40
Amino acid catabolism - During times of starvation, amino acids are used to replenish TCA cycle intermediates and as precursors for gluconeogenesis - Organisms with a diet rich in proteins can oxidize excess amino acids as fuels - Amino acids are not stored - In animals, amino acids (in the form of polypeptides) are the major source of nitrogen. - What is the key difference between amino acids and the other 2 types of oxidizable molecules?

9 Amino Acid Metabolism 2014-2015 Handout

Embed Size (px)

DESCRIPTION

HKU science lecture notes

Citation preview

Page 1: 9 Amino Acid Metabolism 2014-2015 Handout

Amino acid catabolism

- During times of starvation, amino acids are used to replenish TCA cycle intermediates and as precursors for gluconeogenesis

- Organisms with a diet rich in proteins can oxidize excess amino acids as fuels

- Amino acids are not stored

- In animals, amino acids (in the form of polypeptides) are the major source of nitrogen.

- What is the key difference between amino acids and the other 2 types of oxidizable molecules?

Page 2: 9 Amino Acid Metabolism 2014-2015 Handout
Page 3: 9 Amino Acid Metabolism 2014-2015 Handout

Transamination (in liver):

Universal amino group acceptor

PLP : pyridoxal phosphate

Page 4: 9 Amino Acid Metabolism 2014-2015 Handout

Deamination (oxidative deamination) - in liver:

Dehydrogenation (oxidation)

deamination

Transamination + Deamination = Transdeamination

urea

Glutamate Dehydrogenase

Page 5: 9 Amino Acid Metabolism 2014-2015 Handout

How do non-hepatic tissues remove ammonia?

Amino group

Amide group

Page 6: 9 Amino Acid Metabolism 2014-2015 Handout

Transport of glutamine to liver:

Page 7: 9 Amino Acid Metabolism 2014-2015 Handout

Removal of excess ammonia from muscle

Page 8: 9 Amino Acid Metabolism 2014-2015 Handout

The Urea Cycle In liver cells:

Page 9: 9 Amino Acid Metabolism 2014-2015 Handout

Formation of carbomoyl phosphate

Page 10: 9 Amino Acid Metabolism 2014-2015 Handout
Page 11: 9 Amino Acid Metabolism 2014-2015 Handout

Argininosuccinate synthase reaction:

Page 12: 9 Amino Acid Metabolism 2014-2015 Handout

Transamination

Lyase

Arginase

Page 13: 9 Amino Acid Metabolism 2014-2015 Handout

Links between the urea cycle and the TCA cycle

Cytosolic fumarase

transamination

fumarase

OAA

“Kreb Bicycle”

Page 14: 9 Amino Acid Metabolism 2014-2015 Handout

Oxidation of the carbon skeletons in amino acids

Page 15: 9 Amino Acid Metabolism 2014-2015 Handout

Amino acids giving rise to -ketoglutarate: Glutamate, Glutamine, Histidine

Histidine ammonia lyase

Methyl group transfer

(oxidative deamination)

Page 16: 9 Amino Acid Metabolism 2014-2015 Handout

Amino acids giving rise to -ketoglutarate: Arginine and Proline

α-Ketoglutarate

Page 17: 9 Amino Acid Metabolism 2014-2015 Handout

Aspartate and Asparagine

(Asp)

(Asn)

aspartate aminotransferase

Amino acids giving rise to oxaloacetate:

asparaginase

Page 18: 9 Amino Acid Metabolism 2014-2015 Handout

Amino acids giving rise to pyruvate: Cysteine, tryptophan, threonine, serine, glycine and alanine

pyruvate

glutamate α-ketoglutarate

Page 19: 9 Amino Acid Metabolism 2014-2015 Handout

5, 10-Methylene THF

THF

H2O

Page 20: 9 Amino Acid Metabolism 2014-2015 Handout

Amino acids giving rise to succinyl-CoA: Methionine, threonine

Succinyl-CoA

Cystathionine

α-Ketobutyrate

dehydrogenase

Propionyl-CoA + CO2

NAD+ NADH

Page 21: 9 Amino Acid Metabolism 2014-2015 Handout

Branched chain amino acid (BCAA) catabolism: Valine, Isoleucine, Leucine

Page 22: 9 Amino Acid Metabolism 2014-2015 Handout

Aromatic amino acid metabolism: Phenylalanine and tyrosine

Phenylalanine hydroxylase

O2 H2O

NAD+ NADH + H+

X

Phenylketonuria (1 in 10,000 newborns)

CH2

COO-

Phenylacetate

CH2

CH

COO-

HO

Phenyllactate

CO2

H2O

Phenylpyruvate

CH2

C

COO-

O

Accumulates in phenylketonuria patients

Page 23: 9 Amino Acid Metabolism 2014-2015 Handout

Aspartame -Artificial sweetener -Dipeptide of phenylalanine methyl ester and aspartate

“phenylketonurics: contains phenylalanine”

Page 24: 9 Amino Acid Metabolism 2014-2015 Handout

Amino Acid Biosynthesis

The Nitrogen Cycle

Plants, bacteria, fungi

[N2 as electron acceptor]

Bacteria (symbiotic in legume plants)

Nutrifying bacteria

Denitrification

Page 25: 9 Amino Acid Metabolism 2014-2015 Handout

Nitrogen fixation by the nitrogenase complex:

N2 + 8 H+ + 8 e- + 16 ATP 2NH3 + H2 + 16 ADP + 16 Pi

Nitrogen-fixing bacteria in root nodules of legume plants

Page 26: 9 Amino Acid Metabolism 2014-2015 Handout

Ammonia Assimilation

- Entry point for ammonia: glutamate (Glu) and glutamine (Gln)

Glutamate

synthase

- Plants and bacteria: an additional pathway

NAD(P)H + H+ NAD(P)+

Page 27: 9 Amino Acid Metabolism 2014-2015 Handout

Essential and Non-essential Amino Acids (in mammals)

Essential Amino Acids: Histidine, Isoleucine, Leucine, Lysine, Methionine Phenyalanine, Tryptophan, Threonine, Valine

Non-essential amino acids (precursor): Glutamate, glutamine, proline, arginine (-ketoglutarate) Alanine (pyruvate) Aspartate, asparagine (OAA) Serine, glycine (3-Phophoglycerate) *Cysteine (Methionine) *Tyrosine (Phenylalanine) *Conditional essential

Page 28: 9 Amino Acid Metabolism 2014-2015 Handout

Biosynthesis of Amino Acids

Page 29: 9 Amino Acid Metabolism 2014-2015 Handout

TRANSAMINATIONS

Example:

Glu-ala aminotransferase

Glu α-KG

Page 30: 9 Amino Acid Metabolism 2014-2015 Handout

Aspartate and Asparagine Biosynthesis

Purine and pyrimidine biosynthesis

Page 31: 9 Amino Acid Metabolism 2014-2015 Handout

Asparagine synthetase amide group

amide group

α

β

α

β

α

β

PPi

Page 32: 9 Amino Acid Metabolism 2014-2015 Handout

Proline Biosynthesis

Glutamate kinase

1 2 3 4 5

α β γ

5

Glutamate Glutamate-5-P

Glutamate 5-P

Dehydrogenase

1-Pyrroline-5-

carboxylate reductase

NAD(P)H + H+ NAD(P)+

Proline Δ1-Pyrroline-5-

carboxylate

ATP ADP

NAD(P)H + H+

NAD(P)+

Pi

Glutamate-5-semialdehyde

Spontaneous

cyclization

C

O

-O

CH2 CH2 CH

NH3+

COO-

C

O

O

CH2 CH2 CH

NH3+

PO

-

-O

O

COO-

C

O

H

CH2 CH2 CH

NH3+

COO-

CH2H2C

HC

N

CH COO-

CH2H2C

H2C

HN

CH COO-

Page 33: 9 Amino Acid Metabolism 2014-2015 Handout

Arginine Biosynthesis (related to urea cycle)

(Acetyl-CoA) N-acetyl group

Glutamate acetylglutamate synthase

N-Acetylglutamate

N-Acetyl-γ-glutamyl phosphate

N-Acetylglutamate kinase

N-Acetylglutamate dehydrogenase

1 2 3 4 5

α β γ

1 2 3 4 5

α β γ

1 2 3 4 5

α β γ

Page 34: 9 Amino Acid Metabolism 2014-2015 Handout

1 2 3 4 5

α β γ

1 2 3 4 5

α β γ

Page 35: 9 Amino Acid Metabolism 2014-2015 Handout

argininosuccinase

Fumarate

N-Acetylornithine

+

Page 36: 9 Amino Acid Metabolism 2014-2015 Handout

Serine and Glycine Biosynthesis

Glutamate

-Ketoglutarate

Phosphoserine

transaminase

Phosphoserine

phosphatase

H2O Pi

Page 37: 9 Amino Acid Metabolism 2014-2015 Handout

H2O

Page 38: 9 Amino Acid Metabolism 2014-2015 Handout

Tyrosine synthesis from phenylalanine

Phenylalanine

Tyrosine

tetrahydrobiopterin Phenyalanine hydroxylase

Mixed function oxidase (mechanism similar to fatty acid desaturase)

(defective in phenylketonurics)

CH2 CH COO-

NH3+

HO

CH2 CH COO-

NH3+

O2

H2O

NADH + H+

NAD+

Page 39: 9 Amino Acid Metabolism 2014-2015 Handout

Methionine cylce

(SAM)

(SAH)

Cysteine synthesis from methionine [ Plants and bacteria: SO4

2- cysteine ] assimilation

Cysteine synthesis

(from diet)

Page 40: 9 Amino Acid Metabolism 2014-2015 Handout

(From methionine cycle)

(CBS)

Homocystinuria - Genetic defect in CBS - Homocysteine level in blood stream - Risks of heart diseases

Cysteine Biosynthesis