x 6 = 252 KN

V4 = 113.2 KN

Page 107: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 107/293

107

Maximum Span moment,

X=113.2

42= 2.7m from the left support

Therefore, maximum moment =113.2 x 2.7

2- 89.24 = 63.58 KN-m

From beam 4-5, ΣM5=0

288.45 + V6 x 8.41 = 254.55 + 48.6 x 8.41 x8.41

V6 = 200.33 KN

V5 + V6 = 48.6 x 8.41 = 408.73 KN

V5 = 208.4 KN

Maximum Span moment,

X=200.33

48.6= 4.12m from the right support

Therefore, maximum moment = 200.33 x 4.122

- 254.55= 158.33 KN-m

Beam and column bending moments (KN-m):

Joint 4 Joint 5 Joint 6

Case Column Beam Max

span

moment

Beam Column Beam Max

span

moment

Beam Column

1 50.61 101.22 70.3 137.6 2.24 133.12 65.89 106.09 53.26

2 17.04 34.07 26.98 108.08 86.44 280.96 160.42 257.96 128.22

3 44.62 89.24 63.58 166.06 61.2 288.45 158.33 254.55 126.86

Max 50.61 101.22 70.3 166.06 86.44 288.45 160.42 257.96 128.22

Page 108: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 108/293

108

Shear or support reaction (KN):

Case no. Joint 4 Joint 5 Joint 6

1 119.94 132.06 91.47 85.14

2 50.66 75.34 207.28 201.63

3 113.2 138.8 208.4 200.33

Maximum shear 119.94 138.8 208.4 200.33

Maximum column load 119.94 347.2 200.33

Page 109: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 109/293

109

4. DESIGN OF BEAMS

Bending moment diagram for entire building:

Page 110: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 110/293

110

1. Longitudinal beams 

a. Beam 23-24 

Roof :

Section: 230mm x 300mm (b x D)

Cover: 25mm

Effective depth (d‟) = 300 – 25 = 275mm

Concrete: M20 Steel: Fe415

Loads:

Slab: 110mm thick 

Dead load = self weight + floor finish

= 0.11 x 25 +2.5 = 5.25 KN/m2 

Live load = 1.5 KN/m2 

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.3 – 0.11) = 1.1 KN/m

Slab =5.25 x 3.05

6= 2.67 KN/m

Parapet wall (250mm wall including plastering of 1m height)

= 20 x 0.25 x 1 = 5 KN/m

Live load:

Slab =1.5 x 3.05

6= 0.76 KN/m

Therefore, Total load (W) = 5 + 2.67 + 1.1 + 0.76 = 9.53 KN/m

Factored load (Wu) = 1.5 x 9.53 = 14.3 KN/m

Page 111: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 111/293

111

Maximum load on column removing the triangular load = 1.5 (1.1 +5)

= 9.15 KN/m

Shear on column =column load x l

2

=9.15 x 3.05

2

= 13.96 KN (from each side)

Design moment:

Mu =14.3 x (3.05)2

12= 11.09 x 106 N-mm = 11.09 KN-m

Calculation of Ast:

From IS456-2000, P96a, clause G-1.1 (b), we have

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

11.09 x 106 = 0.87 x 415 x Ast x 275 x (1-415 x Ast

20 x 230 x 275)

Ast = 116.12 mm2

 No. of 10mm diameter bars =

4 x 116.12

 π x 102 = 1.5 say 2 bars

Therefore, provided Ast = 2 xπ4

x 102 = 157.08 mm2 

Design of shear reinforcement:

Vu =Wu x Lx

2=

14.3 x 3.05

2= 21.81KN

 Nominal shear stress, v =Vu

b x d=

21.81 x 103

230 x 275= 0.35 N/mm2 

Ast = 157.08 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 157.08

230 x 275= 0.25

Page 112: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 112/293

112

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

Therefore, c = 0.36 N/mm2 

v approximately equals to c

Therefore, provide minimum shear reinforcement.

Assuming 8mmφ- 2legged stirrups

Asv = 2 x π x 82

4= 100.53mm2 

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

Floor:

Section: 230mm x 450mm (b x D)

Cover: 25mm

Effective depth (d‟) = 450 – 25 = 425mm

Concrete: M20 Steel: Fe415

Page 113: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 113/293

113

Loads:

Slab: 120mm thick 

Dead load = self weight + floor finish

= 0.12 x 25 +1 = 4 KN/m2 

Live load = 10 KN/m2 

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.45 – 0.12) = 1.9 KN/m

Slab =4 x 3.05

6= 2.03 KN/m

Parapet wall (250mm wall including plastering of 2.2m height)

= 20 x 0.25 x (3.35-0.3) = 15.25 KN/m

Live load:

Slab =10 x 3.05

6= 5.08 KN/m

Therefore, Total load (W) = 1.9 + 2.03 + 15.25 + 5.08 = 24.26 KN/m

Factored load (Wu) = 1.5 x 24.26 = 36.39 KN/m

Maximum load on column removing the triangular load = 1.5 (1.9 +5.08)

= 25.725 KN/m

Shear on column =column load x l

2=

25.725 x 3.05

= 39.23 KN (from each side)

Design moment:

Mu =36.39 x (3.05)2

12= 28.21 x 106 N-mm = 28.21 KN-m

Page 114: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 114/293

114

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

28.21 x 106 = 0.87 x 415 x Ast x 425 x (1-415 x Ast

20 x 230 x 425)

Ast = 191.64 mm2

 No. of 10mm diameter bars =4 x 191.64

 π x 102 = 2.33 say 3 bars

Therefore, provided Ast = 3 xπ

4

x 102 = 235.62 mm2 

Design of shear reinforcement:

Vu =Wu x Lx

2=

36.39 x 3.05

2= 55.5KN

 Nominal shear stress, v =Vu

b x d=

55.5 x 103

230 x 425= 0.57 N/mm2 

Ast = 235.62 mm2

 

Consider Pt =100 xAst 

 b x d=

100 x 235.62

230 x 425= 0.24

From IS 456-2000, Table 19:

Pt c 

0.15 0.28

0.24 ?

0.25 0.36

Therefore, c = 0.28 +0.36-0.28

0.25-0.15x (0.24-0.15) = 0.352 N/mm2 

Therefore, v > c,

Page 115: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 115/293

115

From IS456-2000(Clause 40.4, P72)

When v exceeds c, shear reinforcement shall be provided

Shear reinforcement shall be provided to carry a shear equal to Vu - c bd. The strength of 

shear reinforcement Vus shall be calculated as follows:

Vus =0.87 x f y x Asv x d

sv 

Stirrups are designed for shear Vus = Vu - c bd

= (55.5 x 103) – (0.32 x 230 x 425)

= 24220N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =

0.87 x f y x Asv x d

Vus =

0.87 x 415 x 100.53 x 425

24220  

=636.9mm

From IS456-2000, (clause 26.5.1.5, P47)

The maximum spacing of shear reinforcement measured along the axis of the member shall

not be exceed 0.75d for vertical stirrups where d is the effective depth of the section under 

consideration. In no case shall the spacing exceed 300mm.

Provide spacing = 300mm

Therefore, Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 425

300= 51419.83N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv

  ≥0.4

0.87 x f y

 

Page 116: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 116/293

116

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

 b. Beam 14-15

Roof :

Section: 230mm x 300mm (b x D)

Cover: 25mm

Effective depth (d‟) = 300 – 25 = 275mm

Concrete: M20 Steel: Fe415

Loads:

Slab: 110mm thick 

Dead load = self weight + floor finish

= 0.11 x 25 +2.5 = 5.25 KN/m2 

Live load = 1.5 KN/m2 

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.3 – 0.11) = 1.1 KN/m

Slab = 2 x

5.25 x 3.05

6 = 5.34 KN/m

Page 117: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 117/293

117

Live load:

Slab = 2 x1.5 x 3.05

6= 1.53 KN/m

Therefore, Total load (W) = 1.1 + 5.34 + 1.53 = 7.97 KN/m

Factored load (Wu) = 1.5 x 7.97 = 11.96 KN/m

Maximum load on column removing the triangular load = 1.5 (1.1)

= 1.65 KN/m

Shear on column =column load x l

2=

1.65 x 3.05

2= 2.52 KN (from each side)

Design moment:

Mu =11.96 x (3.05)2

12= 9.27 x 106 N-mm = 9.27 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

9.27 x 106 = 0.87 x 415 x Ast x 275 x (1-415 x Ast

20 x 230 x 275)

Ast = 96.41 mm2

 No. of 8mm diameter bars =4 x 96.41

 π x 82 = 1.91 say 2 bars

Therefore, provided Ast = 2 xπ4 x 82 = 100.53 mm2 

Design of shear reinforcement:

Vu =Wu x Lx

2=

11.96 x 3.05

2= 18.239KN

 Nominal shear stress, v =Vu

b x d=

18.239 x 103

230 x 275= 0.29 N/mm2 

Ast = 100.53 mm2 

Page 118: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 118/293

118

Consider Pt =100 xAst 

 b x d=

100 x 100.53

230 x 275= 0.15

From IS 456-2000, Table 19:

Pt c 

0.15 0.28

Therefore, c = 0.28 N/mm2 

v approximately equals to c

Therefore, provide minimum shear reinforcement.

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Provide spacing = 300mm

Therefore, Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 275

300= 33371.66KN

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

Page 119: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 119/293

119

Floor:

Section: 230mm x 450mm (b x D)

Cover: 25mm

Effective depth (d‟) = 450 – 25 = 425mm

Concrete: M20 Steel: Fe415

Loads:

Slab: 120mm thick 

Dead load = self weight + floor finish + wall

= 0.12 x 25 +1 + 1.5 = 5.5 KN/m2 

Live load = 10 KN/m2 + 5 KN/m2 

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.45 – 0.12) = 1.9 KN/m

Slab =5.5 x 3.05

6+

4 x 3.05

6= 4.83 KN/m

Internal wall (150mm wall including plastering of 2.2m height)

= 20 x 0.15 x 2.2 = 6.6 KN/m

Live load:

Slab =15 x 3.05

6= 7.625 KN/m

Therefore, Total load (W) = 1.9 + 4.83 + 6.6 + 7.625 = 20.955 KN/m

Factored load (Wu) = 1.5 x 20.955 = 31.4325 KN/m

Maximum load on column removing the triangular load = 1.5 (1.9 +6.6)

= 12.75 KN/m

Page 120: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 120/293

120

Shear on column =column load x l

2=

12.75 x 3.05

= 19.44 KN (from each side)

Design moment:

Mu =31.4325 x (3.05)2

12= 24.37 x 106 N-mm = 24.37 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

24.37 x 106 = 0.87 x 415 x Ast x 425 x (1-415 x Ast

20 x 230 x 425)

Ast = 164.5 mm2

 No. of 10mm diameter bars =4 x 164.5

 π x 102 = 2.1 say 3 bars

Therefore, provided Ast = 3 xπ

4x 102 = 235.62 mm2 

Design of shear reinforcement:

Vu =Wu x Lx

2=

20.955 x 3.05

2= 31.96KN

 Nominal shear stress, v =Vu

b x d=

31.96 x 103

230 x 425= 0.33 N/mm2 

Ast = 235.62 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 235.62

230 x 425= 0.24

From IS 456-2000, Table 19:

Pt c 

0.15 0.28

Page 121: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 121/293

121

0.24 ?

0.25 0.36

Therefore, c = 0.28 +0.36-0.28

0.25-0.15 x (0.24-0.15) = 0.352 N/mm2

 

Therefore, v approximately equals to c,

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

c. Beam 7-8 

Roof :

Section: 230mm x 300mm (b x D)

Cover: 25mm

Effective depth (d‟) = 300 – 25 = 275mm

Concrete: M20 Steel: Fe415

Page 122: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 122/293

122

Loads:

Slab: 110mm thick 

Dead load = self weight + floor finish

= 0.11 x 25 +2.5 = 5.25 KN/m2 

Live load = 1.5 KN/m2 

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.3 – 0.11) = 1.1 KN/m

Slab =5.25 x 3.05

6= 2.67 KN/m

Parapet wall (250mm wall including plastering of 1m height)

= 20 x 0.25 x 1 = 5 KN/m

Live load:

Slab =1.5 x 3.05

6= 0.76 KN/m

Therefore, Total load (W) = 5 + 2.67 + 1.1 + 0.76 = 9.53 KN/m

Factored load (Wu) = 1.5 x 9.53 = 14.3 KN/m

Maximum load on column removing the triangular load = 1.5 (1.1 +5)

= 9.15 KN/m

Shear on column =column load x l

2=

9.15 x 3.05

2= 13.96 KN (from each side)

Design moment:

Mu =14.3 x (3.05)2

12= 11.09 x 106 N-mm = 11.09 KN-m

Page 123: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 123/293

123

Calculation of Ast:

From IS456-2000, P96a, clause G-1.1 (b), we have

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d )

11.09 x 106 = 0.87 x 415 x Ast x 275 x (1-415 x Ast

20 x 230 x 275)

Ast = 116.12 mm2

 No. of 10mm diameter bars =4 x 116.12

 π x 102 = 1.5 say 2 bars

Therefore, provided Ast = 2 xπ4

x 102 = 157.08 mm2 

Design of shear reinforcement:

Vu =Wu x Lx

2=

14.3 x 3.05

2= 21.81KN

 Nominal shear stress, v =Vu

b x d=

21.81 x 103

230 x 275= 0.35 N/mm2 

Ast = 157.08 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 157.08

230 x 275= 0.25

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

Therefore, c = 0.36 N/mm2 

v approximately equals to c

Therefore, provide minimum shear reinforcement.

Assuming 8mmφ- 2legged stirrups

Page 124: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 124/293

124

Asv =2 x π x 82

4= 100.53mm2 

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

Floor:

Section: 230mm x 450mm (b x D)

Cover: 25mm

Effective depth (d‟) = 450 – 25 = 425mm

Concrete: M20 Steel: Fe415

Loads:

Slab: 120mm thick 

Dead load = self weight + floor finish + wall

= 0.12 x 25 +1 + 1.5 = 5.5 KN/m2 

Live load = 6 KN/m2

Acting on beam:

Dead load:

Self weight = 0.23 x 25 x (0.45 – 0.12) = 1.9 KN/m

Page 125: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 125/293

125

Slab =5.5 x 3.05

6= 2.8 KN/m

External wall (250mm wall including plastering)

= 20 x 0.25 x (3.35 – 0.3) = 15.25 KN/m

Live load:

Slab =6 x 3.05

6= 3.05 KN/m

Therefore, Total load (W) = 1.9 + 2.8 + 15.25 + 3.05 = 23 KN/m

Factored load (Wu) = 1.5 x 23 = 34.5 KN/m

Maximum load on column removing the triangular load = 1.5 (1.9 +15.25)

= 25.73 KN/m

Shear on column =column load x l

2=

25.73 x 3.05

= 39.24 KN (from each side)

Design moment:

Mu =34.5 x (3.05)2

12= 26.75 x 106 N-mm = 26.75 KN-m

Calculation of Ast:

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

26.75 x 106 = 0.87 x 415 x Ast x 425 x (1-415 x Ast

20 x 230 x 425)

Ast = 181.3 mm2

 No. of 10mm diameter bars =4 x 181.3

 π x 102 = 2.31 say 3 bars

Therefore, provided Ast = 3 xπ

4

x 102 = 235.62 mm2 

Page 126: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 126/293

126

Design of shear reinforcement:

Vu =Wu x Lx

2=

34.5 x 3.05

2= 52.61KN

 Nominal shear stress, v =Vu

b x d=

52.61 x 103

230 x 425= 0.54 N/mm2 

Ast = 235.62 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 235.62

230 x 425= 0.24

From IS 456-2000, Table 19:

Pt c 

0.15 0.28

0.24 ?

0.25 0.36

Therefore, c = 0.28 +0.36-0.28

0.25-0.15x (0.24-0.15) = 0.352 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (52.61 x 103) – (0.35 x 230 x 425)

= 18397.5N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

18397.5 

= 838.48mm

Page 127: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 127/293

127

Provide spacing = 300mm

Therefore, Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 425

300= 51419.83N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Provide 8mm dia stirrups @ 300mm c/c.

Page 128: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 128/293

Page 129: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 129/293

129

ROOF: (section 230mm x 300mm, d' = 25mm)

From analysis of frames the moments acting on the supports are:

At left support (Ast1):

Moment due to external load (Mu) = 64.65 KN-m

From IS456-2000, P96, clause G-1.1 (c), moment of resistance of the section is given by

Mu‟Limit = 0.36 xxumax

dx (1- 0.42 x

xumax

d) x b x d2 x f ck  

For Fe 415,xumax

d= 0.48

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (275)2 = 48 x 106 N-mm = 48 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

275= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(64.65 - 48) x 106

353 x (275 - 25)=188.67 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1

f ck x b x d)

Page 130: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 130/293

130

48 x 106 = 0.87 x 415 x Ast1 x 275 x (1 -415 x Ast1

20 x 230 x 275)

Ast1 = 602.55 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 188.67

0.87 x 415=184.46 mm2 

Ast = Ast1 + Ast2 = 602.55 + 184.46 = 787.01 mm2 

Between the support:

Span moment = 39.24 KN-m

For T-beam, from IS456-2000, P37, clause 23.1.2 (a)

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Therefore, bf =4200

6+ (6 x 110) + 230

= 1590 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1590 x 110 x (275 – 0.42 x 110)

= 288.12 KN-m

Mu < < Mu‟limit 

Ast:

39.24 x 106 = 0.87 x 415 x Ast2 x 275 x (1-415 x Ast2

20 x 230 x 275)

Ast2 = 466.65 mm2 

Page 131: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 131/293

131

At right support (Ast3):

Moment due to external load (Mu) = 86.09 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (275)2 = 48 x 106 N-mm = 48 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

275= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(86.09 - 48) x 106

353 x (275 - 25)=431.62 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

48 x 106 = 0.87 x 415 x Ast1 x 275 x (1 -415 x Ast1

20 x 230 x 275)

Ast1 = 602.55 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 431.62

0.87 x 415=422 mm2 

Ast3 = Ast1 + Ast2 = 602.55 + 422 = 1024.55 mm2 

At support (Ast4):

Moment due to external load (Mu) = 145.76 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (275)2 = 48 x 106 N-mm = 48 KN-m

Page 132: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 132/293

132

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

275= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(145.76 - 48) x 106

353 x (275 - 25)=1107.76 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1f ck x b x d )

48 x 106 = 0.87 x 415 x Ast1 x 275 x (1 -415 x Ast1

20 x 230 x 275)

Ast1 = 602.55 mm2 

To find Ast2:

Ast2 = f sc x Asc

0.87 x f y= 353 x 1107.76

0.87 x 415=1083.06 mm2 

Ast4 = Ast1 + Ast2 = 602.55 + 1083 = 1685.61 mm2

Between the support (Ast5):

Span moment = 77.97 KN-m

Effective width of flange (bf ) =

l0

6 + (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Therefore, bf =5887

6+ (6 x 110) + 230

= 1871.16 mm

Page 133: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 133/293

133

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1871.16 x 110 x (275 – 0.42 x 110)

= 339.07 KN-m

Mu < Mu‟limit 

Ast:

77.97 x 106 = 0.87 x 415 x Ast5 x 275 x (1-415 x Ast5

20 x 230 x 275)

Ast5 = 1411.66 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 136.01 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (275)2 = 48 x 106 N-mm = 48 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

275= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(136.01 - 48) x 106

353 x (275 - 25)=997.28 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

48 x 106 = 0.87 x 415 x Ast1 x 275 x (1 -415 x Ast1

20 x 230 x 275)

Ast1

= 602.55 mm2 

Page 134: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 134/293

134

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 997.28

0.87 x 415=975.05 mm2 

Ast6 = Ast1 + Ast2 = 602.55 + 975.05 = 1577.6 mm2 

Design of shear reinforcement:

At left support:

End shear = (Vu) = 71.54 KN

 Nominal shear stress, v =Vu

b x d=

71.54 x 103

230 x 275= 1.13 N/mm2 

Ast = 787.01 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 787.01

230 x 275= 1.25

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

Therefore, c = 0.67 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (71.54 x 103) – (0.67 x 230 x 275)

= 29162.5N

Page 135: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 135/293

135

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 275

29162.5 

= 342.27mm

Provide spacing = 300mm

Therefore, Vus = 0.87 x f y x Asv x dsv= 0.87 x 415 x 100.53 x 275300 = 33261.73N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 77.92 KN

 Nominal shear stress, v =Vu

b x d=

77.92 x 103

230 x 275= 1.23 N/mm2 

Ast = 1024.55 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1024.55

230 x 275= 1.62

From IS 456-2000, Table 19:

Pt c 

1.5 0.72

Page 136: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 136/293

136

1.62 ?

1.75 0.75

Therefore, c = 0.72 +0.75-0.72

1.75-1.5 x (1.62-1.5) = 0.734 N/mm2

 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (77.92 x 103) – (0.734 x 230 x 275)

= 31494.5N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 275

31494.5 

= 316.93mm

Provide spacing = 300mm

Therefore, Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 275

300= 33261.73N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

Page 137: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 137/293

137

At middle support:

End shear = (Vu) = 104.84 KN

 Nominal shear stress, v =Vu

b x d =104.84 x 103

230 x 275 = 1.66 N/mm2

 

Ast = 1685.61 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1685.61

230 x 275= 2.67

From IS 456-2000, Table 19:

Pt c 

2.67 0.82

Therefore, c = 0.82 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (104.84 x 103) – (0.82 x 230 x 275)

= 52975N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 275

52975 

= 188.42mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Page 138: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 138/293

138

Asv =0.4 x 230 x 180

0.87 x 415= 45.87mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 180mm c/c.

At right support:

End shear = (Vu) = 102.63 KN

 Nominal shear stress, v =Vu

b x d=

102.63 x 103

230 x 275= 1.63 N/mm2 

Ast = 1577.6 mm2 

Consider Pt = 100 xAst  b x d = 100 x 1577.6230 x 275 = 2.5

From IS 456-2000, Table 19:

Pt c 

2.5 0.82

Therefore, c = 0.82 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (102.63 x 103) – (0.82 x 230 x 275)

= 50765N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 275

50765 

= 196.62mm < 300mm

Page 139: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 139/293

139

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 190

0.87 x 415= 48.41mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 190mm c/c.

Reinforcement for roof 19-10-01:

FLOOR : (section: 230mm x 450mm, d‟= 25mm) 

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 106.54 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

Page 140: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 140/293

140

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

106.54 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 546 mm2 

Between the supports (Ast2):

Span moment = 73.58 KN-m

Effective width of flange (bf ) = l06 + (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1650 x 120 x (425 – 0.42 x 120)

= 534.03 KN-m

Mu < Mu‟limit 

Ast:

73.58 x 106 = 0.87 x 415 x Ast2 x 425 x (1-415 x Ast2

20 x 230 x 425)

Ast2 = 852.07 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 169.53 KN-m

Page 141: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 141/293

141

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

425= 0.05

Therefore, f sc = 355 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')

=(169.53 - 114.66) x 106

353 x (425 - 25)

=386.84 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2

 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 386.84

0.87 x 415= 380.36 mm2 

Ast3 = Ast1 + Ast2 = 932 + 380.6 = 1312.36 mm2 

At support (Ast4):

Moment due to external load (Mu) = 277.32 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d =25

425 = 0.05

Page 142: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 142/293

142

Therefore, f sc = 355 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d') =(277.32 -11 4.66) x 106

353 x (425 - 25) =1145.5 mm2

 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

355 x 1145.5

0.87 x 415=1126.31 mm2 

Ast4 = Ast1 + Ast2 = 923 + 1126.31 = 2058.31 mm2

Between the supports (Ast5):

Span moment = 153.57 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Therefore, bf =

5887

6 + (6 x 120) + 230

= 1931.67 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1871.16 x 120 x (425 – 0.42 x 120)

= 625.2 KN-m

Mu < Mu‟limit 

Page 143: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 143/293

143

Ast:

153.57 x 106 = 0.87 x 415 x Ast5 x 425 x (1-415 x Ast5

20 x 230 x 425)

Ast5 = 1442.53 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 246.62 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

425= 0.05

Therefore, f sc = 355 N/mm2 

Area of steel in compression (Asc):

Asc = Mu - Mu‟limitf sc x (d - d')

= (246.62 - 114.66) x 106

355 x (425 - 25)=929.29 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

355 x 929.29

0.87 x 415=913.72 mm2 

Ast6 = Ast1 + Ast2 = 932 + 913.72 = 1845.72 mm2 

Page 144: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 144/293

144

Design of shear reinforcement:

At left support:

End shear = (Vu) = 125.6 KN

 Nominal shear stress, v =Vu

b x d=

125.6 x 103

230 x 425= 1.29 N/mm2 

Ast = 546 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 546

230 x 425= 0.56

From IS 456-2000, Table 19:

Pt c 

0.5 0.48

0.56 ?

0.75 0.56

Therefore, c = 0.48 +0.56-0.48

0.75-0.5x (0.56-0.5) = 0.5 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (125.6 x 103) – (0.5 x 230 x 425)

= 76725N

Page 145: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 145/293

145

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

76725 

= 184.87mm <300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asvb x Sv

  ≥ 0.40.87 x f y 

Asv =0.4 x 230 x 180

0.87 x 415= 45.86mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 180mm c/c.

At middle support:

End shear = (Vu) = 144.35 KN

 Nominal shear stress, v =Vu

b x d=

144.35 x 103

230 x 425= 1.48 N/mm2 

Ast = 1312.16 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1312.16

230 x 425= 1.34

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

1.34 ?

1.5 0.72

Page 146: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 146/293

146

Therefore, c = 0.67 +0.72-0.67

1.5-1.25x (1.34-1.25) = 0.69 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (144.32 x 103) – (0.69 x 230 x 425)

= 78827.5N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4

= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

78827.5 

= 195.7mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 190

0.87 x 415= 48.41mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 190mm c/c.

At middle support:

End shear = (Vu) = 199.64 KN

 Nominal shear stress, v =Vu

b x d=

199.64 x 103

230 x 425= 2.04 N/mm2 

Ast = 2058.31 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 2058.31

230 x 425= 2

Page 147: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 147/293

147

From IS 456-2000, Table 19:

Pt c 

2.00 0.79

Therefore, c = 0.79 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (199.64 x 103) – (0.79 x 230 x 425)

= 122417.5N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =

0.87 x f y x Asv x d

Vus =

0.87 x 415 x 157.07 x 425

122417.5  

= 196.9mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =

0.4 x 230 x 190

0.87 x 415 = 48.41mm2

<157.07mm2

(safe)

Therefore, provide 10mm dia stirrups @ 190mm c/c.

At right support:

End shear = (Vu) = 192.85 KN

 Nominal shear stress, v =Vu

b x d=

192.85 x 103

230 x 425= 1.97 N/mm2 

Page 148: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 148/293

148

Ast = 1845.72 mm2 

Consider Pt =100 xAst 

 b x d=

100 x1845.72

230 x 425= 1.89

From IS 456-2000, Table 19:

Pt c 

1.75 0.75

1.89 ?

2 0.79

Therefore, c = 0.75 +0.79-0.75

2-1.75x (1.89-1.75) = 0.77 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (192.85 x 103) – (0.77 x 230 x 425)

= 117582.5N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =

0.87 x f y x Asv x d

Vus =

0.87 x 415 x 157.07 x 425

117582.5  

= 204.98mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 200

0.87 x 415 = 50.96mm2 <157.07mm2 (safe)

Page 149: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 149/293

149

Therefore, provide 10mm dia stirrups @ 200mm c/c.

Reinforcement for floor 19-10-01:

Page 150: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 150/293

150

 b. Beam 20-11 and Beam 11-02

Page 151: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 151/293

151

ROOF (section: 230mm x 450mm, d‟ = 25mm) 

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 68.42 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

68.42 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 498.67 mm2 

Between the supports (Ast2):

Span moment = 59.13 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Therefore, bf =4200

6+ (6 x 110) + 230 = 1590 mm

Page 152: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 152/293

152

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1590 x 110 x (425 – 0.42 x 110)

= 477.02 KN-m

Mu < Mu‟limit 

Ast:

59.13 x 106 = 0.87 x 415 x Ast2 x 425 x (1-415 x Ast2

20 x 230 x 425)

Ast2 = 423.4 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 140.51 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

425= 0.05

Therefore, f sc = 355 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(140.51 - 114.66) x 106

353 x (425 - 25)=181.97 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2 

Page 153: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 153/293

153

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

355 x 181.97

0.87 x 415= 178.92 mm2 

Ast3 = Ast1 + Ast2 = 932 + 178.92 = 1110.4 mm2 

At support (Ast4):

Moment due to external load (Mu) = 199.51 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

425= 0.05

Therefore, f sc = 355 N/mm2 

Area of steel in compression (Asc):

Asc = Mu - Mu‟limitf sc x (d - d')

= (199.51 -11 4.66) x 106

353 x (425 - 25)=597.46 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

355 x 597.46

0.87 x 415=587.45 mm2 

Ast4 = Ast1 + Ast2 = 923 + 587.45 = 1518.93 mm2

Page 154: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 154/293

154

Between the supports (Ast5):

Span moment = 118.5 KN-m

Effective width of flange (bf ) =l0

6 + (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Therefore, bf =5887

6+ (6 x 110) + 230

= 1871.17 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1871.16 x 110 x (425 – 0.42 x 110)

= 561.37 KN-m

Mu < Mu‟limit 

Ast:

118.5 x 106 = 0.87 x 415 x Ast5 x 425 x (1- 415 x Ast5

20 x 230 x 425)

Ast5 = 973.38 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 158.81 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (425)2 = 114.66 x 106 N-mm = 114.66 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

25

425= 0.05

Therefore, f sc = 355 N/mm2 

Page 155: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 155/293

155

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(158.81 - 114.66) x 106

355 x (425 - 25)=310.85 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

114.66 x 106 = 0.87 x 415 x Ast1 x 425 x (1 -415 x Ast1

20 x 230 x 425)

Ast1 = 932 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

355 x 310.85

0.87 x 415=305.64 mm2 

Ast6 = Ast1 + Ast2 = 932 + 305.64 = 1237.12 mm2 

Design of shear reinforcement:

At left support:

End shear = (Vu) = 91.76 KN

 Nominal shear stress, v =Vu

b x d=

91.76 x 103

230 x 425= 0.94 N/mm2 

Ast = 498.67 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 498.67

230 x 425= 0.51

Page 156: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 156/293

156

From IS 456-2000, Table 19:

Pt c 

0.5 0.48

0.51 ?

0.75 0.56

Therefore, c = 0.48 +0.56-0.48

0.75-0.5x (0.51-0.5) = 0.483 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (91.76 x 103) – (0.483 x 230 x 425)

= 44546.75N

Assuming 8mmφ- 2legged stirrups

Asv =

2 x π x 82

4 = 100.53mm

2

 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

44546.75 

= 346.29mm >300mm

Provide spacing = 300mm

Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 425

300= 51419.84N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415 = 76.44mm2 <100.5mm2 (safe)

Page 157: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 157/293

157

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 112.78 KN

 Nominal shear stress, v =Vu

b x d=

112.78 x 103

230 x 425= 1.15 N/mm2 

Ast = 1110.4 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1110.4

230 x 425= 1.14

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.15 ?

1.25 0.67

Therefore, c = 0.62 + 0.67-0.621.25-1

x (1.15-1.00) = 0.65 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (112.78 x 103) – (0.65 x 230 x 425)

= 49242.5N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Page 158: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 158/293

158

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

49242.5 

= 313.26mm < 300mm

Provide spacing = 300mm

Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 425

300= 51419.84N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asvb x Sv

  ≥ 0.40.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 144.11 KN

 Nominal shear stress, v =Vu

b x d=

144.11 x 103

230 x 425= 1.47 N/mm2 

Ast = 1598.13 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1598.13

230 x 425= 1.64

From IS 456-2000, Table 19:

Pt c 

1.50 0.72

1.64 ?

1.75 0.75

Page 159: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 159/293

159

Therefore, c = 0.72 +0.75-0.72

1.75-1.5x (1.64 – 1.5) = 0.74 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (144.11 x 103) – (0.74 x 230 x 425)

= 71775N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4

= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

71775 

= 214.92mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 210

0.87 x 415= 53.51mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 210mm c/c.

At right support:

End shear = (Vu) = 135.28 KN

 Nominal shear stress, v =Vu

b x d=

135.28 x 103

230 x 425= 1.38 N/mm2 

Ast = 1237.12 mm2 

Consider Pt =100 xAst 

 b x d=

100 x1237.12

230 x 425= 1.27

Page 160: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 160/293

160

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

1.27 ?

1.5 0.72

Therefore, c = 0.67 +0.72-0.67

1.5-1.25x (1.27-1.25) = 0.674 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (135.28 x 103) – (0.674 x 230 x 425)

= 69396.5N

Assuming 8mmφ- 2legged stirrups

Asv =

2 x π x 82

4 = 100.53mm

2

 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 425

69396.5 

= 222.28mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 220

0.87 x 415= 56.06mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 220mm c/c.

Page 161: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 161/293

161

Reinforcement for roof 20-11-02:

FLOOR  (Section: 230mm x 600mm, d‟ = 50mm) 

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 75.53 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

75.53 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 407.61 mm2 

Page 162: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 162/293

162

Between the supports (Ast2):

Span moment = 71.71 KN-m

Effective width of flange (bf ) =l0

6 + (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1590 x 120 x (550 – 0.42 x 120)

= 712.23 KN-m

Mu < Mu‟limit 

Ast:

71.71 x 106 = 0.87 x 415 x Ast2 x 550 x (1- 415 x Ast2

20 x 230 x 550)

Ast2 = 385.5 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 228.89 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2

 

Page 163: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 163/293

163

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(228.89 - 192.027) x 106

353 x (550 - 50)=208.86 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 208.86

0.87 x 415= 201.21 mm2 

Ast3 = Ast1 + Ast2 = 1205.32 + 204.21 = 1409.53 mm2 

At support (Ast4):

Moment due to external load (Mu) = 393.9 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'd = 50550 = 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(393.9 - 192.027) x 106

353 x (550 - 50)=1143.76 mm2 

Page 164: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 164/293

Page 165: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 165/293

165

At right end (Ast6):

Moment due to external load (Mu) = 315.93 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(315.93 - 192.027) x 106

353 x (550 - 50)=701.76 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -

f y x Ast1

f ck x b x d )

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 = f sc x Asc0.87 x f y = 353 x 701.760.87 x 415 = 686.11 mm2 

Ast6 = Ast1 + Ast2 = 1205.32 + 686.11 = 1891.43 mm2 

Page 166: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 166/293

166

Design of shear reinforcement:

At left support:

End shear = (Vu) = 109.8 KN

 Nominal shear stress, v =Vu

b x d=

109.8 x 103

230 x 550= 0.87 N/mm2 

Ast = 407.61 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 407.61

230 x 550= 0.32

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

0.32 ?

0.5 0.48

Therefore, c = 0.36 +0.48-0.360.5-0.25

x (0.32-0.25) = 0.4 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (109.8 x 103) – (0.4 x 230 x 550)

= 59200N

Page 167: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 167/293

167

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

59200 

= 337.21mm >300mm

Provide spacing = 300mm

Vus = 0.87 x f y x Asv x dsv= 0.87 x 415 x 100.53 x 550300 = 66543.32N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 152.94 KN

 Nominal shear stress, v =Vu

b x d=

152.94 x 103

230 x 550= 1.21 N/mm2 

Ast = 1409.33 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1409.33

230 x 550= 1.12

Page 168: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 168/293

168

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.12 ?

1.25 0.67

Therefore, c = 0.62 +0.67-0.62

1.25-1x (1.12-1) = 0.65 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (152.94 x 103) – (0.65 x 230 x 550)

= 70715N

Assuming 8mmφ- 2legged stirrups

Asv =

2 x π x 82

4 = 100.53mm

2

 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

70715 

= 282.3mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 280

0.87 x 415= 71.35mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 280mm c/c.

Page 169: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 169/293

169

At middle support:

End shear = (Vu) = 292.34 KN

 Nominal shear stress, v =Vu

b x d =292.34 x 103

230 x 550 = 2.31 N/mm2

 

Ast = 2323.58 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 2323.58

230 x 550= 1.84

From IS 456-2000, Table 19:

Pt c 

1.75 0.75

1.84 ?

2.00 0.79

Therefore, c = 0.75 +0.79-0.75

2-1.75x (1.84-1.75) = 0.77 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (292.34 x 103) – (0.77 x 230 x 550)

= 194935N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

194935 

= 160mm < 300mm

Page 170: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 170/293

170

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 160

0.87 x 415= 40.77mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 160mm c/c.

At right support:

End shear = (Vu) = 275.05 KN

 Nominal shear stress, v = Vub x d = 275.05 x 10

3

230 x 550 = 2.18 N/mm2 

Ast = 1891.43 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1891.43

230 x 550= 1.5

From IS 456-2000, Table 19:

Pt c 

1.5 0.72

Therefore, c = 0.72 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (275.05 x 103) – (0.72 x 230 x 550)

= 183970N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Page 171: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 171/293

171

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

183970 

= 169.54mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 160

0.87 x 415= 40.77mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 160mm c/c.

Reinforcement for roof 20-11-02:

Page 172: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 172/293

172

c. Beam 24-15 and Beam 15-06

Page 173: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 173/293

173

ROOF  – Same as in case of roof 20-11-12

FLOOR :

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 95.08 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

95.08 x 106

= 0.87 x 415 x Ast1 x 550 x (1 -

415 x Ast1

20 x 230 x 550 )

Ast1 = 523.81 mm2 

Between the supports (Ast2):

Span moment = 89.37 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

Page 174: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 174/293

174

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1590 x 120 x (550 – 0.42 x 120)

= 712.23 KN-m

Mu < Mu‟limit 

Ast:

89.37 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast2 = 489.33 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 208.43 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'd = 50550 = 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(208.43 - 192.027) x 106

353 x (550 - 50)=92.94 mm2 

Page 175: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 175/293

175

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 92.94

0.87 x 415= 90.87 mm2 

Ast3 = Ast1 + Ast2 = 1205.32 + 90.87 = 1296.19 mm2 

At support (Ast4):

Moment due to external load (Mu) = 280.82 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(280.82 - 192.027) x 106

353 x (550 - 50)=503.08 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 - 415 x Ast1

20 x 230 x 550)

Page 176: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 176/293

176

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y =353 x 503.08

0.87 x 415 = 491.86 mm2

 

Ast4 = Ast1 + Ast2 = 1205.32 + 491.86 = 1697.18 mm2 

Between the supports (Ast5):

Span moment = 166.85 KN-m

Effective width of flange (bf ) =l0

6

+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Therefore, bf =5887

6+ (6 x 120) + 230

= 1931.17 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x (d – 0.42Df )

= 0.36 x 20 x 1931.7 x 120 x (550 – 0.42 x 120)

= 833.83 KN-m

Mu < Mu‟limit 

Ast:

166.85 x 106

= 0.87 x 415 x Ast2 x 550 x (1-

415 x Ast2

20 x 230 x 550 )

Ast5 = 1006.35 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 211.34 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

Page 177: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 177/293

177

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(211.34 - 192.027) x 106

353 x (550 - 50)=109.42 mm

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 109.42

0.87 x 415= 106.98 mm2 

Ast6 = Ast1 + Ast2 = 1205.32 + 106.98 = 1312.3 mm2 

Page 178: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 178/293

Page 179: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 179/293

179

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 250

0.87 x 415= 63.7mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 250mm c/c.

At middle support:

End shear = (Vu) = 166.87 KN

 Nominal shear stress, v = Vub x d = 166.87 x 10

3

230 x 550 = 1.32 N/mm2 

Ast = 1296.19 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1296.19

230 x 550= 1.03

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.03 ?

1.25 0.67

Therefore, c = 0.62 +0.67-0.62

1.25-1x (1.03-1) = 0.63 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (166.87 x 103) – (0.63 x 230 x 550)

= 87175N

Assuming 8mmφ- 2legged stirrups

Page 180: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 180/293

180

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

87175 

= 229mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 220

0.87 x 415= 56.05mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 220mm c/c.

At middle support:

End shear = (Vu) = 200.56 KN

 Nominal shear stress, v = Vu

b x d= 200.56 x 10

3

230 x 550= 1.59 N/mm2 

Ast = 1697.18 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1697.18

230 x 550= 1.34

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

1.34 ?

1.50 0.72

Therefore, c = 0.67 +0.72-0.67

1.5-1.25x (1.34-1.25) = 0.69 N/mm2 

Page 181: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 181/293

181

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (200.56 x 103) – (0.69 x 230 x 550)

= 113275N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

113275 

= 275.35mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 270

0.87 x 415= 68.8mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 270mm c/c.

At right support:

End shear = (Vu) = 185.35 KN

 Nominal shear stress, v =Vu

b x d=

185.35 x 103

230 x 550= 1.47 N/mm2 

Ast = 1312.3 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1312.3

230 x 550= 1

Page 182: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 182/293

182

From IS 456-2000, Table 19:

Pt c 

1 0.62

Therefore, c = 0.62 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (185.35 x 103) – (0.62 x 230 x 550)

= 106920N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =

0.87 x f y x Asv x d

Vus =

0.87 x 415 x 157.07 x 550

106920  

= 291mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =

0.4 x 230 x 290

0.87 x 415 = 73.9mm2

<157.07mm2

(safe)

Therefore, provide 10mm dia stirrups @ 290mm c/c.

Page 183: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 183/293

183

Reinforcement for roof 24-15-06:

Page 184: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 184/293

184

d. Beam 25-16 and Beam 16-07 

Page 185: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 185/293

185

ROOF  – Same as 20-11-02

FLOOR :

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 85.69 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

85.69 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 467.34 mm2 

Between the supports (Ast2):

Span moment = 80.45 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Page 186: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 186/293

186

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1590 x 120 x (550 – 0.42 x 120)

= 712.23 KN-m

Mu < Mu‟limit 

Ast:

80.45 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast2 = 436.37 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 218.95 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(218.95 - 192.027) x 106

353 x (550 - 50)=152.54 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1

f ck x b x d)

Page 187: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 187/293

187

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 152.54

0.87 x 415= 149.14 mm2 

Ast3 = Ast1 + Ast2 = 1205.32 + 149.14 = 1354.46 mm2 

At support (Ast4):

Moment due to external load (Mu) = 343.47 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider 

d'

d =

50

550 = 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(343.47 - 192.027) x 106

353 x (550 - 50)=858.03 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

Page 188: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 188/293

188

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 858.03

0.87 x 415= 838.9 mm2 

Ast4 = Ast1 + Ast2 = 1205.32 + 838.9 = 2044.22 mm2 

Between the supports (Ast5):

Span moment = 210.5 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Therefore, bf =5887

6+ (6 x 120) + 230

= 1931.17 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1931.7 x 120 x (550 – 0.42 x 120)

= 833.83 KN-m

Mu < Mu‟limit 

Ast:

210.5 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast5 = 1366.21 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 268.55 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Page 189: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 189/293

189

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(268.55 - 192.027) x 106

353 x (550 - 50)=433.56 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1f ck x b x d )

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 = f sc x Asc

0.87 x f y= 353 x 433.56

0.87 x 415= 423.9 mm2 

Ast6 = Ast1 + Ast2 = 1205.32 + 423.9 = 1629.22 mm2 

Design of shear reinforcement:

At left support:

End shear = (Vu) = 120.89 KN

Page 190: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 190/293

190

 Nominal shear stress, v =Vu

b x d=

120.89 x 103

230 x 550= 0.96 N/mm2 

Ast = 467.34 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 467.34

230 x 550= 0.37

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

0.37 ?

0.5 0.48

Therefore, c = 0.36 +0.48-0.36

0.5-0.25x (0.37-0.25) = 0.42 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (120.89 x 103) – (0.42 x 230 x 550)

= 67760N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

67760 

= 294mm <300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asvb x Sv

  ≥0.4

0.87 x f y 

Page 191: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 191/293

191

Asv =0.4 x 230 x 290

0.87 x 415= 73.9mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 290mm c/c.

At middle support:

End shear = (Vu) = 158.11 KN

 Nominal shear stress, v =Vu

b x d=

158.11 x 103

230 x 550= 1.25 N/mm2 

Ast = 1354.46 mm2 

Consider Pt = 100 xAst  b x d = 100 x 1354.46230 x 550 = 1.07

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.07 ?

1.25 0.67

Therefore, c = 0.62 +0.67-0.62

1.25-1x (1.07-1) = 0.634 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (158.11x 103) – (0.634 x 230 x 550)

= 77909N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Page 192: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 192/293

192

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

77909 

= 256.24mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 250

0.87 x 415= 63.7mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 250mm c/c.

At middle support:

End shear = (Vu) = 251.1 KN

 Nominal shear stress, v =Vu

b x d=

251.1 x 103

230 x 550= 2 N/mm2 

Ast = 2044.2 mm2

 

Consider Pt =100 xAst 

 b x d=

100 x 2044.2

230 x 550= 1.62

From IS 456-2000, Table 19:

Pt c 

1.5 0.72

1.62 ?

1.75 0.75

Therefore, c = 0.72 +0.75-0.72

1.75-1.5x (1.62-1.5) = 0.73 N/mm2 

Therefore, v > c,

Page 193: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 193/293

193

Stirrups are designed for shear Vus = Vu - c bd

= (251.1 x 103) – (0.73 x 230 x 550)

= 158755N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus

=0.87 x 415 x 157.07 x 550

158755

 

= 196.5mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 190

0.87 x 415= 48.41mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 190mm c/c.

At right support:

End shear = (Vu) = 234.86 KN

 Nominal shear stress, v =Vu

b x d=

234.86 x 103

230 x 550= 1.86 N/mm2 

Ast = 1629.22 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1629.22

230 x 550= 1.29

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

Page 194: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 194/293

194

1.29 ?

1.5 0.72

Therefore, c = = 0.67 +0.72-0.67

1.5-1.25 x (1.29-1.25) = 0.68 N/mm2

 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (234.86 x 103) – (0.68 x 230 x 550)

= 148840N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

148840 

= 209.56mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 200

0.87 x 415= 50.96mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 200mm c/c.

Page 195: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 195/293

195

Reinforcement for roof 25-16-07

Page 196: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 196/293

196

e. Beam 26-17 and Beam 17-08 

Page 197: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 197/293

197

ROOF – Same as 20-11-02

FLOOR:

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 73.1 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

73.1 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 393.52 mm2 

Between the supports (Ast2):

Span moment = 68.48 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Page 198: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 198/293

198

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1590 x 120 x (550 – 0.42 x 120)

= 712.23 KN-m

Mu < Mu‟limit 

Ast:

68.48 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast2 = 366.94 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 185.08 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast3:

Mu‟limit = 0.87 x f y x Ast3 x d x (1 - f y x Ast3f ck x b x d )

185.08 x 106 = 0.87 x 415 x Ast3 x 550 x (1 -415 x Ast3

20 x 230 x 550)

Ast3 = 1148.33 mm2 

At support (Ast4):

Moment due to external load (Mu) = 297.26 KN-m

Page 199: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 199/293

199

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc = Mu - Mu‟limit

f sc x (d - d')= (297.26 - 192.027) x 106

353 x (550 - 50)=596.22 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 596.22

0.87 x 415= 582.93 mm2 

Ast4 = Ast1 + Ast2 = 1205.32 + 582.93 = 1788.25 mm2 

Between the supports (Ast5):

Span moment = 183.9 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Page 200: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 200/293

200

Therefore, bf =5887

6+ (6 x 120) + 230

= 1931.17 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1931.7 x 120 x (550 – 0.42 x 120)

= 833.83 KN-m

Mu < Mu‟limit 

Ast:

183.9 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast5 = 1138.82 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 234.45 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(234.45 - 192.027) x 106

353 x (550 - 50)=240.36 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1

f ck x b x d)

Page 201: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 201/293

201

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 240.36

0.87 x 415= 235 mm2 

Ast6 = Ast1 + Ast2 = 1205.32 + 235 = 1440.32 mm2 

Design of shear reinforcement:

At left support:

End shear = (Vu) = 101.13 KN

 Nominal shear stress, v =Vu

b x d=

101.13 x 103

230 x 550= 0.8 N/mm2 

Ast = 393.52 mm2 

Consider Pt = 100 xAst  b x d

= 100 x 393.52230 x 550

= 0.31

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

0.31 ?

0.5 0.48

Page 202: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 202/293

202

Therefore, c = 0.36 +0.48-0.36

0.5-0.25x (0.31-0.25) = 0.39 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (101.13 x 103) – (0.39 x 230 x 550)

= 51795N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4

= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

51795 

= 385.42mm >300mm

Provide spacing = 300mm

Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 550

300= 66543.32N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =

0.4 x 230 x 300

0.87 x 415 = 76.44 mm2

<100.5mm2

(safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 131.2 KN

 Nominal shear stress, v =Vu

b x d=

131.2 x 103

230 x 550= 1.04 N/mm2 

Page 203: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 203/293

203

Ast = 1148.33 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1148.33

230 x 550= 0.91

From IS 456-2000, Table 19:

Pt c 

0.75 0.56

0.91 ?

1.00 0.62

Therefore, c = 0.56 +0.62-0.56

1-0.75x (0.91-0.75) = 0.6 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (131.2x 103) – (0.6 x 230 x 550)

= 55300N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =

0.87 x f y x Asv x d

Vus =

0.87 x 415 x 100.53 x 550

55300  

= 361mm > 300mm

Provide spacing = 300mm

Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 550

300= 66543.32N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Page 204: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 204/293

Page 205: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 205/293

205

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

128655 

= 242.5mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 240

0.87 x 415= 61.16mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 240mm c/c.

At right support:

End shear = (Vu) = 204.57 KN

 Nominal shear stress, v =Vu

b x d=

204.57 x 103

230 x 550= 1.62 N/mm2 

Ast = 1400.32 mm2

 

Consider Pt =100 xAst 

 b x d=

100 x 1400.32

230 x 550= 1.11

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.11 ?

1.25 0.67

Therefore, c = = 0.62 +0.67-0.62

1.25-1.00x (1.11-1.00) = 0.64 N/mm2 

Therefore, v > c,

Page 206: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 206/293

206

Stirrups are designed for shear Vus = Vu - c bd

= (204.57 x 103) – (0.64 x 230 x 550)

= 123610N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus

=0.87 x 415 x 157.07 x 550

123610

 

= 252.33mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 250

0.87 x 415= 63.7mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 200mm c/c.

Reinforcement for roof 26-17-08

Page 207: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 207/293

207

f. Beam 27-18 and Beam 18-09 

Page 208: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 208/293

208

ROOF  – Same as 19-10-01

FLOOR :

The moments acting on the beam are:

At left support (Ast1):

Moment due to external load (Mu) = 101.22 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

101.22 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 561.43 mm2 

Between the supports (Ast2):

Span moment = 70.3 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 6000 = 4200 mm

Page 209: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 209/293

209

Therefore, bf =4200

6+ (6 x 120) + 230

= 1650 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1590 x 120 x (550 – 0.42 x 120)

= 712.23 KN-m

Mu < Mu‟limit 

Ast:

70.3 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast2 = 377.38 mm2 

At right support (Ast3):

Moment due to external load (Mu) = 166.06 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu < Mu‟limit , therefore design as singly reinforced beam.

To find Ast3:

Mu‟limit = 0.87 x f y x Ast3 x d x (1 - f y x Ast3f ck x b x d )

166.06 x 106 = 0.87 x 415 x Ast3 x 550 x (1 -415 x Ast3

20 x 230 x 550)

Ast3 = 1000.42 mm2 

At support (Ast4):

Moment due to external load (Mu) = 288.45 KN-m

Page 210: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 210/293

210

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc = Mu - Mu‟limit

f sc x (d - d')= (288.45 - 192.027) x 106

353 x (550 - 50)=546.31 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 -f y x Ast1

f ck x b x d)

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 546.31

0.87 x 415= 534.13 mm2 

Ast4 = Ast1 + Ast2 = 1205.32 + 534.13 = 1739.45 mm2 

Between the supports (Ast5):

Span moment = 160.42 KN-m

Effective width of flange (bf ) =l0

6+ (6 x Df ) + bw 

l0 = 0.7 x l = 0.7 x 8410 = 5887 mm

Page 211: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 211/293

211

Therefore, bf =5887

6+ (6 x 120) + 230

= 1931.17 mm

Therefore Mu‟limit = 0.36 x f ck x bf x Df x(d – 0.42Df )

= 0.36 x 20 x 1931.7 x 120 x (550 – 0.42 x 120)

= 833.83 KN-m

Mu < Mu‟limit 

Ast:

160.42 x 106 = 0.87 x 415 x Ast2 x 550 x (1-415 x Ast2

20 x 230 x 550)

Ast5 = 958.56 mm2 

At right end (Ast6):

Moment due to external load (Mu) = 257.96 KN-m

Mu‟limit = 0.138 x f ck x b x d2 

= 0.138 x 20 x 230 x (550)2 = 192.027 x 106 N-mm

= 192.027 KN-m

Mu > Mu‟limit , therefore design as doubly reinforced beam.

Consider d'

d=

50

550= 0.1

Therefore, f sc = 353 N/mm2 

Area of steel in compression (Asc):

Asc =Mu - Mu‟limit

f sc x (d - d')=

(257.96 - 192.027) x 106

353 x (550 - 50)=373.56 mm2 

To find Ast1:

Mu‟limit = 0.87 x f y x Ast1 x d x (1 - f y x Ast1

f ck x b x d)

Page 212: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 212/293

212

192.027 x 106 = 0.87 x 415 x Ast1 x 550 x (1 -415 x Ast1

20 x 230 x 550)

Ast1 = 1205.32 mm2 

To find Ast2:

Ast2 =f sc x Asc

0.87 x f y=

353 x 373.56

0.87 x 415= 365.23 mm2 

Ast6 = Ast1 + Ast2 = 1205.32 + 365.23 = 1570.55 mm2 

Design of shear reinforcement:

At left support:

End shear = (Vu) = 119.94 KN

 Nominal shear stress, v =Vu

b x d=

119.94 x 103

230 x 550= 0.95 N/mm2 

Ast = 561.43 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 561.43

230 x 550= 0.44

From IS 456-2000, Table 19:

Pt c 

0.25 0.36

0.44 ?

0.5 0.48

Therefore, c = 0.36 +0.48-0.36

0.5-0.25x (0.44-0.25) = 0.45 N/mm2 

Therefore, v > c,

Page 213: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 213/293

213

Stirrups are designed for shear Vus = Vu - c bd

= (119.94 x 103) – (0.45 x 230 x 550)

= 63015N

Assuming 8mmφ- 2legged stirrups

Asv =2 x π x 82

4= 100.53mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus

=0.87 x 415 x 100.53 x 550

63015

 

= 316.8mm >300mm

Provide spacing = 300mm

Vus =0.87 x f y x Asv x d

sv=

0.87 x 415 x 100.53 x 550

300= 66543.32N

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44 mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

At middle support:

End shear = (Vu) = 138.8 KN

 Nominal shear stress, v =Vu

b x d=

138.8 x 103

230 x 550= 1.1 N/mm2 

Ast = 1000.42 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1000.42

230 x 550= 0.79

Page 214: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 214/293

214

From IS 456-2000, Table 19:

Pt c 

0.75 0.56

0.79 ?

1.00 0.62

Therefore, c = 0.56 +0.62-0.56

1-0.75x (0.79-0.75) = 0.57 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (138.8x 103) – (0.57 x 230 x 550)

= 66695N

Assuming 8mmφ- 2legged stirrups

Asv =

2 x π x 82

4 = 100.53mm

2

 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 100.53 x 550

66695 

= 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 300

0.87 x 415= 76.44 mm2 <100.5mm2 (safe)

Therefore, provide 8mm dia stirrups @ 300mm c/c.

Page 215: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 215/293

215

At middle support:

End shear = (Vu) = 208.4 KN

 Nominal shear stress, v =Vu

b x d =208.4 x 103

230 x 550 = 1.65 N/mm2

 

Ast = 1739.5mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1739.5

230 x 550= 1.38

From IS 456-2000, Table 19:

Pt c 

1.25 0.67

1.38 ?

1.5 0.72

Therefore, c = 0.67 +0.72-0.67

1.5-1.25x (1.38-1.25) = 0.7 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (208.4 x 103) – (0.7 x 230 x 550)

= 119850N

Assuming 10mmφ- 2legged stirrups

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

119850 

= 260.25mm < 300mm

Page 216: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 216/293

216

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 260

0.87 x 415= 66.25mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 260mm c/c.

At right support:

End shear = (Vu) = 200.33 KN

 Nominal shear stress, v = Vub x d = 200.33 x 10

3

230 x 550 = 1.58 N/mm2 

Ast = 1570.5 mm2 

Consider Pt =100 xAst 

 b x d=

100 x 1570.5

230 x 550= 1.24

From IS 456-2000, Table 19:

Pt c 

1.00 0.62

1.24 ?

1.25 0.67

Therefore, c = = 0.62 +0.67-0.62

1.25-1.00x (1.24-1.00) = 0.67 N/mm2 

Therefore, v > c,

Stirrups are designed for shear Vus = Vu - c bd

= (200.33 x 103) – (0.67 x 230 x 550)

= 115575N

Assuming 10mmφ- 2legged stirrups

Page 217: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 217/293

217

Asv =2 x π x 102

4= 157.07mm2 

Therefore,

Spacing of stirrups, sv =0.87 x f y x Asv x d

Vus=

0.87 x 415 x 157.07 x 550

115575 

= 269.87mm < 300mm

Min shear reinforcement (IS456-2000, clause 26.5.1.6, P48)

Asv

b x Sv  ≥

0.4

0.87 x f y 

Asv =0.4 x 230 x 260

0.87 x 415= 66.25mm2 <157.07mm2 (safe)

Therefore, provide 10mm dia stirrups @ 260mm c/c.

Reinforcement for roof 27-18-09

Page 218: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 218/293

218

5. DESIGN OF COLUMNS

Since the loads and moments in the three columns in a frame are different. Each of the

Column is required to be designed separately. However, when entire building is to be

designed, there will be a number of other columns along with each of the above columns to

form a group.

Since exact values of Pu and Mu are known for all storeys for all columns, the column

section will be designed using exact method using charts and tables. Charts are useful for any

which of column. It is advisable to have curves plotted of Pu-Mu for standard sections

normally used in building design to avoid calculations.

All the columns are subjected to axial loads and uni-axial bending. They will be

designed to resist Pu and Mu for bending @ x-axis which is the major axis.

For frame 19-10-01:

Columns are C19 at left end, C10 at middle and C01 at right end of the frame.

The moments and axial forces are calculated in analysis of frames and design of 

 beams. We have transverse frames and in these frames the plinth level transverse beams are

absent and longitudinal beams are present at the plinth level.

In each level the types of loads are:

1.  Max shear from transverse beams

2.  Shear from longitudinal beams

3.  Self weight of columns.

But in plinth level shear from transverse beams is absent. We have only two values at the plinth level

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 219: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 219/293

219

Pu – Load acting on the column

Mux,min = ex,min x Pu 

MuD = Maximum (Mu, Mux,min)

f ck x b x D = 20 x 230 x 600 = 2760000N = 2760 KN

f ck x b x D2 = 20 x 230 x (600)2 = 1676 x 106 N-mm = 1676 KN-m

Page 220: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 220/293

220

For Column 19:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 102.83 64.85 2.68 64.85

5-4 2900 25.8 271.485 53.27 7 53.27

4-3 2900 25.8 440.14 53.27 11.36 53.27

3-2 2900 25.8 608.795 53.27 15.71 53.27

2-1 2900 25.8 777.45 53.27 20.06 53.27

1- Plinth 4900 29.8 946.11 53.27 28.19 53.27

Plinth –  

Footing

- 29.8 982.185 0 29.27 29.27

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.04 0.04 0.015 0.3

5-4 0.1 0.03  0.01  0.2

4-3 0.16 0.03  0.01  0.2

3-2 0.22 0.03 

0.01 

0.22-1 0.28 0.03  0.01  0.2

1- Plinth 0.34 0.03  0.01  0.2

Plinth – Footing 0.36 0.02 0.01  0.2

But from Is 456-2000, P48, Clause 26.5.3.1 (a)

The cross-sectional area of longitudinal reinforcement, shall be not less than

0.8% nor more than 6% of the gross cross-sectional area (b x D) of the column.

Page 221: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 221/293

221

Therefore, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 222: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 222/293

222

For Column 10:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 202.61 89.7 5.29 89.70

5-4 2900 25.8 583.35 81.6 15.05 81.60

4-3 2900 25.8 964.09 81.6 24.87 81.60

3-2 2900 25.8 1344.83 81.6 34.70 81.60

2-1 2900 25.8 1725.57 81.6 44.52 81.60

1- Plinth 4900 29.8 2106.31 81.6 62.77 81.60

Plinth –  

Footing - 29.8 2136.1 0 63.66 63.66

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.05 0.02 0.4

5-4 0.21 0.05 0.02 0.4

4-3 0.35 0.05 0.02 0.4

3-2 0.49 0.05 0.04 0.82-1 0.63 0.05 0.08 1.6

1- Plinth 0.76 0.05 0.12 2.4

Plinth – Footing 0.77 0.04 0.12 2.4

But from Is 456-2000, P48, Clause 26.5.3.1 (a)

The cross-sectional area of longitudinal reinforcement, shall be not less than

0.8% nor more than 6% of the gross cross-sectional area (b x D) of the column.

Page 223: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 223/293

223

Therefore, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 1.6%

Ast =1.6

100x 230 x 600 = 2208 mm2 

 No. of bars of 20mmφ bars =4 x 2208

 π x (20)2 = 7 bars

Therefore provide 8 bars of 20mmφ bars. (Each side 4bars)

For P = 2.4%

Ast =2.4

100x 230 x 600 = 3312 mm2 

 No. of bars of 25mmφ bars =4 x 3312

 π x (25)2 = 6.75 bars say 8 bars

Therefore provide 8 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4 x diameter of max main steel bar =1

4 x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Page 224: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 224/293

224

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm2) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 2208  8 bars of 20mm φ 

1-Plinth 3312  8 bars of 25mm φ 

Plinth – footing 3312  8 bars of 25mm φ 

For Column 01:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 133.97 136.67 3.50 136.67

5-4 2900 25.8 383.39 122.6 9.89 122.60

4-3 2900 25.8 632.81 122.6 16.33 122.60

3-2 2900 25.8 882.23 122.6 22.76 122.60

2-1 2900 25.8 1131.65 122.6 29.20 122.60

1- Plinth 4900 29.8 1381.07 122.6 41.16 122.60

Plinth –  

Footing

-

29.8 1430.66 0 42.63 42.63

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Page 225: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 225/293

225

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.05 0.08 0.02 0.4

5-4 0.14 0.07 0.02 0.4

4-3 0.23 0.07 0.02 0.4

3-2 0.32 0.07 0.04 0.8

2-1 0.41 0.07 0.04 0.8

1- Plinth 0.50 0.07 0.06 1.2

Plinth – Footing 0.52 0.03 0.06 1.2

Provide min P = 0.8% 

Ast = 0.8100

x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

For P=1.2%

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27 say 6 bars

Therefore provide 6 bars of 20mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  14 x diameter of max main steel bar = 14 x 20 = 5mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1.  Least lateral dimension = 230mm

Page 226: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 226/293

226

2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1656  6 bars of 20mm φ 

Plinth – footing 1656  6 bars of 20mm φ 

Page 227: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 227/293

227

For frame 20-11-02:

Columns are C20 at left end, C12 at middle and C02 at right end of the frame.

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 228: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 228/293

228

f ck x b x D = 20 x 230 x 600 = 2760000N = 2760 KN

f ck x b x D2 = 20 x 230 x (600)2 = 1676 x 106 N-mm = 1676 KN-m

For Column 20:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 137.01 68.42 3.53 68.42

5-4 2750 25.5 315.59 37.77 8.05 37.77

4-3 2750 25.5 494.17 37.77 12.60 37.77

3-2 2750 25.5 672.75 37.77 17.16 37.77

2-1 2750 25.5 851.33 37.77 21.71 37.77

1- Plinth 4750 29.5 1029.91 37.77 30.38 37.77

Plinth –  

Footing

-

29.5 1091.71 0 32.21 32.21

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.05 0.04 0.01 0.2

5-4 0.11 0.02 0.01 0.2

4-3 0.18 0.02 0.01 0.2

3-2 0.24 0.02 0.01 0.2

2-1 0.31 0.02 0.01 0.2

1- Plinth 0.37 0.02 0.01 0.2

Plinth – Footing 0.40 0.02 0.01 0.2

Page 229: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 229/293

229

Therefore, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 230: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 230/293

230

For Column 11:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 279.26 93.54 7.20 93.54

5-4 2750 25.5 806.49 108.74 20.57 108.74

4-3 2750 25.5 1307.98 108.74 33.35 108.74

3-2 2750 25.5 1809.47 108.74 46.14 108.74

2-1 2750 25.5 2310.96 108.74 58.93 108.74

1- Plinth 4750 29.5 2812.45 108.74 82.97 108.74

Plinth –  

Footing - 29.5 2861.68 0 84.42 84.42

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.10 0.06 0.02 0.4

5-4 0.29 0.07 0.02 0.4

4-3 0.47 0.07 0.06 1.2

3-2 0.66 0.07 0.1 22-1 0.84 0.07 0.16 3.2

1- Plinth 1.02 0.07 0.2 4

Plinth – Footing 1.04 0.05 0.2 4

For P less than 0.8, Provide P = 0.8% 

Ast =0.8

100 x 230 x 600 = 1104 mm2 

Page 231: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 231/293

231

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 1.2% 

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27, say 6 bars

Therefore provide 6 bars of 20mmφ bars.

For P = 2% 

Ast =2

100x 230 x 600 = 2760 mm2 

 No. of bars of 25mmφ bars =4 x 2760

 π x (25)2 = 5.62 bars say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 3.2% 

Ast =3.2

100x 230 x 600 = 4416 mm2 

 No. of bars of 25mmφ bars =4 x 4416

 π x (25)2 = 9 bars

Therefore provide 10 bars of 25mmφ bars. (Each side 5bars)

For P = 4% 

Ast =4

100x 230 x 600 = 5520 mm2 

 No. of bars of 25mmφ bars =4 x 5520

 π x (25)2 = 11.24 say 12 bars

Therefore provide 12 bars of 25mmφ bars.

Page 232: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 232/293

232

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4

x diameter of max main steel bar =1

4

x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400 mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c.

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 4-3 1656  6 bars of 20mm φ 

3-2 2760 6 bars of 25mm φ 

2-1 4416  10 bars of 25mm φ 

1-Plinth 5520  12 bars of 25mm φ 

Plinth – footing 5520  12 bars of 25mm φ 

Page 233: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 233/293

233

For Column 02:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 180.53 155.8 4.66 155.80

5-4 2750 25.5 551.39 153.37 14.06 153.37

4-3 2750 25.5 922.25 153.37 23.52 153.37

3-2 2750 25.5 1293.11 153.37 32.97 153.37

2-1 2750 25.5 1663.97 153.37 42.43 153.37

1- Plinth 4750 29.5 2034.83 153.37 60.03 153.37

Plinth –  

Footing

-

29.5 2123.66 0 62.65 62.65

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.09 0.04 0.8

5-4 0.20 0.09 0.04 0.8

4-3 0.33 0.09 0.06 1.2

3-2 0.47 0.09 0.08 1.6

2-1 0.60 0.09 0.1 2

1- Plinth 0.74 0.09 0.14 2.8

Plinth – Footing 0.77 0.04 0.16 3.2

For P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

Page 234: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 234/293

234

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P=1.2% 

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27 say 6 bars

Therefore provide 6 bars of 20mmφ bars.

For P=1.6% 

Ast =1.6

100x 230 x 600 = 2208 mm2 

 No. of bars of 25mmφ bars =4 x 2208

 π x (25)2 = 4.5 say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 2% 

Ast =2

100x 230 x 600 = 2760 mm2 

 No. of bars of 25mmφ bars =4 x 2760

 π x (25)2 = 5.62 bars say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 2.8%

Ast =2.8

100x 230 x 600 = 3864 mm2 

 No. of bars of 25mmφ bars =4 x 3864

 π x (25)2 = 7.87 bars say 8 bars

Therefore provide 8 bars of 25mmφ bars.

Page 235: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 235/293

235

For P = 3.2% 

Ast =3.2

100x 230 x 600 = 4416 mm2 

 No. of bars of 25mmφ bars =4 x 4416

 π x (25)2 = 9 bars

Therefore provide 10 bars of 25mmφ bars. (Each side 5bars)

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1656  6 bars of 20mm φ 

3-2 2208  6 bars of 25mm φ 

2-1 2760  6 bars of 25mm φ 

1-Plinth 3864  8 bars of 25mm φ 

Plinth – footing 4416  10 bars of 25mm φ 

Page 236: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 236/293

236

For frame 24-15-06:

Columns are C24 at left end, C15 at middle and C06 at right end of the frame.

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 237: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 237/293

237

f ck x b x D = 20 x 230 x 600 = 2760000N = 2760 KN

f ck x b x D2 = 20 x 230 x (600)2 = 1676 x 106 N-mm = 1676 KN-m

For Column 24:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 137.01 68.42 3.53 68.42

5-4 2750 25.5 339.45 47.54 8.66 47.54

4-3 2750 25.5 541.89 47.54 13.82 47.54

3-2 2750 25.5 744.33 47.54 18.98 47.54

2-1 2750 25.5 946.77 47.54 24.14 47.54

1- Plinth 4750 29.5 1149.21 47.54 33.90 47.54

Plinth –  

Footing

-

29.5 1211.01 0 35.72 35.72

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.05 0.04 0.01 0.2

5-4 0.12 0.03 0.01 0.2

4-3 0.20 0.03 0.01 0.2

3-2 0.27 0.03 0.01 0.2

2-1 0.34 0.03 0.01 0.2

1- Plinth 0.42 0.03 0.01 0.2

Plinth – Footing 0.44 0.02 0.01 0.2

Page 238: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 238/293

238

Therefore, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 239: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 239/293

239

For Column 15:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 279.26 93.54 7.20 93.54

5-4 2750 25.5 702.9 63.86 17.92 63.86

4-3 2750 25.5 1126.54 63.86 28.73 63.86

3-2 2750 25.5 1550.18 63.86 39.53 63.86

2-1 2750 25.5 1973.82 63.86 50.33 63.86

1- Plinth 4750 29.5 2397.46 63.86 70.73 70.73

Plinth –  

Footing - 29.5 2446.69 0 72.18 72.18

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 P

f ck From chart

P (%)

Roof  – 5 0.10 0.06 0.01 0.2

5-4 0.25 0.04 0.01 0.2

4-3 0.41 0.04 0.02 0.4

3-2 0.56 0.04 0.06 1.22-1 0.72 0.04 0.1 2

1- Plinth 0.87 0.04 0.16 3.2

Plinth – Footing 0.89 0.04 0.16 3.2

For P less than 0.8, Provide P = 0.8% 

Ast =0.8

100 x 230 x 600 = 1104 mm2 

Page 240: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 240/293

240

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 1.2% 

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27, say 6 bars

Therefore provide 6 bars of 20mmφ bars.

For P = 2% 

Ast =2

100x 230 x 600 = 2760 mm2 

 No. of bars of 25mmφ bars =4 x 2760

 π x (25)2 = 5.62 bars say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 3.2% 

Ast =3.2

100x 230 x 600 = 4416 mm2 

 No. of bars of 25mmφ bars =4 x 4416

 π x (25)2 = 9 bars

Therefore provide 10 bars of 25mmφ bars. (Each side 5bars)

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Page 241: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 241/293

241

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400 mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1656 6 bars of 20mm φ 

2-1 2760  6 bars of 25mm φ 

1-Plinth 4416  10 bars of 25mm φ 

Plinth – footing 4416  10 bars of 25mm φ 

For Column 06:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 180.53 155.8 4.66 155.80

5-4 2750 25.5 461.69 103.08 11.77 103.08

4-3 2750 25.5 742.85 103.08 18.94 103.08

3-2 2750 25.5 1024.01 103.08 26.11 103.08

2-1 2750 25.5 1305.17 103.08 33.28 103.08

1- Plinth 4750 29.5 1586.33 103.08 46.80 103.08

Plinth –  

Footing

-

29.5 1675.16 0 49.42 49.42

Page 242: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 242/293

242

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.09 0.04 0.8

5-4 0.17 0.06 0.02 0.4

4-3 0.27 0.06 0.02 0.4

3-2 0.37 0.06 0.02 0.4

2-1 0.47 0.06 0.04 0.8

1- Plinth 0.57 0.06 0.08 1.6

Plinth – Footing 0.61 0.03 0.08 1.6

For P = 0.8% and P <0.8%

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars = 4 x 1104 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P=1.6% 

Ast =1.6

100x 230 x 600 = 2208 mm2 

 No. of bars of 25mmφ bars =4 x 2208

 π x (25)2 = 4.5 say 6 bars

Therefore provide 6 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Page 243: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 243/293

243

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm2) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104 6 bars of 16mm φ 

3-2 1104 6 bars of 16mm φ 

2-1 1104 6 bars of 16mm φ 

1-Plinth 2208  6 bars of 25mm φ 

Plinth – footing 2208  6 bars of 25mm φ 

Page 244: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 244/293

244

For frame 25-16-07:

Columns are C25 at left end, C16 at middle and C07 at right end of the frame.

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 245: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 245/293

Page 246: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 246/293

246

For P < 0.8%, Provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 247: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 247/293

247

For Column 16:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 279.26 68.42 7.20 68.42

5-4 2750 25.5 744.68 42.84 18.99 42.84

4-3 2750 25.5 1210.1 42.84 30.86 42.84

3-2 2750 25.5 1675.52 42.84 42.73 42.84

2-1 2750 25.5 2140.94 42.84 54.59 54.59

1- Plinth 4750 29.5 2606.36 42.84 76.89 76.89

Plinth –  

Footing - 29.5 2655.59 0 78.34 78.34

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.10 0.04 0.01 0.2

5-4 0.27 0.03 0.01 0.2

4-3 0.44 0.03 0.02 0.4

3-2 0.61 0.03 0.08 1.62-1 0.78 0.03 0.12 2.4

1- Plinth 0.94 0.05 0.18 3.6

Plinth – Footing 0.96 0.05 0.18 3.6

For P less than 0.8, Provide P = 0.8% 

Ast =0.8

100 x 230 x 600 = 1104 mm2 

Page 248: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 248/293

248

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 1.6% 

Ast =1.6

100x 230 x 600 = 2208 mm2 

 No. of bars of 25mmφ bars =4 x 2208

 π x (20)2 = 4.5 say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 2.4% 

Ast =2.4

100x 230 x 600 = 3312 mm2 

 No. of bars of 25mmφ bars =4 x 3312

 π x (25)2 = 6.77 bars say 8 bars

Therefore provide 8 bars of 25mmφ bars.

For P = 3.6% 

Ast =3.6

100x 230 x 600 = 4968 mm2 

 No. of bars of 25mmφ bars =4 x 4968

 π x (25)2 = 10.12, say 12 bars

Therefore provide 12 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Page 249: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 249/293

249

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400 mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104 6 bars of 16mm φ 

3-2 2208 6 bars of 25mm φ 

2-1 3312  8 bars of 25mm φ 

1-Plinth 4968  12 bars of 25mm φ 

Plinth – footing 4968  12 bars of 25mm φ 

For Column 07:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 180.53 155.8 4.66 155.80

5-4 2750 25.5 511.2 130.75 13.04 130.75

4-3 2750 25.5 841.87 130.75 21.47 130.75

3-2 2750 25.5 1172.54 130.75 29.90 130.75

2-1 2750 25.5 1503.21 130.75 38.33 130.75

1- Plinth 4750 29.5 1833.88 130.75 54.10 130.75

Plinth –  

Footing

-

29.5 1922.71 0 56.72 56.72

Page 250: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 250/293

250

By the help of SP16, chart no:32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.09 0.04 0.8

5-4 0.19 0.08 0.02 0.4

4-3 0.31 0.08 0.04 0.8

3-2 0.42 0.08 0.06 1.2

2-1 0.54 0.08 0.08 1.6

1- Plinth 0.66 0.08 0.12 2.4

Plinth – Footing 0.70 0.03 0.12 2.4

For P < 0.8%, Provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars = 4 x 1104 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P=1.2% 

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27 say 6 bars

Therefore provide 6 bars of 20mmφ bars.

For P=1.6% 

Ast =1.6

100x 230 x 600 = 2208 mm2 

Page 251: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 251/293

251

 No. of bars of 25mmφ bars =4 x 2208

 π x (25)2 = 4.5 say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 2.4% 

Ast =2.4

100x 230 x 600 = 3312 mm2 

 No. of bars of 25mmφ bars =4 x 3312

 π x (25)2 = 6.74 bars say 8 bars

Therefore provide 8 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

Page 252: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 252/293

252

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104 6 bars of 16mm φ 

3-2 1656 6 bars of 20mm φ 

2-1 2208  6 bars of 25mm φ 

1-Plinth 3312  8 bars of 25mm φ 

Plinth – footing 3312  8 bars of 25mm φ 

Page 253: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 253/293

253

For frame 26-17-08:

Columns are C26 at left end, C17 at middle and C08 at right end of the frame.

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 254: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 254/293

254

f ck x b x D = 20 x 230 x 600 = 2760000N = 2760 KN

f ck x b x D2 = 20 x 230 x (600)2 = 1676 x 106 N-mm = 1676 KN-m

For Column 26:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 137.01 68.42 3.53 68.42

5-4 2750 25.5 306.92 36.55 7.83 36.55

4-3 2750 25.5 476.83 36.55 12.16 36.55

3-2 2750 25.5 646.74 36.55 16.49 36.55

2-1 2750 25.5 816.65 36.55 20.82 36.55

1- Plinth 4750 29.5 986.56 36.55 29.10 36.55

Plinth –  

Footing

-

29.5 1048.36 0 30.93 30.93

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 P

f ck From chart

P (%)

Roof  – 5 0.05 0.04 0.01 0.2

5-4 0.11 0.02 0.01 0.2

4-3 0.17 0.02 0.01 0.2

3-2 0.23 0.02 0.01 0.2

2-1 0.30 0.02 0.01 0.2

1- Plinth 0.36 0.02 0.01 0.2

Plinth – Footing 0.38 0.02 0.01 0.2

Page 255: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 255/293

255

For P < 0.8%, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 256: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 256/293

256

For Column 17:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 279.26 68.42 7.20 68.42

5-4 2750 25.5 685.14 36.55 17.47 36.55

4-3 2750 25.5 1091.02 36.55 27.82 36.55

3-2 2750 25.5 1496.9 36.55 38.17 38.17

2-1 2750 25.5 1902.78 36.55 48.52 48.52

1- Plinth 4750 29.5 2308.66 36.55 68.11 68.11

Plinth –  

Footing - 29.5 2357.89 0 69.56 69.56

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 P

f ck From chart

P (%)

Roof  – 5 0.10 0.04 0.01 0.2

5-4 0.25 0.02 0.01 0.2

4-3 0.40 0.02 0.01 0.2

3-2 0.54 0.02 0.04 0.82-1 0.69 0.03 0.1 2

1- Plinth 0.84 0.04 0.14 2.8

Plinth – Footing 0.85 0.04 0.14 2.8

For P less than 0.8, Provide P = 0.8% 

Ast =0.8

100 x 230 x 600 = 1104 mm2 

Page 257: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 257/293

257

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 2% 

Ast =2

100x 230 x 600 = 2760 mm2 

 No. of bars of 25mmφ bars =4 x 2760

 π x (25)2 = 5.62 bars say 6 bars

Therefore provide 6 bars of 25mmφ bars.

For P = 2.8%

Ast =2.8

100x 230 x 600 = 3864 mm2 

 No. of bars of 25mmφ bars =4 x 3864

 π x (25)2 = 7.87, say 8 bars

Therefore provide 8 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400 mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

Page 258: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 258/293

258

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104 6 bars of 16mm φ 

3-2 1104 6 bars of 16mm φ 

2-1 2760  6 bars of 25mm φ 

1-Plinth 3864  8 bars of 25mm φ 

Plinth – footing 3864  8 bars of 25mm φ 

For Column 08:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 2900 25.8 180.53 155.8 4.66 155.80

5-4 2750 25.5 480.91 113.98 12.26 113.98

4-3 2750 25.5 781.29 113.98 19.92 113.98

3-2 2750 25.5 1081.67 113.98 27.58 113.98

2-1 2750 25.5 1382.05 113.98 35.24 113.98

1- Plinth 4750 29.5 1682.43 113.98 49.63 113.98

Plinth –  

Footing

-

29.5 1771.26 0 52.25 52.25

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Page 259: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 259/293

259

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.09 0.04 0.8

5-4 0.17 0.07 0.02 0.4

4-3 0.28 0.07 0.02 0.4

3-2 0.39 0.07 0.04 0.8

2-1 0.50 0.07 0.06 1.2

1- Plinth 0.61 0.07 0.1 2

Plinth – Footing 0.64 0.03 0.1 2

For P = 0.8% 

Ast = 0.8100

x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P=1.2%

Ast = 1.2100

x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27 say 6 bars

Therefore provide 6 bars of 20mmφ bars.

For P = 2% 

Ast =2

100x 230 x 600 = 2760 mm2 

 No. of bars of 25mmφ bars =4 x 2760

 π x (25)2 = 5.62 bars say 6 bars

Therefore provide 6 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

Page 260: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 260/293

260

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 25 = 400mm

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm2) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104 6 bars of 16mm φ 

3-2 1104 6 bars of 16mm φ 

2-1 1656  6 bars of 20mm φ 

1-Plinth 2760  6 bars of 25mm φ 

Plinth – footing 2760  6 bars of 25mm φ 

Page 261: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 261/293

261

For frame 27-18-09:

Columns are C27 at left end, C18 at middle and C09 at right end of the frame.

Section: 230mm x 600mm

Cover (d‟) = 50mm 

Minimum eccentricity (ex,min) =unsupported length

500+

lateral dimension

30or 

= 20mm

Page 262: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 262/293

262

f ck x b x D = 20 x 230 x 600 = 2760000N = 2760 KN

f ck x b x D2 = 20 x 230 x (600)2 = 1676 x 106 N-mm = 1676 KN-m

For Column 27:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 102.83 64.85 2.68 64.85

5-4 2900 25.8 265.825 50.61 6.86 50.61

4-3 2900 25.8 428.82 50.61 11.06 50.61

3-2 2900 25.8 591.815 50.61 15.27 50.61

2-1 2900 25.8 754.81 50.61 19.47 50.61

1- Plinth 4900 29.8 917.805 50.61 27.35 50.61

Plinth –  

Footing

-

29.8 953.88 0 28.43 28.43

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.04 0.04 0.01 0.2

5-4 0.10 0.03 0.01 0.2

4-3 0.16 0.03 0.01 0.2

3-2 0.21 0.03 0.01 0.2

2-1 0.27 0.03 0.01 0.2

1- Plinth 0.33 0.03 0.01 0.2

Plinth – Footing 0.35 0.02 0.01 0.2

Page 263: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 263/293

263

For P < 0.8, provide P = 0.8% 

Ast =0.8

100x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 16 = 4mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1. 

Least lateral dimension = 230mm2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1104  6 bars of 16mm φ 

Plinth – footing 1104  6 bars of 16mm φ 

Page 264: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 264/293

264

For Column 18:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 202.61 89.7 5.29 89.70

5-4 2900 25.8 586.58 86.44 15.13 86.44

4-3 2900 25.8 970.55 86.44 25.04 86.44

3-2 2900 25.8 1354.52 86.44 34.95 86.44

2-1 2900 25.8 1738.49 86.44 44.85 86.44

1- Plinth 4900 29.8 2122.46 86.44 63.25 86.44

Plinth –  

Footing - 29.8 2152.25 0 64.14 64.14

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.07 0.05 0.01 0.2

5-4 0.21 0.05 0.01 0.2

4-3 0.35 0.05 0.02 0.4

3-2 0.49 0.05 0.04 0.82-1 0.63 0.05 0.08 1.6

1- Plinth 0.77 0.05 0.14 2.8

Plinth – Footing 0.78 0.04 0.14 2.8

Therefore, provide P = 0.8% 

Ast =0.8

100 x 230 x 600 = 1104 mm2 

Page 265: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 265/293

265

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

Therefore provide 6 bars of 16mmφ bars.

For P = 1.6% 

Ast =1.6

100x 230 x 600 = 2208 mm2 

 No. of bars of 20mmφ bars =4 x 2208

 π x (20)2 = 8 bars

Therefore provide 8 bars of 20mmφ bars.

For P = 2.8% 

Ast =2.8

100x 230 x 600 = 3864 mm2 

 No. of bars of 25mmφ bars =4 x 3864

 π x (25)2 = 7.87 bars say 8 bars

Therefore provide 8 bars of 25mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  1

4x diameter of max main steel bar =

1

4x 25 = 6.25mm say 8mm

Maximum of two values =8mm.

Design of pitch:

1.  Least lateral dimension = 230mm

2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

Page 266: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 266/293

266

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 2208  8 bars of 20mm φ 

1-Plinth 3864  8 bars of 25mm φ 

Plinth – footing 3864  8 bars of 25mm φ 

For Column 09:

To find MuD:

Storey Length

(mm)

ex,min (mm) Pu (KN) Mux (KN-

m)

Mux,min

(KN-m)

MuD 

Roof  – 5 3050 26.1 133.97 136.67 3.50 136.67

5-4 2900 25.8 390.87 128.22 10.08 128.22

4-3 2900 25.8 647.77 128.22 16.71 128.22

3-2 2900 25.8 904.67 128.22 23.34 128.22

2-1 2900 25.8 1161.57 128.22 29.97 128.22

1- Plinth 4900 29.8 1418.47 128.22 42.27 128.22

Plinth –  

Footing

-

29.8 1468.06 0 43.75 43.75

By the help of SP16, chart no: 32,

FromPu

f ck x b x Dand

MuD

f ck x b x D2 Plot theP

f ck  

Where p is the percentage of steel reinforcement

Page 267: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 267/293

267

Storey Pu

f ck x b x D 

MuD

f ck x b x D2 

P

f ck From chart

P (%)

Roof  – 5 0.05 0.08 0.04 0.8

5-4 0.14 0.08 0.02 0.4

4-3 0.23 0.08 0.02 0.4

3-2 0.33 0.08 0.04 0.8

2-1 0.42 0.08 0.04 0.8

1- Plinth 0.51 0.08 0.06 1.2

Plinth – Footing 0.53 0.03 0.06 1.2

Provide min P = 0.8% 

Ast = 0.8100

x 230 x 600 = 1104 mm2 

 No. of bars of 16mmφ bars =4 x 1104

 π x (16)2 = 5.49 say 6 bars

For P=1.2% 

Ast =1.2

100x 230 x 600 = 1656 mm2 

 No. of bars of 20mmφ bars =4 x 1656

 π x (20)2 = 5.27 say 6 bars

Therefore provide 6 bars of 20mmφ bars.

Design of lateral ties:

1.  Should not be less than 6mm

2.  14 x diameter of max main steel bar = 14 x 20 = 5mm

Maximum of two values =6mm.

But in the recent construction the usage of 6mm bars is outdated. Therefore consider 

minimum 8mm dia bars.

Design of pitch:

1.  Least lateral dimension = 230mm

Page 268: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 268/293

268

2.  16 x diameter of main steel bar = 16 x 16 = 256

3.  300mm

Minimum of the above values is considered.

Therefore, provide 8mm φ bars @230mm c/c. 

No. of bars:

Storey Ast (mm ) No.of bars:

Roof-5 1104 6 bars of 16mm φ 

5-4 1104  6 bars of 16mm φ 

4-3 1104  6 bars of 16mm φ 

3-2 1104  6 bars of 16mm φ 

2-1 1104  6 bars of 16mm φ 

1-Plinth 1656  6 bars of 20mm φ 

Plinth – footing 1656  6 bars of 20mm φ 

Page 269: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 269/293

269

6. DESIGN OF FOOTINGS

In this design of footing, the loads are known from the column analysis. The working load is

used for the footing design than the ultimate load. Footing is a member through which the

load of the superstructure is transferred to the sub soil. Therefore the safe bearing capacity is

the main factor in design of footings. From the information provided and conducting test on

sub soil, it is decided that the Safe Bearing Capacity (SBC) of the soil is 250 KN/m2.

Therefore the footing is isolated rectangular sloped footing. The slope is provided to decrease

the amount of concrete in the construction which results into an economic construction.

From the analysis of frames and columns, we considered 6 frames and each frame

consists of 3 footings so totally 18 footings are to be designed. But in this project we designthe most critical any 3 footings based on the load carried are selected and the design of 

remaining footings follow the same.

Footing F19:

Steel : Fe415

Concrete : M20 

Column : 230mm x 600mm (bmm x Dmm)

Load from column (Pu) : 982.185 KN

Working load (P) :982.185

1.5= 654.79 KN

Self weight of footing : 10% of Pu 

SBC of soil : 250 KN/m2

 

Area of footing (Af ) :1.1 x P

SBC of soil=

1.1 x 654.79

250= 2.88 m2 

Consider,D-b

2=

600 - 230

2= 185 mm

Length of footing (Lf ) = 185mm + (√(185)2 + 2.88 x 106 ) = 1892.11

say 1900mm

Page 270: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 270/293

270

Breadth of footing (Bf ) =Af 

Lf =

2.88 x 106

1900= 1515.79 say 1550 mm

Area of footing provided = Lf x Bf = 2000 x 1520 = 2.95 x 106 = 2.95 m2 

Wu =Pu

Af =

982.185

2.95= 332.95 KN/m2 

X1 =

Lf - D

2 =

1900 - 600

2 = 650 mm

Y1 =Bf - b

2=

1550 - 230

2= 660 mm

Depth of footing for 2-way bending:

Mux =Wu x Bf x X1

2

2=

332.94 x 1.550 x (0.65)2

2= 109.02 KN-m

Muy =Wu x Lf x Y1

2

2=

332.94 x 1.9 x (0.66)2

2= 137.78 KN-m

Therefore, max bending moment = Mu = 137.78 KN-m

Page 271: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 271/293

271

 b' = b + 2 x e = 230 + 2 x 50 = 330 mm

D' = D + 2 x e = 600 + 2 x 50 = 700 mm

Clear cover = 50mm

Assume 10mm bars

d'x = 50 +10

2= 55mm

d'y = 50 + (3 x102

)= 65mm

Page 272: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 272/293

272

Depth of foundation:

(Df )x =  

  + d'x = √109.02 x 106

0.138 x 20 x 330+ 55 = 400.97 mm

(Df )y =  

  + d'y = √ 137.78 x 10

6

0.138 x 20 x 700 + 65 = 332.05 mm

Therefore, maximum (Df ) = 400.97 mm say 450mm

Therefore dx = 450 – 55 = 395mm

dy = 450 – 65 = 385mm

Provide Df,min = 150mm

df,min ( x-direction) = 150 - 55 = 95mm

df,min ( y-direction) = 150 - 65 = 85mm

Page 273: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 273/293

273

Page 274: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 274/293

274

Check for two way shear:

Consider a section „dy

2 ‟ from the face of the column. 

L2 = D +dy

2+

dy

2= 600 + 385 = 985 mm

B2 = b +dy

2+

dy

2= 230 + 385 = 615 mm

d2 = Df   – (Df   – Df,min) x

(dy

2- 50)

(X1 - 50)  – d'y 

= 450 – (450 – 150) x

(385

2- 50)

(650 - 50)  – 65 = 313.75 mm

Area of resisting shear (A2) = 2 x(L2 + B2) x d2 

= 2 x (985 + 615) x 313.75

= 1004000 mm2 

Shear strength of concrete for two way:

τuc2 = k s x τuc 

where, τuc = 0.25 x √f ck  = 0.25 x √20 = 1.12 N/mm2 

k s = (0.5 + βc) < 1 else =1

βc =

 b

D =

230

600 = 0.385

therefore, k s = (0.5 + βc) = 0.5 + 0.385 = 0.885 <1

k s = 0.885

τuc2 = k s x τuc = 0.885 x 1.12 = 0.99 N/mm2 

Internal load carrying capacity (Vuc2) = 1004000 x 0.99 = 993960 N

= 993.96 KN

Page 275: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 275/293

275

External load (VuD2) = Wu x (Lf x Bf   – L2 x B2)

= 332.94 x (1.900 x 1.550 – 0.985 x 0.615)

= 778.82 KN

Therefore, Vuc2 > VuD2 (SAFE)

Design of Steel mesh:

Mux = 0.87 x f y x Astx x dx x (1-f y x Astx

f ck x b' x dx)

109.02 x 106 = 0.87 x 415 x Astx x 395 x (1-415 x Astx

20 x 330 x 395

)

Astx = 890.72 mm2 

 No. of 10mmφ bars =4 x 890.74

 π x 102 = 11.34 say 12 bars

Muy = 0.87 x f y x Asty x dy x (1-f y x Astx

f ck x D' x dy)

137.78 x 106 = 0.87 x 415 x Astx x 385 x (1- 415 x Astx

20 x 700 x 385)

Asty = 1081.2 mm2 

 No. of 10mmφ bars =4 x 1081.2

 π x 102 = 13.77 say 14 bars

Check for one way shear:

Consider a section at distance„d‟ from the face of column 

d1 = Df   – (Df   – Df,min) x(dy- 50)

(Y1 - 50)  – d'y 

= 450 – (450 – 150) x(385- 50)

(660 - 50)  – 65 = 220.24 mm

L1 = D + 2 x dy = 600 + 2 x 385 = 1370 mm

Page 276: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 276/293

276

Area resisting shear (A1) = (Lf x Dy,min) + (d1  – Dy,min) x (Lf + L1

2)

= (1900 x 150) + (220.24 – 150) x (1900 + 1370

2)

= 399842.4 mm2 

Asty = 14 bars of 10mm dia = 1099.56 mm2

Pt =100 x Asty

A1=

100 x 1099.56

399842.4= 0.28

From IS456-2000, P73, Table 19

P τc (N/mm2)

0.25 0.36

0.28 ?

0.50 0.48

τc = 0.36 +(0.48 - 0.36)

(0.5 - 0.25)x (0.28 – 0.25) = 0.38 N/mm2 

Internal shear resisting capacity =0.38 x 399842.4

1000= 151.94 KN

External shear = Wu x Lf x (Y1  – dy)

= 332.94 x 1.900 x (0.660 – 385)

= 173.96 KN

Internal shear resisting capacity < External Shear (NOT SAFE)

Increase the depth.

Shear =load

area 

0.38 =173.96 x 103

A1 

Page 277: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 277/293

277

A1 =457789.47 mm2 

To calculate d1:

A1 = (Lf x Dy,min) + (d1  – Dy,min) x (Lf + L1

2 )

457789.47 = (1900 x 150) + (d1  – 150) x (1900 + 1370

2)

d1 = 255.68 mm

Footing F11:

Load from column (Pu) : 2861.68 KN

Working load (P) :2861.68

1.5= 1907.79 KN

Self weight of footing : 10% of Pu 

SBC of soil : 250 KN/m2 

Area of footing (Af ) :1.1 x P

SBC of soil=

1.1 x 1907.79

250= 8.4 m2 

Consider,D-b

2=

600 - 230

2= 185 mm

Length of footing (Lf ) = 185mm + (√(185)2 + 8.4 x 106 ) = 3089.17

say 3100mm

Breadth of footing (Bf ) =Af 

Lf =

8.4 x 106

3100= 2709.67 say 2725 mm

Area of footing provided = Lf x Bf = 3100 x 2725 = 8.45 x 106 = 8.45 m2 

Wu =Pu

Af =

2861.68

8.45= 338.66 KN/m2 

X1 =Lf - D

2=

3100 - 600

2= 1250 mm

Y1 = Bf - b2

= 2725 - 2302

= 1247.5 mm

Page 278: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 278/293

278

Depth of footing for 2-way bending:

Mux =Wu x Bf x X1

2

2=

338.66 x 2.725 x (1.25)2

2= 720.98 KN-m

Muy =Wu x Lf x Y1

2

2=

338.66 x 3.1 x (1.2475)2

2= 816.92 KN-m

Therefore, max bending moment = Mu = 816.92 KN-m

 b' = b + 2 x e = 230 + 2 x 50 = 330 mm

D' = D + 2 x e = 600 + 2 x 50 = 700 mm

Clear cover = 50mm

Assume 16mm bars

d'x = 50 +16

2= 58 mm

d'y = 50 + (3 x16

2) = 74 mm

Depth of foundation:

(Df )x =  

  + d'x = √720.98 x 106

0.138 x 20 x 330+ 58 = 947.71 mm

(Df )y =  

  + d'y = √816.92 x 106

0.138 x 20 x 700+ 74 = 724.26 mm

Therefore, maximum (Df ) = 947.71 mm say 1000mm

Therefore dx = 1000 – 58 = 942 mm

dy = 1000 – 74 = 926 mm

Provide Df,min = 150mm

df,min ( x-direction) = 150 - 58 = 92 mm

df,min ( y-direction) = 150 - 74 = 76 mm

Page 279: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 279/293

279

Check for two way shear:

Consider a section „dy

2 ‟ from the face of the column.

L2 = D +dy

2+

dy

2= 600 + 926 = 1526 mm

B2 = b +dy

2+

dy

2= 230 + 926 = 1156 mm

d2 = Df   – (Df   – Df,min) x

(dy

2- 50)

(X1 - 50)  – d'y 

= 1000 – (1000 – 150) x

(926

2- 50)

(1250 - 50)  – 74 = 633.45 mm

Area of resisting shear (A2) = 2 x(L2 + B2) x d2 

= 2 x (1526 + 1156) x 633.45

= 3.4 x 106 mm2 

Shear strength of concrete for two way:

τuc2 = k s x τuc 

where, τuc = 0.25 x √f ck  = 0.25 x √20 = 1.12 N/mm2 

k s = (0.5 + βc) < 1 else =1

βc =

 b

D =

230

600 = 0.385

Therefore, k s = (0.5 + βc) = 0.5 + 0.385 = 0.885 <1

k s = 0.885

τuc2 = k s x τuc = 0.885 x 1.12 = 0.99 N/mm2 

Internal load carrying capacity (Vuc2) = 3.4 x 106 x 0.99 = 3.37 x 106 N

= 3370 KN

Page 280: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 280/293

280

External load (VuD2) = Wu x (Lf x Bf   – L2 x B2)

= 338.66 x (3.1 x 2.725 – 1.526 x 1.156)

= 2263.41 KN

Therefore, Vuc2 > VuD2 (SAFE)

Design of Steel mesh:

Mux = 0.87 x f y x Astx x dx x (1-f y x Astx

f ck x b' x dx)

720.98 x 106 = 0.87 x 415 x Astx x 942 x (1-415 x Astx

20 x 330 x 942

)

Astx = 2555.91 mm2 

 No. of 16mmφ bars =4 x 2555.91

 π x 162 = 12.71 say 13 bars

Muy = 0.87 x f y x Asty x dy x (1-f y x Astx

f ck x D' x dy)

816.92 x 106 = 0.87 x 415 x Astx x 926 x (1- 415 x Astx

20 x 700 x 926)

Asty = 2671.98 mm2 

 No. of 16mmφ bars =4 x 2671.98

 π x 162 = 13.29 say 14 bars

Check for one way shear:

Consider a section at distance„d‟ from the face of column 

d1 = Df   – (Df   – Df,min) x(dy- 50)

(Y1 - 50)  – d'y 

= 1000 – (1000 – 150) x(926- 50)

(1247.5 - 50)  – 74 = 304.21 mm

L1 = D + 2 x dy = 600 + 2 x 926 = 2452 mm

Page 281: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 281/293

281

Area resisting shear (A1) = (Lf x Dy,min) + (d1  – Dy,min) x (Lf + L1

2)

= (3100 x 150) + (304.21 – 150) x (3100 + 2452

2)

= 893086 mm2 

Asty = 14 bars of 10mm dia = 2814.87 mm2

Pt =100 x Asty

A1=

100 x 2814.87

893086= 0.32

From IS456-2000, P73, Table 19

P τc (N/mm2)

0.25 0.36

0.32 ?

0.5 0.48

τc = 0.36 +(0.48 - 0.36)

(0.5 - 0.25)x (0.32 – 0.25) = 0.4 N/mm2 

Internal shear resisting capacity =0.4 x 893086

1000= 357.23 KN

External shear = Wu x Lf x (Y1  – dy)

= 338.66 x 3.1 x (1.2475 – 0.926)

= 337.53 KN

Internal shear resisting capacity > External Shear (SAFE)

Footing F07:

Load from column (Pu) : 1922.71 KN

Working load (P) :1922.71

1.5= 1281.81 KN

Self weight of footing : 10% of Pu 

Page 282: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 282/293

282

SBC of soil : 250 KN/m2 

Area of footing (Af ) :1.1 x P

SBC of soil=

1.1 x 1281.81

250= 5.64 m2 

Consider,D-b

2=

600 - 230

2= 185 mm

Length of footing (Lf ) = 185mm + (√(185)2 + 5.64 x 106 ) = 2567.06

say 2575mm

Breadth of footing (Bf ) =Af 

Lf =

5.64 x 106

2575= 2190.29 say 2200 mm

Area of footing provided = Lf x Bf = 2575 x 2200 = 5.665 x 106 = 5.665 m2 

Wu =Pu

Af =

1922.71

5.665= 339.4 KN/m2 

X1 =Lf - D

2=

2575 - 600

2= 987.5 mm

Y1 =Bf - b

2=

2200 - 230

2= 985 mm

Depth of footing for 2-way bending:

Mux =Wu x Bf x X1

2

2=

339.4 x 2.2 x (0.9875)2

2= 364.06 KN-m

Muy =Wu x Lf x Y1

2

2=

339.4 x 2.575 x (0.985)2

2= 423.97 KN-m

Therefore, max bending moment = Mu = 423.97 KN-m

 b' = b + 2 x e = 230 + 2 x 50 = 330 mm

D' = D + 2 x e = 600 + 2 x 50 = 700 mm

Clear cover = 50mm

Assume 12mm bars

d'x = 50 + 122

= 56 mm

Page 283: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 283/293

283

d'y = 50 + (3 x12

2) = 68 mm

Depth of foundation:

(Df )x =  

  + d'x = √364.06 x 106

0.138 x 20 x 330+ 56 = 688.23 mm

(Df )y =  

  + d'y = √423.97 x 106

0.138 x 20 x 700+ 68 = 536.45 mm

Therefore, maximum (Df ) = 688.23 mm say 700mm

Therefore dx = 700 – 56 = 644 mm

dy = 700 – 68 = 632 mm

Provide Df,min = 150mm

df,min ( x-direction) = 150 - 56 = 94 mm

df,min ( y-direction) = 150 - 68 = 82 mm

Check for two way shear:

Consider a section „dy

2 ‟ from the face of the column. 

L2 = D +dy

2+

dy

2= 600 + 632 = 1232 mm

B2 = b +dy

2+

dy

2= 230 + 632 = 862 mm

d2 = Df   – (Df   – Df,min) x

(dy

2- 50)

(X1 - 50)  – d'y 

= 700 – (700 – 150) x

(632

2- 50)

(987.5 - 50)  – 68 = 475.95 mm

Page 284: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 284/293

284

Area of resisting shear (A2) = 2 x(L2 + B2) x d2 

= 2 x (1232 + 862) x 475.95

= 1993278.6 mm2 

Shear strength of concrete for two way:

τuc2 = k s x τuc 

where, τuc = 0.25 x √f ck  = 0.25 x √20 = 1.12 N/mm2 

k s = (0.5 + βc) < 1 else =1

βc = bD

= 230600

= 0.385

therefore, k s = (0.5 + βc) = 0.5 + 0.385 = 0.885 <1

k s = 0.885

τuc2 = k s x τuc = 0.885 x 1.12 = 0.99 N/mm2 

Internal load carrying capacity (Vuc2) = 1993278.6x 0.99 = 1973345.814N

= 1973.35 KN

External load (VuD2) = Wu x (Lf x Bf   – L2 x B2)

= 339.4 x (2.575 x 2.2 – 1.232 x 0.862)

= 1562.27 KN

Therefore, Vuc2 > VuD2 (SAFE)

Design of Steel mesh:

Mux = 0.87 x f y x Astx x dx x (1-f y x Astx

f ck x b' x dx)

364.06 x 106 = 0.87 x 415 x Astx x 644 x (1-415 x Astx

20 x 330 x 644)

Astx = 1929.08 mm2 

Page 285: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 285/293

285

 No. of 12mmφ bars =4 x 1929.08

 π x 122 = 17.1 say 18 bars

Muy = 0.87 x f y x Asty x dy x (1-f y x Astx

f ck x D' x dy)

423.06 x 106 = 0.87 x 415 x Astx x 632 x (1-415 x Astx

20 x 700 x 632)

Asty = 2051.42 mm2 

 No. of 12mmφ bars =4 x 2051.42

 π x 122 = 18.13 say 19 bars

Check for one way shear:

Consider a section at distance„d‟ from the face of column 

d1 = Df   – (Df   – Df,min) x(dy- 50)

(Y1 - 50)  – d'y 

= 700 – (700 – 150) x(632- 50)

(985 - 50)  – 68 = 289.65 mm

L1 = D + 2 x dy = 600 + 2 x 632 = 1864 mm

Area resisting shear (A1) = (Lf x Dy,min) + (d1  – Dy,min) x (Lf + L1

2)

= (2575 x 150) + (289.65 – 150) x (2575 + 1864

2)

= 696203.175 mm2 

Asty = 19 bars of 12mm dia = 2148.84 mm2

Pt =100 x Asty

A1=

100 x 2148.84

696203.175= 0.31

Page 286: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 286/293

286

From IS456-2000, P73, Table 19

P τc (N/mm2)

0.25 0.36

0.31 ?

0.5 0.48

τc = 0.36 +(0.48 - 0.36)

(0.5 - 0.25)x (0.31 – 0.25) = 0.39 N/mm2 

Internal shear resisting capacity =0.39 x 696203.175

1000

= 271.52 KN

External shear = Wu x Lf x (Y1  – dy)

= 339.4 x 2.575 x (0.985 – 0.632)

= 308.51 KN

Internal shear resisting capacity < External Shear (NOT SAFE)

Increase the depth.

Shear =load

area 

0.39 =308.51 x 103

A1 

A1 =791051.28 mm2 

To calculate d1:

A1 = (Lf x Dy,min) + (d1  – Dy,min) x (Lf + L1

2)

791051.28 = (2575 x 150) + (d1  – 150) x (2575 +1864

2)

d1 = 332.38 mm

Page 287: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 287/293

287

7. DESIGN OF STAIR CASE

Stairs consist of steps arranged in a series for purpose of giving access to different floors of a

 building. Since a stair is often the only means of communication between the various floors

of a building, the location of the stair requires good and careful consideration. In a residential

house, the staircase may be provided near the main entrance. In a public building, the stairs

must be from the main entrance itself and located centrally, to provide quick accessibility to

the principal apartments. All staircases should be adequately lighted and properly ventilated.

Various types of Staircases 

Straight stairs

Dog-legged stairsOpen newel stair 

Geometrical stair 

RCC design of a Dog-legged staircase

In this type of staircase, the succeeding flights rise in opposite directions. The two

flights in plan are not separated by a well. A landing is provided corresponding to the level at

which the direction of the flight changes.

Dimensions:

B x L x H = 2820mm x 6000mm x 3350mm

Assume, Rise = 150mm

Tread = 300mm

sec θ =√(150)2+(300)2 

300= 1.12

 No. of risers =3350

150 = 22.33 say 22

Page 288: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 288/293

288

Provide 11 + 11.

For flight-1: 11 and for Flight-2: 11

Going = 11 x treads = 11 x 300 = 3300mm

Total width of landings = 6000 – 3300 = 2700 mm

Therefore, width of landing at each end = 1350 mm

Page 289: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 289/293

289

Design of Flight -1:

Type: One way single span simply supported inclined slab

Span (L): 3300 + 1350 = 4650mm

Trail Depth:

From IS456-2000, P39, Clause 24 & Clause 23.2 for Simply supported span we have

Span

Effective depth=

L

d= 20

r a = 20 x 1.4 = 28

Therefore, D =4750

28+ 20 = 189.65mm say 200 mm

Effective depth (d) = D – d1

= 200 – 20 = 180mm

Page 290: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 290/293

290

Loads:

Self weight of slab (inclined) = 25 x D x secθ 

= 25 x 0.2 x 1.12

= 5.6 KN/m2 

Weight of steps =25 x rise x secθ

2=

25 x 0.15 x 1.1

= 2.09 KN/m2 

Live load = 5 KN/m2 

Floor Finish = 1 KN/m2 

Total Load (W) = 13.69 KN/m2 

Ultimate load (Wu) = 1.5 x 13.69 = 20.54 KN/m2 

Design moment (Mu) =Wu x L2

10=

20.54 x (4.65)2

10= 44.41 KN-m

Mu,limit = 0.138 x f ck x b x d2 = 0.138 x 20 x 1000 x (180)2 

= 89.42 x 106 N-mm = 89.42 KN-m

Mu < Mu,limit 

Main steel:

From IS456-2000, P96, Clause G-1.1 (b) we have

Mu = 0.87 x f y x Ast x d x (1 -f y x Ast

f ck x b x d)

44.7 x 106 = 0.87 x 415 x Ast x 180 x (1 -415 x Ast

20 x 1000 x 180)

Ast = 753.21 mm2 

Spacing of 12mm φ bars =ast x 1000

Ast=

π4

x 122 x1000

753.21= 150.15mm

Page 291: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 291/293

291

Therefore, Provide 12mm φ @ 150mm c/c. 

Distribution steel:

Ast = 0.12% of Ag 

=0.12

1000x 200 x 1000 = 240 mm2.

Spacing of 8mm φ bars =π4

x 82 x1000

240= 209.44mm

Therefore, Provide 8mm φ @ 200mm c/c. 

Design of flight-2:

Same as design of flight-1.

Page 292: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 292/293

292

8. CONCLUSION

The complete details and the necessity of the Multi-Storeyed building have been

explained in the introduction part. Live loads and dead loads are taken into consideration and

analysis is done manually. Manual analysis comprises of load distribution of slabs on to

 beams and calculation of bending moment and shear force by any approximate method.

Analysis of frames is done by the substitute frame method and is furnished in the

introduction part. With the help of moment distribution method the moments carried at each

 joints are known.

The design method adopted is limit state method. The bending moments obtained from

chapter 4 are used in calculating the area of steel in each frame section. The percentage of 

steel obtained by limit state method is minimum as mentioned in limit state method of IS

456-2000.

Design of columns and footings are done depending on the load acting on them.

This project explains the basic concept behind the software. With the help of any softwarewe can do this analysis within no time but the basic thing is to know the concept behind it.

The same result can be achieved using the software like “Staad-Pro”. The wind load and

seismic analysis can be included for the future extension of the project.

Page 293: 9. Final Project Report

7/27/2019 9. Final Project Report

http://slidepdf.com/reader/full/9-final-project-report 293/293