8493506

Embed Size (px)

Citation preview

  • 8/17/2019 8493506

    1/117

    CHAPTER 3

    MAGNETOSTATICS

  • 8/17/2019 8493506

    2/117

    2

    MAGNETOSTATICS

    3.1 BIOT-SAVART’S LAW

    3.2 AMPERE’S CIRCUITAL LAW

    3.3 MAGNETIC FLUX DENSITY

    3.4 MAGNETIC FORCES

    3.5 BOUNDARY CONDITIONS

  • 8/17/2019 8493506

    3/117

    3

    INTRODUCTION

    Magnetism and electricity were

    considered distinct phenomena until

    1820 when Hans Christian Oersted

    introduced an experiment that showed a

    compass needle deflecting when in

    proximity to current carrying wire.

  • 8/17/2019 8493506

    4/117

    4

    He used compass to show that current produces

    magnetic fields that loop around the conductor.

     The field grows weaker as it moves away from the

    source of current.

     A  represents current

    coming out of paper.

     A represents current

    heading into the paper.

     

    INTRODUCTION (Cont’d)

  • 8/17/2019 8493506

    5/117

    5

     The principle of magnetism is widely used in

    many applications:

     Magnetic memory Motors and generators

     Microphones and speakers

     Magnetically levitated high-speed

     vehicle.

    INTRODUCTION (Cont’d)

  • 8/17/2019 8493506

    6/117

    6

    INTRODUCTION (Cont’d)

    Magnetic fields can be easily visualized by

    sprinkling iron filings on a piece of paper

    suspended over a bar magnet.

  • 8/17/2019 8493506

    7/117

    7

     The field lines are in terms of themagnetic field

    intensity,H in units of amps per meter.

     This is analogous to the volts per meter units

    forelectric field intensity,E.

    Magnetic field will be introduced in a manner

    paralleling our treatment to electric fields.

    INTRODUCTION (Cont’d)

  • 8/17/2019 8493506

    8/117

    8

    3.1BIOT-SAVART’S LAW

     Jean Baptiste Biot and Felix Savart arrived a

    mathematical relation between the field and

    current.

    2

    12

    1211

    4 R 

    aLH

    π 

    ×=  d  I 

  • 8/17/2019 8493506

    9/117

    9

    BIOT-SAVART’S LAW (Cont’d)

     To get the total field resulting from a

    current, sum the contributions from each

    segment by integrating:

    ∫ 

      ×

    = 24   R Id   R

    π 

    aLH

  • 8/17/2019 8493506

    10/117

    10

    BIOT-SAVART’S LAW (Cont’d)

    Due to continuous current distributions:

    Line current Surface current Volume current

  • 8/17/2019 8493506

    11/117

    11

    In terms of distributed current sources, the

    Biot-Savart’s Law becomes:

    ∫    ×= 24   R Id 

     Rπ 

    aL

    H

    ∫   ×

    =2

    4   R

    dS   R

    π 

    aK H

    ∫   ×

    =24   R

    dV   R

    π 

    aJH

    Line current

    Surface current

     Volume current

    BIOT-SAVART’S LAW (Cont’d)

  • 8/17/2019 8493506

    12/117

    12

    DERIVATION

    Let’s apply

    to determine the magnetic field, H everywhere

    due to straight current carrying filamentary

    conductor of a finite length AB .

    ∫ 

      ×=

    2

    4   R

     Id   R

    π 

    aLH

  • 8/17/2019 8493506

    13/117

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    14/117

    14

     We assume that the conductor is along the z-

    axis with its upper and lower ends respectively

    subtending angles and at point P where

    H is to be determined.1

    α 2

    α 

     The field will be independent of z and φ and

    only dependant on ρ.

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    15/117

    15

     The term dL is simply and the vectorfrom the source to the test pointP is:

     z dz a

     ρ  ρ aaaR    +−==→

     z  R   z  R

     Where the magnitude is:

    22  ρ +=   z R 

     And the unit vector:22  ρ 

     ρ   ρ 

    ++−=

     z 

     z   z  R

    aaa

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    16/117

    16

    Combining these terms to have:

    ( )

    ( )∫ 

    ∫ ∫ 

    +

    +−×=

    ×=×= B

     A

     z  z 

     R

     z 

     z  Idz 

     R Id 

     R Id 

    2322

    32

    4

    44

     ρ π 

     ρ 

    π π 

     ρ aaa 

    R LaLH

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    17/117

    17

    ( ) ρ  ρ aaa   +−×   z  z    z dz Cross product of :

    φ 

    φ  ρ 

     ρ  ρ 

    a

    aaa

    R L   dz  z 

    dz d 

     z 

    =−

    000

     This yields to:

    ( )  φ 

     ρ π 

     ρ aH ∫ 

    += B

     A   z 

    dz  I 2322

    4

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    18/117

    18

     Trigonometry from figure,

     z 

     ρ α  =tan So,   α  ρ cot= z 

    Differentiate to get:   α α  ρ    d ecdz    2cos−=

    ( )   φ α 

    α    α  ρ  ρ 

    α α  ρ 

    π aH

    ∫  +−=∴2

    1

    23222

    22

    cot

    cos

    4

    d ec I 

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    19/117

    19

    DERIVATION (Cont’d)

    Remember!

    ( )   ( ))(cos)(cot1

    )(cos)cot(

    22

    2

    uecu

     xuuecu

     x

    =+

    ∂∂−=∂∂

  • 8/17/2019 8493506

    20/117

    20

    Simplify the equation to become:

    ( )   φ 

    φ 

    α 

    α 

    φ 

    α 

    α 

    α α πρ 

    α α πρ 

    α  ρ 

    α α  ρ 

    π 

    aH

    12

    33

    22

    coscos4

    sin4

    cos

    cos

    4

    2

    1

    2

    1

    −=

    −=

    −=

    ∫ ∫ 

     I 

    d  I 

    ec

    d ec I 

    DERIVATION (Cont’d)

  • 8/17/2019 8493506

    21/117

    21

     Therefore,

    ( )  φ 

    α α πρ 

    aH12

      coscos

    4

    −=  I 

     This expression generally applicable for any

    straight filamentary conductor of finite length.

    DERIVATION 1

  • 8/17/2019 8493506

    22/117

    22

     As a special case, when the conductor is semifinite

     with respect toP,

    ( )( ) ( )−∞∞   ,0,0,0,0

    0,0,0orat

    at

     B A

     The angle become:  0

    20

    1   0,90   ==   α α 

    So that,

    φ πρ 

    aH4

     I =

    DERIVATION 2

  • 8/17/2019 8493506

    23/117

    23

     Another special case, when the conductor is

    infinite with respect toP,

    ( )( )∞−∞,0,0

    ,0,0at

    at

     B A

     The angle become:  0

    20

    1   0,180   ==   α α 

    So that,

    φ πρ 

    aH2

     I =

    DERIVATION 3

  • 8/17/2019 8493506

    24/117

    24

    HOW TO FIND UNIT VECTOR aφ ?

    From previous example, the vectorH is in

    direction ofaφ, where it needs to be determine

     by simple approach:

    φ a

     ρ φ  aaa   ×=   l  Where,

    l a

    unit vector along the line current

     ρ aunit vector perpendicular from theline current to the field point

  • 8/17/2019 8493506

    25/117

    25

    EXAMPLE 1

     The conducting triangular loop carries of 10A.FindH at (0,0,5) due to side 1 of the loop.

  • 8/17/2019 8493506

    26/117

    26

    SOLUTION TO EXAMPLE 1

    • Side 1 lies on the x-y

    plane and treated as a

    straight conductor.

    • Join the point of interest

    (0,0,5) to the beginning and

    end of the line current.

  • 8/17/2019 8493506

    27/117

    27

    SOLUTION TO EXAMPLE 1 (Cont’d)

     This will show how is

    applied for any straight, thin, current carrying

    conductor.

    ( )   φ α α πρ 

    aH 12   coscos4

    −=  I 

    From figure, we know that   0cos90 10

    1   =∴=   α α   

    and from trigonometry and29

    2

    cos 2 =α    5= ρ 

  • 8/17/2019 8493506

    28/117

    28

    SOLUTION TO EXAMPLE 1 (Cont’d)

     To determine by simple approach:φ a

     xl  aa   =  z aa   = ρ and so that,

     y z  xl  aaaaaa   −=×=×=   ρ φ 

    ( )

    ( )  ( )   m Am

     I 

     y y  aa 

    aH

    1.59029

    2

    54

    10

    coscos4

      12

    −=−   

       −=

    −=∴

    π 

    α α πρ 

      φ 

  • 8/17/2019 8493506

    29/117

    29

    EXAMPLE 2

     A ring of current with radiusa lying in the x-y

    plane with a currentI in the direction. Find

    an expression for the field at arbitrary point a

    heighth on z axis.

    φ a+

  • 8/17/2019 8493506

    30/117

    30

    Can we use ?( )   φ α α πρ 

    aH 12   coscos4

    −=   I 

    SOLUTION TO EXAMPLE 2

    Solve for each term in

    the Biot-Savart’s Law

  • 8/17/2019 8493506

    31/117

    31

    SOLUTION TO EXAMPLE 2 (Cont’d)

     We could find:

    φ φ aL   ad d    =

     ρ aaaR    ah R  z  R   −==

    22 ah   +=R 

    22 ah

    ah z  R

    +

    −=∴   ρ 

    aa

    a

  • 8/17/2019 8493506

    32/117

    32

    It leads to:

    ( )( )∫ 

    ∫ ∫ 

    =   +−×=

    ×=

    ×=

    π 

    φ 

     ρ φ 

    π φ 

    π π 2

    02322

    32

    4

    44

    ahah Iad 

     R

     Id 

     R

     Id 

     z 

     R

    aaa 

    R LaLH

    SOLUTION TO EXAMPLE 2 (Cont’d)

     The differential current element will give a field

     with: ρ a from

    from z a

     z aa   ×φ ( ) ρ φ  aa   −×

  • 8/17/2019 8493506

    33/117

    33

    However, consider the symmetry of the problem:

    SOLUTION TO EXAMPLE 2 (Cont’d)

     The radial components

    cancel but the

    components adds, so: z a

    ( )   ∫ =+=

    π 

    φ 

    φ π 

    2

    02322

    2

    4

    d ah

     Ia  z aH

  • 8/17/2019 8493506

    34/117

    34

     This can be easily solved to get:

    ( )  z 

    ah

     IaaH

    2322

    2

    2   +=

     At h=0 where at the center of the loop, this

    equation reduces to:

     z a

     I aH

    2=

    SOLUTION TO EXAMPLE 2 (Cont’d)

  • 8/17/2019 8493506

    35/117

    35

    BIOT-SAVART’S LAW (Cont’d)

    • For many problems involvingsurface current

    densities andvolume current densities, solving for

    the magnetic field using Biot-Savart’s Law can be

    quite cumbersome and require numerical

    integration.

    • There will be sufficient symmetry to be able tosolve for the fields using Ampere’s Circuital Law.

  • 8/17/2019 8493506

    36/117

    36

    3.2AMPERE’S CIRCUITAL LAW

    In magnetostatic problems with sufficient

    symmetry, we can employ Ampere’s Circuital

    Law more easily that the law of Biot-Savart.

     The law says that the integration ofH 

    around any closed path is equal to the net

    current enclosed by that path. i.e.

    enc I d    =•∫  LH

  • 8/17/2019 8493506

    37/117

    37

    • The line integral ofH around the path is termedthe circulation ofH.

    • To solve forH in given symmetrical current

    distribution, it is important to make a carefulselection of an Amperian Path (analogous to

    gaussian surface) that is everywhere either

    tangential or normal toH.

    • The direction of the circulation is chosen such

    that the right hand rule is satisfied.

    AMPERE’S CIRCUITAL LAW (Cont’d)

  • 8/17/2019 8493506

    38/117

    38

    DERIVATION 4

    Find the magnetic field intensity

    everywhere resulting from an infinite

    length line of current situated on the

    z-axis using Ampere’s Circuital Law.

  • 8/17/2019 8493506

    39/117

    39

    DERIVATION 4 (Cont’d)

    Select the best Amperian path,

     where here are two possible

     Amperian paths around an

    infinite length line of current.

    Choose pathb which has a

    constant value of Hφ 

    around the circle specified

     by the radiusρ

  • 8/17/2019 8493506

    40/117

    40

    DERIVATION 4 (Cont’d)

    Using Ampere’s circuital law:

    enc I d    =•∫  LH

     We could find:

    φ 

    φ φ 

    φ  ρ  aL

    aH

    d d 

     H 

    =

    =

    So,

     I d  H  I d  enc   =•==•   ∫ ∫ =

    π 

    φ 

    φ φ φ    φ  ρ 2

    0

    aaLH

  • 8/17/2019 8493506

    41/117

    41

    Solving for Hφ:

    πρ φ 

    2

     I  H   =

     Where we find that the field resulting from an

    infinite length line of current is the expected

    result:

    φ πρ 

    aH2

     I = Same as applyingBiot-Savart’s Law!

    DERIVATION 4 (Cont’d)

  • 8/17/2019 8493506

    42/117

    42

    Use Ampere’s Circuital Law to find the

    magnetic field intensity resulting from an

    infinite extent sheet of current with current

    sheet in the x-y plane.

    DERIVATION 5

     x x K  aK  =

  • 8/17/2019 8493506

    43/117

    43

    DERIVATION 5 (Cont’d)

    Rectangularamperian path of height ∆h and width∆w. According to right hand rule, perform the

    circulation in order of a b c d a

  • 8/17/2019 8493506

    44/117

    44

     We have:

    ∫ ∫ ∫ ∫ ∫    •+•+•+•==•a

    c

    c

    b

    b

    a

    enc   d d d d  I d  LHLHLHLHLH

    DERIVATION 5 (Cont’d)

    From symmetry argument, there’s only H y 

    component exists. So, Hz will be zero and thus the

    expression reduces to:

    ∫ ∫ ∫    •+•==•d 

    c

    b

    a

    enc   d d  I d  LHLHLH

  • 8/17/2019 8493506

    45/117

    45

    So, we have:

    ( )

    w H 

    dy H dy H 

    d d d 

     y

    w

     y y y

    w

     y y y

    c

    b

    a

    ∆=

    •+•−=

    •+•=•

    ∫ ∫ 

    ∫ ∫ ∫ ∆

    2

    0

    0

     

    aaaa 

    LHLHLH

    DERIVATION 5 (Cont’d)

  • 8/17/2019 8493506

    46/117

    46

     The current enclosed by the path,

    w K dy K  KdS  I   x

    w

     x   ∆===   ∫ ∫ ∆

    0

    DERIVATION 5 (Cont’d)

     This will give:

    enc I d    =•∫  LH

    w K w H   x y   ∆=∆2

    2

     x y

     K  H    =

    Or generally,

     N aK H   ×= 21

  • 8/17/2019 8493506

    47/117

    47

    EXAMPLE 3

     An infinite sheet of current with exists

    on the x-z plane at y = 0. FindH at P (3,2,5).m

     A z  aK    6=

  • 8/17/2019 8493506

    48/117

    48

    SOLUTION TO EXAMPLE 3

    Use previous expression, that is:

     N aK H   ×=2

    1

      is a normal vector from the sheet to the testpoint P (3,4,5), where: N a

     y N  aa   = and  z aK    6=

    So,

    m A

     x y z   aaaH   362

    1−=×=

  • 8/17/2019 8493506

    49/117

    49

    Consider the infinite length

    cylindrical conductor

    carrying a radially

    dependent current

    FindH everywhere. z  J  aJ   ρ 0=

    EXAMPLE 4

  • 8/17/2019 8493506

    50/117

    50

     What components of H will be present?

    Finding the field at

    some pointP, the

    field has both

    and components. ρ a

    φ a

    SOLUTION TO EXAMPLE 4

  • 8/17/2019 8493506

    51/117

    51

     The field from the

    second line currentresults in a

    cancellation of the

    components

     ρ a

    SOLUTION TO EXAMPLE 4 (Cont’d)

  • 8/17/2019 8493506

    52/117

    52

     To calculateH everywhere, two amperian paths

    are required:

    Path #1 is for

    Path #2 is for

    a≤ ρ 

    a> ρ 

    SOLUTION TO EXAMPLE 4 (Cont’d)

  • 8/17/2019 8493506

    53/117

    53

    Evaluating the left side of Ampere’s law:

    φ 

    π 

    φ φ φ    πρ φ  ρ    H d  H d    22

    0

    =•=•   ∫ ∫  aaLH

     This is true for both amperian path. The current enclosed for the path #1:

    3

    2   30

    0

    2

    0

    20

    0

     ρ π φ  ρ  ρ 

    φ  ρ  ρ  ρ 

     ρ 

     ρ 

    π 

    φ 

     J d d  J 

    d d  J d  I   z  z 

    ==

    •=•=

    ∫ ∫ 

    ∫ ∫ 

    = =

     

    aaSJ

    SOLUTION TO EXAMPLE 4 (Cont’d)

  • 8/17/2019 8493506

    54/117

    54

    Solving to get Hφ:

    3

    2

    0 ρ φ 

     J  H    = Or φ 

     ρ aH

    3

    2

    0 J = for a≤ ρ 

     The current enclosed for the path #2:

    3

    2   30

    0

    2

    0

    20

    a J d d  J d  I 

    a π φ  ρ  ρ 

     ρ 

    π 

    φ 

    ==•=   ∫ ∫ ∫ = =

    SJ

    Solving to get Hφ:

    φ  ρ 

    aH3

    3

    0a J = for a> ρ 

    SOLUTION TO EXAMPLE 4 (Cont’d)

  • 8/17/2019 8493506

    55/117

    55

    EXAMPLE 5

    FindH everywhere

    for coaxial cable as

    shown.

  • 8/17/2019 8493506

    56/117

    56

    Even current

    distributions are

    assumed in theinner and outer

    conductor.

    Consider fouramperian paths.

    SOLUTION TO EXAMPLE 5

  • 8/17/2019 8493506

    57/117

    57

    It will be four amperian paths:

     

     

     

     

     Therefore, the magnetic field intensity,H will be determined for each amperian paths.

    a≤ ρ 

    ba   ≤

  • 8/17/2019 8493506

    58/117

    58

     As previous example, only Hφ component is

    present, and we have the left side of ampere’s

    circuital law:

    φ 

    π 

    φ φ φ    πρ φ  ρ    H d  H d    22

    0

    =•=•   ∫ ∫  aaLH

     For the path #1:

    ∫   •= SJ   d  I enc

    SOLUTION TO EXAMPLE 5 (Cont’d)

  • 8/17/2019 8493506

    59/117

    59

     We need to find current density, J for innerconductor because the problem assumes an event

    current distribution (ρ

  • 8/17/2019 8493506

    60/117

    60

    So, z  z 

    a

     I 

    dS 

     I aaJ

    2π ==

     We therefore have:

    2

    2

    2

    0 02

    a

     I 

    d d a

     I d  I   z  z enc

     ρ 

     ρ φ  ρ π 

    π 

    φ 

     ρ 

     ρ 

    =

    •=•=   ∫ ∫ ∫ = =

     

    aaSJ

    SOLUTION TO EXAMPLE 5 (Cont’d)

  • 8/17/2019 8493506

    61/117

    61

    Equating both sides to get:

    2

    2

    2 22   a

     I 

    a

     I  H 

    π 

     ρ 

    πρ 

     ρ φ    == for a≤ ρ 

     For the path #2:

     The current enclosed is justI,

     Therefore:

     I  I enc =

     I  I  H d  enc ===•

    ∫   φ πρ 2LH

    πρ φ 

    2

     I  H   = for ba   ≤

  • 8/17/2019 8493506

    62/117

    62

     For the path #3:

    SOLUTION TO EXAMPLE 5 (Cont’d)

    For total current enclosed by path 3, we need to

    find the current density, J in the outer

    conductor because the problem assumes anevent current distribution (a

  • 8/17/2019 8493506

    63/117

    63

     We therefore have (for AP#3):

    ( ) ( )

    22

    22

    2

    022

    bc

    b I 

    d d bc

     I d 

    b

     z  z 

    −−−=

    •−−

    =•   ∫ ∫ ∫ = =

     ρ 

     ρ φ  ρ π 

    π 

    φ 

     ρ 

     ρ 

     

    aaSJ

    But, the total current enclosed is:

    22

    22

    22

    22

    bc

    c I 

    bc

    b I  I 

    d  I  I enc

    −−

    =   

      

     

    −−

    −+=

    •+=  ∫ 

     ρ  ρ  

    SJ

    SOLUTION TO EXAMPLE 5 (Cont’d)

  • 8/17/2019 8493506

    64/117

    64

    SOLUTION TO EXAMPLE 5 (Cont’d)

    So we can solve for path #3:

    22

    22

    2bc

    c I  I  H d  enc −

    −===•∫   ρ 

    πρ  φ LH

       

      

     −−=

    22

    22

    2   bc

    c I  H 

      ρ 

    πρ φ 

    for cb   ≤ ρ   This shows the shieldingability by coaxial cable!!

  • 8/17/2019 8493506

    65/117

    65

    SOLUTION TO EXAMPLE 5 (Cont’d)

    Summarize the results to have:

    >≤

  • 8/17/2019 8493506

    66/117

    66

    Expression for curl by applying Ampere’s

    Circuital Law might be too lengthy to derive, but

    it can be described as:

    JH =×∇ The expression is also called the point form of

     Ampere’s Circuital Law, since it occurs at

    some particular point.

    AMPERE’S CIRCUITAL LAW (Cont’d)

    ( d)

  • 8/17/2019 8493506

    67/117

    67

     The Ampere’s Circuital Law can be rewritten in

    terms of a current density, as:

    ∫ ∫    •=•SJLH   d d 

    Use the point form of Ampere’s Circuital Law to

    replace J, yielding:

    ( )∫ ∫    •×∇=• SHLH   d d  This is known asStoke’s Theorem.

    AMPERE’S CIRCUITAL LAW (Cont’d)

  • 8/17/2019 8493506

    68/117

    68

    3.3MAGNETIC FLUX DENSITY

    In electrostatics, it is convenient to think in terms

    of electric flux intensity and electric flux density.

    So too in magnetostatics, where magnetic flux

    density,B is related to magnetic field intensity by:

    r  µ  µ  µ  µ  0==  HB Where μ is the permeability with:

    m H 70

      104  −×=   π  µ 

    MAGNETICFLUXDENSITY(C ’d)

  • 8/17/2019 8493506

    69/117

    69

    MAGNETIC FLUX DENSITY (Cont’d)

     The amount of magnetic flux, φ in webers

    from magnetic field passing through a

    surface is found in a manner analogous to

    finding electric flux:

    ∫   •=Φ SB   d 

    MAGNETICFLUXDENSITY(C t’d)

  • 8/17/2019 8493506

    70/117

    70

    Fundamental features of magnetic fields:

    • The field lines form a

    closed loops. It’s differentfrom electric field lines,

     where it starts on positive

    charge and terminates on

    negative charge

    MAGNETIC FLUX DENSITY (Cont’d)

    MAGNETICFLUXDENSITY(C t’d)

  • 8/17/2019 8493506

    71/117

    71

    MAGNETIC FLUX DENSITY (Cont’d)

    • The magnet cannot be

    divided in two parts, but it

    results in two magnets. The magnetic pole cannot

     be isolated.

    MAGNETICFLUXDENSITY(C t’d)

  • 8/17/2019 8493506

    72/117

    72

    MAGNETIC FLUX DENSITY (Cont’d)

     The net magnetic flux passing through a

    gaussian surface must be zero, to getGauss’s

    Law for magnetic fields:

    0=•∫  SB   d By applying divergence theorem, the point form

    of Gauss’s Law for static magnetic fields:

    0=•∇ B

    EXAMPLE6

  • 8/17/2019 8493506

    73/117

    73

    EXAMPLE 6

    Find the flux crossing the portion of the

    plane φ=π/4 defined by 0.01m < r < 0.05m

    and 0 < z < 2m in free space. A current

    filament of 2.5A is along the z axis in theaz 

    direction.

     Try to sketch this!

    SOLUTIONTOEXAMPLE6

  • 8/17/2019 8493506

    74/117

    74

    SOLUTION TO EXAMPLE 6

     The relation betweenB andH is:

    φ 

    πρ 

     µ  µ  aHB

    2

    00

     I ==

     To find flux crossing the portion, we need to use:

    ∫   •=ΦSB   d 

     where dS is in the aφ direction.

    SOLUTIONTOEXAMPLE6(C t’d)

  • 8/17/2019 8493506

    75/117

    75

    So,   φ  ρ  aS   dz d d    =

     Therefore,

    Wb I 

    dz d  I 

     z 

     

    aa 

    SB

    60

    2

    0

    05.0

    01.0

    0

    1061.101.0

    05.0ln

    2

    2

    2

    = =

    ×==

    •=

    •=Φ

    ∫ ∫ ∫ 

    π 

     µ 

     ρ πρ 

     µ φ φ 

     ρ 

    SOLUTION TO EXAMPLE 6 (Cont’d)

    34MAGNETICFORCES

  • 8/17/2019 8493506

    76/117

    76

    3.4MAGNETIC FORCES

    Upon application of a magnetic field, the wire is

    deflected in a direction normal to both the field and the

    direction of current.

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    77/117

    77

    MAGNETIC FORCES (Cont’d)

     The force is actually acting on the individual

    charges moving in the conductor, given by:

    BuF

      ×= qmBy the definition of electric field intensity, the

    electric forceFe acting on a chargeq within an

    electric field is:

    EF   qe =

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    78/117

    78

     A total force on a charge is given byLorentz force

    equation:

    ( )BuEF   ×+= q

    MAGNETIC FORCES (Cont’d)

     The force is related to acceleration by the

    equation from introductory physics,

    aF   m=

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    79/117

    79

    MAGNETIC FORCES (Cont’d)

     To find a force on a current element, consider a

    line conducting current in the presence of

    magnetic field with differential segmentdQ of

    charge moving with velocityu:

    BuF   ×= dQd 

    dt d Lu =

    But,

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    80/117

    80

    BLF   ×=∴   Id d 

    So,BLF   ×=   d 

    dt 

    dQd 

    Since corresponds to the currentI in

    the line,

    dt dQ

    MAGNETIC FORCES (Cont’d)

     We can find the force from a collection of

    current elements

    12212   ∫    ×= BLF   d  I 

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    81/117

    81

    Consider a line of current in +az direction on the z

    axis. For current elementa,

     z aa  Idz  Id  aL

      =But, the field cannot exert magnetic force

    on the element producing it. From field of

    second elementb, the cross product will

     be zero sinceIdL andaR in same

    direction.

    MAGNETIC FORCES (Contd)

    EXAMPLE7

  • 8/17/2019 8493506

    82/117

    82

    EXAMPLE 7

    If there is a field from a

    second line of current

    parallel to the first, what

     will be the total force?

    SOLUTIONTOEXAMPLE7

  • 8/17/2019 8493506

    83/117

    83

     The force from the magnetic field of line 1 acting

    on a differential section of line 2 is:

    12212 BLF   ×=   d  I d  Where,

    φ πρ 

     µ aB

    2

    101

     I =

    By inspection from figure,

     x y aa  −==   φ  ρ    ,  Why?!?!

    SOLUTION TO EXAMPLE 7

    SOLUTIONTOEXAMPLE7

  • 8/17/2019 8493506

    84/117

    84

    ( )   ( )

    ( )∫ −=

    −=−×=

    0210

    12

    21010212

    2

    22

     L

     y

     y x z 

    dz  y

     I  I 

    dz  y

     I  I 

     y

     I dz  I d 

    aF

    aaaF

    π 

     µ 

    π 

     µ 

    π 

     µ 

     z dz d  aL   =2Consider , then:

     y y

     L I  I aF

    π 

     µ 

    2

    210

    12 =∴

    SOLUTION TO EXAMPLE 7

    MAGNETICFORCES(Cont’d)

  • 8/17/2019 8493506

    85/117

    85

    Generally, ( )∫ ∫ 

      ××=

    212

    121212

    012

    4   R

    d d  I  I 

    aLLF

    π 

     µ 

    • Ampere’s law of force between a pair of current-

    carrying circuits.

    • General case is applicable for two lines that are not

    parallel, or not straight.

    • It is easier to find magnetic fieldB1 by Biot-Savart’s

    law, then use to findF12 .∫    ×=   12212 BLF   d  I 

    MAGNETIC FORCES (Contd)

    EXAMPLE8

  • 8/17/2019 8493506

    86/117

    86

    EXAMPLE 8

     The magnetic flux density in a region of free space

    is given byB= −3xax+ 5yay− 2zaz T. Find the

    total force on the rectangular loop shown which

    lies in the planez= 0 and is bounded byx= 1,x=

    3,y= 2, andy= 5, all dimensions in cm.

     Try to sketch this!

    SOLUTIONTOEXAMPLE8

  • 8/17/2019 8493506

    87/117

    87

     The figure is as shown.

    SOLUTION TO EXAMPLE 8

    SOLUTIONTOEXAMPLE8(Cont’d)

  • 8/17/2019 8493506

    88/117

    88

    SOLUTION TO EXAMPLE 8 (Contd)

    BL F   x Id loo∫ =

     A I    30=

    First, note that in the planez= 0, thezcomponent

    of the given field is zero, so will not contribute to the

    force. We use:

     Which in our case becomes with,

     z  y x   z  y x aaaB   253   −+−=and

    SOLUTIONTOEXAMPLE8(Cont’d)

  • 8/17/2019 8493506

    89/117

    89

    ( )

    ( )

    ( )

    ( )∫ 

    ∫ 

    ∫ 

    ∫ 

    +−

    ++−

    ++−×

    ++−×=

    =

    =

    =

    =

    02.0

    05.001.0

    01.0

    03.0

    05.0

    05.0

    02.003.0

    03.0

    01.002.0

    5330

    5330

    5330

    5330

     y x x y

     y y x x

     y x x y

     y y x x

     y x xdy

     y x xdx

     y xdy

     y xdx

    aaa 

    aaa 

    aaa 

    aaaFSo,

    SOLUTION TO EXAMPLE 8 (Contd)

  • 8/17/2019 8493506

    90/117

    35BOUNDARYCONDITIONS

  • 8/17/2019 8493506

    91/117

    91

    3.5BOUNDARY CONDITIONS

     We could see how the fields behave at the

     boundary between a pair of magnetic materials

     which derived using Ampere’s Circuital Law and

    Gauss’s Law for magnetostatic fields:

    0=•∫  SB   d enc I d    =•∫  LH

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    92/117

    92

    BOUNDARY CONDITIONS (Contd)

    Consider,

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    93/117

    93

     A pair of magnetic media separated by a sheet

    current densityK. Choose a rectangular Amperian

    path of width ∆w and height ∆h centered at the

    interface. The current enclosed by the path is:

    ∫    ∆==   w K  KdW  I enc

    BOUNDARY CONDITIONS (Contd)

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    94/117

    94

    ∫ ∫ ∫ ∫  ∫    ∆=•+++=•b

    a

    c

    b

    c

    a

    w K d d    )( LHLH

    BOUNDARY CONDITIONS (Contd)

     The sheet current is heading into the page and

    use the right hand rule to determine the direction

    of integration around the loop. So,

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    95/117

    95

    ( )221

    21

    11

    2

    0

    0

    2/

    0

    h H  H 

    dL H dL H d 

    cb

    w H dL H d 

    ba

     N  N 

    h

     N  N  N  N  N 

    h

     N 

    c

    b

    b

    a

    w

    ! ! ! ! 

    ∆+−=

    •+•=⋅

    →∆=•=•

    ∫ ∫ ∫ 

    ∫ ∫ 

    ∆−

     

    aaaaLH

    aaLH

    For first and second integral,

    BOUNDARY CONDITIONS (Contd)

  • 8/17/2019 8493506

    96/117

  • 8/17/2019 8493506

    97/117

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    98/117

    98

    BOUNDARY CONDITIONS (Contd)

    Second boundary condition can be determined byapplying Gauss’s Law over a small pillbox shaped

    Gaussian surface,

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    99/117

    99

     The Gauss’s Law,

     Where,

    ∫ ∫ ∫ ∫    •+•+•=• "#debottomto

    d d d d  SBSBSBSB

     The pillbox is short enough, so the flux out ofthe side is negligible.

    0=•∫  SB   d 

    BOUNDARY CONDITIONS (Contd)

    BOUNDARYCONDITIONS(Cont’d)

  • 8/17/2019 8493506

    100/117

    100

     We have

    ( )

    ( )   02121

    =∆−=

    −⋅+⋅=⋅∫ ∫ ∫ 

    S  B B

    dS  BdS  Bd 

     N  N 

     N  N  N  N  N  N 

     

    aaaaSB

    Since ∆S can be chosen unequal to zero, it follows

    that:

    21  N  N  BB   =

    BOUNDARY CONDITIONS (Contd)

    EXAMPLE 9

  • 8/17/2019 8493506

    101/117

    101

    9

     The magnetic field intensity is given as:

    In a medium with µr1=6000 that exist for z

    < 0. FindH2 in a medium with µr2=3000 for

    z>0.

    m A x y x  aaaH   3261   ++=

    SOLUTION TO EXAMPLE 9

  • 8/17/2019 8493506

    102/117

    102

    BOUNDARY CONDITIONS (Cont’d)

  • 8/17/2019 8493506

    103/117

    103

    Recall that, for a conductor-dielectric interface:

    0=!  $  S  N  %   ρ =Generally, it is not exist for magnetostatic fields.If one of the media is superconductor, where the

    magnetic field rapidly attenuates away from the

    surface, such that:

    0=B

    ( )

    BOUNDARY CONDITIONS (Cont’d)

  • 8/17/2019 8493506

    104/117

    104

    If medium 2 is superconductor, the equations for

    magnetostatic fields become:

    0= N B

    K Ha

      =×   1 N    ( )1( )2

     The second expression is logical since the magnetic field

    lines must form closed loops and cannot suddenly

    terminate even on a superconductor.

    ( )

  • 8/17/2019 8493506

    105/117

    CHAPTER 3

    END

    PRACTICAL APPLICATION

  • 8/17/2019 8493506

    106/117

    106

     Loudspeakers

     Maglev (Magnetically Levitated

     Trains)

    LOUDSPEAKERS

  • 8/17/2019 8493506

    107/117

    107

    • Paper or plastic coneaffixed to a voice coil

    (electromagnet) suspended

    in a magnetic field.

    •AC Signals to the voice

    coil moves back and

    forth, resulting vibration of

    the cone and producing

    sound waves of the same

    frequency as the AC signal

    MAGLEV

  • 8/17/2019 8493506

    108/117

    108

    MAGLEV(Cont’d)

  • 8/17/2019 8493506

    109/117

    109

    • Interaction betweenelectromagnets in the train and

    the current carrying coils in the

    guide rail provide levitation.

    • By sending waves along theguide rail coils, the train magnet

    pushed/pulled in the direction of

    travel. The train is guided by

    magnet on the side of guide rail.

    • Computer algorithms maintain

    the separation distance.

  • 8/17/2019 8493506

    110/117

    SUMMARY (2)

  • 8/17/2019 8493506

    111/117

    111

    •The Biot-Savart law can be written in terms ofsurface and volume current densities:

    ∫   ×

    =24   R

    dS   R

    π 

    aK H

    ∫   ×

    =2

    4   R

    d&  R

    π 

    aJH

    Surface current

     Volume current

    •The magnetic field intensity resulting from an

    infinite length line of current is:

    φ πρ 

    aH2

     I =

    SUMMARY (3)

  • 8/17/2019 8493506

    112/117

    112

    and from a current sheet of extent it is:

     N aK H   ×=2

    1  WhereaN is a unit vector normal from

    the current sheet to the test point.

    •An easy way to solve the magnetic field intensity

    in problems with sufficient current distribution

    symmetry is to use Ampere’s Circuital Law,

     which says that the circulation ofH is equal to the

    net current enclosed by the circulation path

    enc I d    =•∫  LH

    SUMMARY (4)

  • 8/17/2019 8493506

    113/117

    113

    • The point or differential form of Ampere’s circuitalLaw is:

    JH =×∇

    ( )∫ ∫    •×∇=• SHLH   d d 

    • A closed line integral is related to surface integral by

    Stoke’s Theorem:

    • Magnetic flux density, B in Wb/m2 or T, is related

    to the magnetic field intensity by

    HB   µ =

    SUMMARY (5)

  • 8/17/2019 8493506

    114/117

    114

    r  µ  µ  µ  0=Material permeability µ can be written as:and the free space permeability is:

    m H 7

    0   104  −×=   π  µ 

    • The amount of magnetic flux Φ in webers througha surface is:

    ∫   •=Φ SB   d Since magnetic flux forms closed loops, we have

    Gauss’s Law for static magnetic fields:

    0=•∫  SB   d 

    SUMMARY (6)

  • 8/17/2019 8493506

    115/117

    115

    • The total force vectorF acting on a chargeq movingthrough magnetic and electric fields with velocityu is

    given byLorentz Force equation:

    ( )BuEF

      ×+= q The forceF12 from a magnetic fieldB1 on a current

    carrying lineI2 is:

    12212   ∫    ×= BLF   d  I 

    SUMMARY (7)

  • 8/17/2019 8493506

    116/117

    116

    • The magnetic fields at the boundary between

    different materials are given by:

    ( )   K  H  H    =−×   2121a

     Wherea21 is unit vector normal from medium 2

    to medium 1, and:

    21  N  N  BB   =

    VERY IMPORTANT!

  • 8/17/2019 8493506

    117/117

    From electrostatics and magnetostatics, we cannow present all four of Maxwell’s equation for

    static fields:

    enc

    enc

     I d 

    d Qd 

     LH

    LE

    SB

    SD

    ∫ ∫ 

    ∫ ∫ 

    =•

    =•

    =•=•

    0

    0

    JH

    E

    B

    D

    =×∇=×∇=•∇=•∇

    0

    0

    & ρ