100
Chapter 5 - The Chapter 5 - The Time Value of Money Time Value of Money 2005, Pearson Prentice Hal

8.Time Value of Money 2

Embed Size (px)

DESCRIPTION

This file contains of explanation about flow of money

Citation preview

Page 1: 8.Time Value of Money 2

Chapter 5 - The Time Chapter 5 - The Time Value of MoneyValue of Money

2005, Pearson Prentice Hall

Page 2: 8.Time Value of Money 2

Future ValueFuture Value

Page 3: 8.Time Value of Money 2

Future Value - single sumsFuture Value - single sums

If you deposit $100 in an account earning 6%, how If you deposit $100 in an account earning 6%, how much would you have in the account after 5 years?much would you have in the account after 5 years?

Mathematical Solution:Mathematical Solution:

FV = PV (FVIF FV = PV (FVIF i, ni, n ))

FV = 100 (FVIF FV = 100 (FVIF .06, 5.06, 5 ) (use FVIF table, or)) (use FVIF table, or)

FV = PV (1 + i)FV = PV (1 + i)nn

FV = 100 (1.06)FV = 100 (1.06)5 5 = = $$133.82133.82

00 5 5

PV = -100PV = -100 FV = FV = 133.133.8282

Page 4: 8.Time Value of Money 2

Mathematical Solution:Mathematical Solution:

FV = PV (FVIF FV = PV (FVIF i, ni, n ))

FV = 100 (FVIF FV = 100 (FVIF .015, 20.015, 20 ) ) (can’t use FVIF table)(can’t use FVIF table)

FV = PV (1 + i/m) FV = PV (1 + i/m) m x nm x n

FV = 100 (1.015)FV = 100 (1.015)20 20 = = $134.68$134.68

00 20 20

PV = -100PV = -100 FV = FV = 134.134.6868

Future Value - single sumsFuture Value - single sumsIf you deposit $100 in an account earning 6% with If you deposit $100 in an account earning 6% with quarterly compoundingquarterly compounding, how much would you have , how much would you have

in the account after 5 years?in the account after 5 years?

Page 5: 8.Time Value of Money 2

Mathematical Solution:Mathematical Solution:

FV = PV (FVIF FV = PV (FVIF i, ni, n ))

FV = 100 (FVIF FV = 100 (FVIF .005, 60.005, 60 ) ) (can’t use FVIF table)(can’t use FVIF table)

FV = PV (1 + i/m) FV = PV (1 + i/m) m x nm x n

FV = 100 (1.005)FV = 100 (1.005)60 60 = = $134.89$134.89

00 60 60

PV = -100PV = -100 FV = FV = 134.134.8989

Future Value - single sumsFuture Value - single sumsIf you deposit $100 in an account earning 6% with If you deposit $100 in an account earning 6% with monthly compoundingmonthly compounding, how much would you have , how much would you have

in the account after 5 years?in the account after 5 years?

Page 6: 8.Time Value of Money 2

Present ValuePresent Value

Page 7: 8.Time Value of Money 2

Mathematical Solution:Mathematical Solution:

PV = FV (PVIF PV = FV (PVIF i, ni, n ))

PV = 100 (PVIF PV = 100 (PVIF .06, 5.06, 5 ) (use PVIF table, or)) (use PVIF table, or)

PV = FV / (1 + i)PV = FV / (1 + i)nn

PV = 100 / (1.06)PV = 100 / (1.06)5 5 = = $74.73$74.73

Present Value - single sumsPresent Value - single sumsIf you receive $100 five years from now, what is the If you receive $100 five years from now, what is the

PV of that $100 if your opportunity cost is 6%?PV of that $100 if your opportunity cost is 6%?

00 5 5

PV = PV = -74.-74.7373 FV = 100 FV = 100

Page 8: 8.Time Value of Money 2

The Time Value of MoneyThe Time Value of Money

Compounding and DiscountingCompounding and Discounting

Cash Flow StreamsCash Flow Streams

0 1 2 3 4

Page 9: 8.Time Value of Money 2

Mathematical Solution:Mathematical Solution:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ))

FV = 1,000 (FVIFA FV = 1,000 (FVIFA .08, 3.08, 3 ) ) (use FVIFA table, or)(use FVIFA table, or)

FV = PMT (1 + i)FV = PMT (1 + i)nn - 1 - 1

ii

FV = 1,000 (1.08)FV = 1,000 (1.08)33 - 1 = - 1 = $3246.40$3246.40

.08 .08

Future Value - annuityFuture Value - annuityIf you invest $1,000 each year at 8%, how much If you invest $1,000 each year at 8%, how much

would you have after 3 years?would you have after 3 years?

Page 10: 8.Time Value of Money 2

Mathematical Solution:Mathematical Solution:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ))

PV = 1,000 (PVIFA PV = 1,000 (PVIFA .08, 3.08, 3 ) (use PVIFA table, or)) (use PVIFA table, or)

11PV = PMT 1 - (1 + i)PV = PMT 1 - (1 + i)nn

ii

11PV = 1000 1 - (1.08 )PV = 1000 1 - (1.08 )33 = = $2,577.10$2,577.10

.08.08

Present Value - annuityPresent Value - annuityWhat is the PV of $1,000 at the end of each of the What is the PV of $1,000 at the end of each of the

next 3 years, if the opportunity cost is 8%?next 3 years, if the opportunity cost is 8%?

Page 11: 8.Time Value of Money 2

Ordinary AnnuityOrdinary Annuity vs. vs.

Annuity Due Annuity Due

$1000 $1000 $1000$1000 $1000 $1000

4 5 6 7 8

Page 12: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8

Page 13: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 5 6 7

Page 14: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 5 6 7

PVPVinin

ENDENDModeMode

Page 15: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 5 6 7

PVPVinin

ENDENDModeMode

FVFVinin

ENDENDModeMode

Page 16: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 6 7 8

Page 17: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 6 7 8

PVPVinin

BEGINBEGINModeMode

Page 18: 8.Time Value of Money 2

Begin Mode vs. End ModeBegin Mode vs. End Mode

1000 1000 10001000 1000 1000

4 5 6 7 8 4 5 6 7 8 year year year 6 7 8

PVPVinin

BEGINBEGINModeMode

FVFVinin

BEGINBEGINModeMode

Page 19: 8.Time Value of Money 2

Earlier, we examined this Earlier, we examined this “ordinary” annuity:“ordinary” annuity:

Page 20: 8.Time Value of Money 2

Earlier, we examined this Earlier, we examined this “ordinary” annuity:“ordinary” annuity:

0 1 2 3

10001000 10001000 1000 1000

Page 21: 8.Time Value of Money 2

Earlier, we examined this Earlier, we examined this “ordinary” annuity:“ordinary” annuity:

Using an interest rate of 8%, we Using an interest rate of 8%, we find that:find that:

0 1 2 3

10001000 10001000 1000 1000

Page 22: 8.Time Value of Money 2

Earlier, we examined this Earlier, we examined this “ordinary” annuity:“ordinary” annuity:

Using an interest rate of 8%, we Using an interest rate of 8%, we find that:find that:

The The Future ValueFuture Value (at 3) is (at 3) is $3,246.40$3,246.40..

0 1 2 3

10001000 10001000 1000 1000

Page 23: 8.Time Value of Money 2

Earlier, we examined this Earlier, we examined this “ordinary” annuity:“ordinary” annuity:

Using an interest rate of 8%, we Using an interest rate of 8%, we find that:find that:

The The Future ValueFuture Value (at 3) is (at 3) is $3,246.40$3,246.40..

The The Present ValuePresent Value (at 0) is (at 0) is $2,577.10$2,577.10..

0 1 2 3

10001000 10001000 1000 1000

Page 24: 8.Time Value of Money 2

What about this annuity?What about this annuity?

Same 3-year time line,Same 3-year time line, Same 3 $1000 cash flows, butSame 3 $1000 cash flows, but The cash flows occur at the The cash flows occur at the

beginningbeginning of each year, rather of each year, rather than at the than at the endend of each year. of each year.

This is an This is an “annuity due.”“annuity due.”

0 1 2 3

10001000 1000 1000 1000 1000

Page 25: 8.Time Value of Money 2

0 1 2 3

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Page 26: 8.Time Value of Money 2

Calculator Solution:Calculator Solution:

Mode = BEGIN P/Y = 1Mode = BEGIN P/Y = 1 I = 8I = 8

N = 3N = 3 PMT = -1,000 PMT = -1,000

FV = FV = $3,506.11$3,506.11

0 1 2 3

-1000-1000 -1000 -1000 -1000 -1000

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Page 27: 8.Time Value of Money 2

0 1 2 3

-1000-1000 -1000 -1000 -1000 -1000

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Calculator Solution:Calculator Solution:

Mode = BEGIN P/Y = 1Mode = BEGIN P/Y = 1 I = 8I = 8

N = 3N = 3 PMT = -1,000 PMT = -1,000

FV = FV = $3,506.11$3,506.11

Page 28: 8.Time Value of Money 2

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

Page 29: 8.Time Value of Money 2

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) (1 + i)) (1 + i)

Page 30: 8.Time Value of Money 2

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) (1 + i)) (1 + i)

FV = 1,000 (FVIFA FV = 1,000 (FVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use FVIFA table, or)(use FVIFA table, or)

Page 31: 8.Time Value of Money 2

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) (1 + i)) (1 + i)

FV = 1,000 (FVIFA FV = 1,000 (FVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use FVIFA table, or)(use FVIFA table, or)

FV = PMT (1 + i)FV = PMT (1 + i)nn - 1 - 1

ii(1 + i)(1 + i)

Page 32: 8.Time Value of Money 2

Future Value - annuity dueFuture Value - annuity due If you invest $1,000 at the beginning of each of the If you invest $1,000 at the beginning of each of the next 3 years at 8%, how much would you have at next 3 years at 8%, how much would you have at

the end of year 3? the end of year 3?

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) (1 + i)) (1 + i)

FV = 1,000 (FVIFA FV = 1,000 (FVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use FVIFA table, or)(use FVIFA table, or)

FV = PMT (1 + i)FV = PMT (1 + i)nn - 1 - 1

ii

FV = 1,000 (1.08)FV = 1,000 (1.08)33 - 1 = - 1 = $3,506.11$3,506.11

.08 .08

(1 + i)(1 + i)

(1.08)(1.08)

Page 33: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due What is the PV of $1,000 at the beginning of each What is the PV of $1,000 at the beginning of each

of the next 3 years, if your opportunity cost is 8%? of the next 3 years, if your opportunity cost is 8%?

0 1 2 3

Page 34: 8.Time Value of Money 2

Calculator Solution:Calculator Solution:

Mode = BEGIN P/Y = 1Mode = BEGIN P/Y = 1 I = 8I = 8

N = 3N = 3 PMT = 1,000 PMT = 1,000

PV = PV = $2,783.26$2,783.26

0 1 2 3

10001000 1000 1000 1000 1000

Present Value - annuity duePresent Value - annuity due What is the PV of $1,000 at the beginning of each What is the PV of $1,000 at the beginning of each

of the next 3 years, if your opportunity cost is 8%? of the next 3 years, if your opportunity cost is 8%?

Page 35: 8.Time Value of Money 2

Calculator Solution:Calculator Solution:

Mode = BEGIN P/Y = 1Mode = BEGIN P/Y = 1 I = 8I = 8

N = 3N = 3 PMT = 1,000 PMT = 1,000

PV = PV = $2,783.26$2,783.26

0 1 2 3

10001000 1000 1000 1000 1000

Present Value - annuity duePresent Value - annuity due What is the PV of $1,000 at the beginning of each What is the PV of $1,000 at the beginning of each

of the next 3 years, if your opportunity cost is 8%? of the next 3 years, if your opportunity cost is 8%?

Page 36: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution:

Page 37: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

Page 38: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) (1 + i)) (1 + i)

Page 39: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) (1 + i)) (1 + i)

PV = 1,000 (PVIFA PV = 1,000 (PVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use PVIFA table, or)(use PVIFA table, or)

Page 40: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) (1 + i)) (1 + i)

PV = 1,000 (PVIFA PV = 1,000 (PVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use PVIFA table, or)(use PVIFA table, or)

11

PV = PMT 1 - (1 + i)PV = PMT 1 - (1 + i)nn

ii(1 + i)(1 + i)

Page 41: 8.Time Value of Money 2

Present Value - annuity duePresent Value - annuity due

Mathematical Solution:Mathematical Solution: Simply compound the FV of the Simply compound the FV of the ordinary annuity one more period:ordinary annuity one more period:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) (1 + i)) (1 + i)

PV = 1,000 (PVIFA PV = 1,000 (PVIFA .08, 3.08, 3 ) (1.08) ) (1.08) (use PVIFA table, or)(use PVIFA table, or)

11

PV = PMT 1 - (1 + i)PV = PMT 1 - (1 + i)nn

ii

11

PV = 1000 1 - (1.08 )PV = 1000 1 - (1.08 )33 = = $2,783.26$2,783.26

.08.08

(1 + i)(1 + i)

(1.08)(1.08)

Page 42: 8.Time Value of Money 2

Is this an Is this an annuityannuity?? How do we find the PV of a cash flow How do we find the PV of a cash flow

stream when all of the cash flows are stream when all of the cash flows are different? (Use a 10% discount rate.)different? (Use a 10% discount rate.)

Uneven Cash FlowsUneven Cash Flows

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Page 43: 8.Time Value of Money 2

Sorry! There’s no quickie for this one. Sorry! There’s no quickie for this one. We have to discount each cash flow We have to discount each cash flow back separately.back separately.

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Uneven Cash FlowsUneven Cash Flows

Page 44: 8.Time Value of Money 2

Sorry! There’s no quickie for this one. Sorry! There’s no quickie for this one. We have to discount each cash flow We have to discount each cash flow back separately.back separately.

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Uneven Cash FlowsUneven Cash Flows

Page 45: 8.Time Value of Money 2

Sorry! There’s no quickie for this one. Sorry! There’s no quickie for this one. We have to discount each cash flow We have to discount each cash flow back separately.back separately.

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Uneven Cash FlowsUneven Cash Flows

Page 46: 8.Time Value of Money 2

Sorry! There’s no quickie for this one. Sorry! There’s no quickie for this one. We have to discount each cash flow We have to discount each cash flow back separately.back separately.

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Uneven Cash FlowsUneven Cash Flows

Page 47: 8.Time Value of Money 2

Sorry! There’s no quickie for this one. Sorry! There’s no quickie for this one. We have to discount each cash flow We have to discount each cash flow back separately.back separately.

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Uneven Cash FlowsUneven Cash Flows

Page 48: 8.Time Value of Money 2

periodperiod CF CF PV (CF)PV (CF)

00 -10,000 -10,000 -10,000.00-10,000.00

11 2,000 2,000 1,818.181,818.18

22 4,000 4,000 3,305.793,305.79

33 6,000 6,000 4,507.894,507.89

44 7,000 7,000 4,781.094,781.09

PV of Cash Flow Stream: $ 4,412.95PV of Cash Flow Stream: $ 4,412.95

00 1 1 2 2 3 3 4 4

-10,000 2,000 4,000 6,000 7,000-10,000 2,000 4,000 6,000 7,000

Page 49: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Which is the better loan:Which is the better loan: 8%8% compounded compounded annuallyannually, or, or 7.85%7.85% compounded compounded quarterlyquarterly?? We can’t compare these nominal (quoted) We can’t compare these nominal (quoted)

interest rates, because they don’t include the interest rates, because they don’t include the same number of compounding periods per same number of compounding periods per year!year!

We need to calculate the APY.We need to calculate the APY.

Page 50: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Page 51: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

APY = APY = (( 1 + 1 + ) ) m m - 1- 1quoted ratequoted ratemm

Page 52: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Find the APY for the quarterly loan:Find the APY for the quarterly loan:

APY = APY = (( 1 + 1 + ) ) m m - 1- 1quoted ratequoted ratemm

Page 53: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Find the APY for the quarterly loan:Find the APY for the quarterly loan:

APY = APY = (( 1 + 1 + ) ) m m - 1- 1quoted ratequoted ratemm

APY = APY = (( 1 + 1 + ) ) 4 4 - 1- 1.0785.078544

Page 54: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Find the APY for the quarterly loan:Find the APY for the quarterly loan:

APY = APY = (( 1 + 1 + ) ) m m - 1- 1quoted ratequoted ratemm

APY = APY = (( 1 + 1 + ) ) 4 4 - 1- 1

APY = .0808, or 8.08%APY = .0808, or 8.08%

.0785.078544

Page 55: 8.Time Value of Money 2

Annual Percentage Yield (APY)Annual Percentage Yield (APY)

Find the APY for the quarterly loan:Find the APY for the quarterly loan:

The quarterly loan is more expensive than The quarterly loan is more expensive than the 8% loan with annual compounding!the 8% loan with annual compounding!

APY = APY = (( 1 + 1 + ) ) m m - 1- 1quoted ratequoted ratemm

APY = APY = (( 1 + 1 + ) ) 4 4 - 1- 1

APY = .0808, or 8.08%APY = .0808, or 8.08%

.0785.078544

Page 56: 8.Time Value of Money 2

Practice ProblemsPractice Problems

Page 57: 8.Time Value of Money 2

ExampleExample

Cash flows from an investment are Cash flows from an investment are expected to be expected to be $40,000$40,000 per year at the per year at the end of years 4, 5, 6, 7, and 8. If you end of years 4, 5, 6, 7, and 8. If you require a require a 20%20% rate of return, what is rate of return, what is the PV of these cash flows?the PV of these cash flows?

Page 58: 8.Time Value of Money 2

ExampleExample

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Cash flows from an investment are Cash flows from an investment are expected to be expected to be $40,000$40,000 per year at the per year at the end of years 4, 5, 6, 7, and 8. If you end of years 4, 5, 6, 7, and 8. If you require a require a 20%20% rate of return, what is rate of return, what is the PV of these cash flows?the PV of these cash flows?

Page 59: 8.Time Value of Money 2

This type of cash flow sequence is This type of cash flow sequence is often called a often called a ““deferred annuitydeferred annuity.”.”

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 60: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 61: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 62: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 63: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 64: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 65: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 66: 8.Time Value of Money 2

How to solve:How to solve:

1) 1) Discount each cash flow back to Discount each cash flow back to time 0 separately.time 0 separately.

Or,Or,

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 67: 8.Time Value of Money 2

2) 2) Find the PV of the annuity:Find the PV of the annuity:

PVPV:: End mode; P/YR = 1; I = 20; End mode; P/YR = 1; I = 20; PMT = 40,000; N = 5 PMT = 40,000; N = 5

PV = PV = $119,624$119,624

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 68: 8.Time Value of Money 2

2) 2) Find the PV of the annuity:Find the PV of the annuity:

PVPV3:3: End mode; P/YR = 1; I = 20; End mode; P/YR = 1; I = 20; PMT = 40,000; N = 5 PMT = 40,000; N = 5

PVPV33= = $119,624$119,624

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 69: 8.Time Value of Money 2

119,624119,624

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 70: 8.Time Value of Money 2

Then discount this single sum back to Then discount this single sum back to time 0.time 0.

PV: End mode; P/YR = 1; I = 20; PV: End mode; P/YR = 1; I = 20;

N = 3; FV = 119,624; N = 3; FV = 119,624;

Solve: PV = Solve: PV = $69,226$69,226

119,624119,624

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

Page 71: 8.Time Value of Money 2

69,22669,226

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

119,624119,624

Page 72: 8.Time Value of Money 2

The PV of the cash flow The PV of the cash flow stream is stream is $69,226$69,226..

69,22669,226

00 11 22 33 44 55 66 77 88

$0$0 0 0 0 0 0 0 4040 4040 4040 4040 4040

119,624119,624

Page 73: 8.Time Value of Money 2

Retirement ExampleRetirement Example

After graduation, you plan to invest After graduation, you plan to invest $400$400 per month per month in the stock market. in the stock market. If you earn If you earn 12%12% per year per year on your on your stocks, how much will you have stocks, how much will you have accumulated when you retire in accumulated when you retire in 3030 yearsyears??

Page 74: 8.Time Value of Money 2

Retirement ExampleRetirement Example

After graduation, you plan to invest After graduation, you plan to invest $400$400 per month in the stock market. per month in the stock market. If you earn If you earn 12%12% per year on your per year on your stocks, how much will you have stocks, how much will you have accumulated when you retire in 30 accumulated when you retire in 30 years?years?

00 11 22 33 . . . 360. . . 360

400 400 400 400400 400 400 400

Page 75: 8.Time Value of Money 2

00 11 22 33 . . . 360. . . 360

400 400 400 400400 400 400 400

Page 76: 8.Time Value of Money 2

Using your calculator,Using your calculator,

P/YR = 12P/YR = 12

N = 360 N = 360

PMT = -400PMT = -400

I%YR = 12I%YR = 12

FV = FV = $1,397,985.65$1,397,985.65

00 11 22 33 . . . 360. . . 360

400 400 400 400400 400 400 400

Page 77: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Page 78: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Mathematical Solution:Mathematical Solution:

Page 79: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Mathematical Solution:Mathematical Solution:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ))

Page 80: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Mathematical Solution:Mathematical Solution:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) )

FV = 400 (FVIFA FV = 400 (FVIFA .01, 360.01, 360 ) ) (can’t use FVIFA table)(can’t use FVIFA table)

Page 81: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Mathematical Solution:Mathematical Solution:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) )

FV = 400 (FVIFA FV = 400 (FVIFA .01, 360.01, 360 ) ) (can’t use FVIFA table)(can’t use FVIFA table)

FV = PMT (1 + i)FV = PMT (1 + i)nn - 1 - 1

ii

Page 82: 8.Time Value of Money 2

Retirement ExampleRetirement Example If you invest $400 at the end of each month for the If you invest $400 at the end of each month for the next 30 years at 12%, how much would you have at next 30 years at 12%, how much would you have at

the end of year 30? the end of year 30?

Mathematical Solution:Mathematical Solution:

FV = PMT (FVIFA FV = PMT (FVIFA i, ni, n ) )

FV = 400 (FVIFA FV = 400 (FVIFA .01, 360.01, 360 ) ) (can’t use FVIFA table)(can’t use FVIFA table)

FV = PMT (1 + i)FV = PMT (1 + i)nn - 1 - 1

ii

FV = 400 (1.01)FV = 400 (1.01)360360 - 1 = - 1 = $1,397,985.65$1,397,985.65

.01 .01

Page 83: 8.Time Value of Money 2

If you borrow If you borrow $100,000$100,000 at at 7%7% fixed fixed interest for interest for 3030 years years in order to in order to buy a house, what will be your buy a house, what will be your

monthly house paymentmonthly house payment??

House Payment ExampleHouse Payment Example

Page 84: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

If you borrow If you borrow $100,000$100,000 at at 7%7% fixed fixed interest for interest for 3030 years in order to years in order to buy a house, what will be your buy a house, what will be your

monthly house payment?monthly house payment?

Page 85: 8.Time Value of Money 2

0 1 2 3 . . . 360

? ? ? ?

Page 86: 8.Time Value of Money 2

Using your calculator,Using your calculator,

P/YR = 12P/YR = 12

N = 360N = 360

I%YR = 7I%YR = 7

PV = $100,000PV = $100,000

PMT = PMT = -$665.30-$665.30

00 11 22 33 . . . 360. . . 360

? ? ? ?? ? ? ?

Page 87: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

Mathematical Solution:Mathematical Solution:

Page 88: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

Mathematical Solution:Mathematical Solution:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ))

Page 89: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

Mathematical Solution:Mathematical Solution:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) )

100,000 = PMT (PVIFA 100,000 = PMT (PVIFA .07, 360.07, 360 ) ) (can’t use PVIFA table)(can’t use PVIFA table)

Page 90: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

Mathematical Solution:Mathematical Solution:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) )

100,000 = PMT (PVIFA 100,000 = PMT (PVIFA .07, 360.07, 360 ) ) (can’t use PVIFA table)(can’t use PVIFA table)

11

PV = PMT 1 - (1 + i)PV = PMT 1 - (1 + i)nn

ii

Page 91: 8.Time Value of Money 2

House Payment ExampleHouse Payment Example

Mathematical Solution:Mathematical Solution:

PV = PMT (PVIFA PV = PMT (PVIFA i, ni, n ) )

100,000 = PMT (PVIFA 100,000 = PMT (PVIFA .07, 360.07, 360 ) ) (can’t use PVIFA table)(can’t use PVIFA table)

11

PV = PMT 1 - (1 + i)PV = PMT 1 - (1 + i)nn

ii

11

100,000 = PMT 1 - (1.005833 )100,000 = PMT 1 - (1.005833 )360360 PMT=$665.30PMT=$665.30

.005833.005833

Page 92: 8.Time Value of Money 2

Team AssignmentTeam Assignment

Upon retirement, your goal is to spend Upon retirement, your goal is to spend 55 years traveling around the world. To years traveling around the world. To travel in style will require travel in style will require $250,000$250,000 per per year at the year at the beginningbeginning of each year. of each year.

If you plan to retire in If you plan to retire in 30 30 yearsyears, what are , what are the equal the equal monthlymonthly payments necessary payments necessary to achieve this goal? The funds in your to achieve this goal? The funds in your retirement account will compound at retirement account will compound at 10%10% annually. annually.

Page 93: 8.Time Value of Money 2

How much do we need to have by How much do we need to have by the end of year 30 to finance the the end of year 30 to finance the trip?trip?

PVPV3030 = PMT (PVIFA = PMT (PVIFA .10, 5.10, 5) (1.10) =) (1.10) =

= 250,000 (3.7908) (1.10) == 250,000 (3.7908) (1.10) =

= = $1,042,470$1,042,470

2727 2828 2929 3030 3131 3232 3333 3434 3535

250 250 250 250 250 250 250 250 250 250

Page 94: 8.Time Value of Money 2

Using your calculator,Using your calculator,

Mode = BEGINMode = BEGIN

PMT = -$250,000PMT = -$250,000

N = 5N = 5

I%YR = 10I%YR = 10

P/YR = 1P/YR = 1

PV = PV = $1,042,466$1,042,466

2727 2828 2929 3030 3131 3232 3333 3434 3535

250 250 250 250 250 250 250 250 250 250

Page 95: 8.Time Value of Money 2

Now, assuming 10% annual Now, assuming 10% annual compounding, what monthly compounding, what monthly payments will be required for you payments will be required for you to have to have $1,042,466$1,042,466 at the end of at the end of year 30?year 30?

2727 2828 2929 3030 3131 3232 3333 3434 3535

250 250 250 250 250 250 250 250 250 250

1,042,4661,042,466

Page 96: 8.Time Value of Money 2

Using your calculator,Using your calculator,

Mode = ENDMode = END

N = 360N = 360

I%YR = 10I%YR = 10

P/YR = 12P/YR = 12

FV = $1,042,466FV = $1,042,466

PMT = PMT = -$461.17-$461.17

2727 2828 2929 3030 3131 3232 3333 3434 3535

250 250 250 250 250 250 250 250 250 250

1,042,4661,042,466

Page 97: 8.Time Value of Money 2

So, you would have to place So, you would have to place $461.17$461.17 in in your retirement account, which earns your retirement account, which earns 10% annually, at the end of each of the 10% annually, at the end of each of the next 360 months to finance the 5-year next 360 months to finance the 5-year world tour.world tour.

Page 98: 8.Time Value of Money 2

Practice Practice

A Client has $202.971,39 in an account that A Client has $202.971,39 in an account that earns 8% per year, compounded monthly. The earns 8% per year, compounded monthly. The client’s 35client’s 35thth birthday was yesterday and she will birthday was yesterday and she will retire when the account value is $1 million.retire when the account value is $1 million.

A.A.At what age can she retire if she puts no more At what age can she retire if she puts no more money in the account?money in the account?

B.B.At what age can she retire if she puts $250 per At what age can she retire if she puts $250 per month into the account every month, beginning month into the account every month, beginning one month from now?one month from now?

Page 99: 8.Time Value of Money 2

AnswerAnswer

A.A. PV = $ 202.971,39 PV = $ 202.971,39

I/Y = 8%/12 = 0.6667%. A = 0. FV = $1.000.000,- I/Y = 8%/12 = 0.6667%. A = 0. FV = $1.000.000,-

N = 240 months = 20 years.N = 240 months = 20 years.

She will be 55 years old.She will be 55 years old.

FV = PV (1+i)FV = PV (1+i)nn

$ 1.000.000,- = $202.971,39 (1+0.6667%)$ 1.000.000,- = $202.971,39 (1+0.6667%)nn

(1.000.000,- / 202.971,39) = (1.006667)(1.000.000,- / 202.971,39) = (1.006667) n n

ln 4.9268 = n x ln (1.006667)ln 4.9268 = n x ln (1.006667)

1.5947 = n x 0.006645 1.5947 = n x 0.006645 n = 240 bulan n = 240 bulan

Page 100: 8.Time Value of Money 2

B. A = $250/monthB. A = $250/month

N = 18.335 yearsN = 18.335 years

She will be 53 years old.She will be 53 years old.