22
741 Op-Amp Where we are going:

741 Op-Amp

Embed Size (px)

DESCRIPTION

741 Op-Amp. Where we are going:. Typical CMOS Amplifier. -6. 10. -7. 10. -8. 10. Drain current (A). -9. 10. k = 0.58680 I o = 1.2104fA. -10. 10. nFET. pFET. S. D. -11. 10. 0.4. 0.45. 0.5. 0.55. 0.6. 0.65. 0.7. 0.75. 0.8. 0.85. 0.9. Gate voltage (V). G. G. B. - PowerPoint PPT Presentation

Citation preview

Page 1: 741 Op-Amp

741 Op-AmpWhere we are going:

Page 2: 741 Op-Amp

Typical CMOS Amplifier

Page 3: 741 Op-Amp

Subthreshold MOSFETs

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.910

-11

10-10

10-9

10-8

10-7

10-6

Gate voltage (V)

Dra

in c

urr

en

t (A

)

= 0.58680 Io = 1.2104fA

In linear scale, we have a quadraticdependence

In log-scale, wehave an exponentialdependence

G

S

D

nFET

G

S

D

B

pFET

Page 4: 741 Op-Amp

MOSFET Current-Voltage Curves

1

/)(0

//)(0

///0

TSG

TdsTSG

TDTSTG

uVV

uVuVV

uVuVuVDS

eI

eeI

eeeII

Saturation

4 Tds UV

eeIIuVVuVV TdgTSg //

0

1 //0

TSdTSg uVVuVVeeI

Page 5: 741 Op-Amp

Drain Characteristics

Page 6: 741 Op-Amp

Current Sources

Ever wonder howwe make one of these?

GND

Vb M5

Vout

Iout

CurrentSink

V1

Vdd

M6

Iout

CurrentSource

How “good” a current source?

Page 7: 741 Op-Amp

Current versus Drain Voltage

Not flat due to Early effect (channel length modulation)

Id = Id(sat) (1 + (Vd/VA) )

Id = Id(sat) eVd/VA

or

Ic = Ic(sat) (1 + (Vc/VA) )

Ic = Ic(sat) eVc/VA

Rout10A

GND

Iout

Page 8: 741 Op-Amp

Current Mirrors

GNDGND

Iin

Vb M5Mb

Vout

Iout

Iout = ( (W/L)5 / (W/L)b ) Iin

nFET Current Mirror

A good way to generate a bias current

pFET Current Mirror

Iout = ( (W/L)7 / (W/L)4 ) Iin

Vdd Vdd

Vb

Iin

Iout

M7M4

Page 9: 741 Op-Amp

Current Mirror

GNDGND

Iin

Vb

M5

Mb

Vout1

Iout1

GND

M6

Vout2

Iout2

GND

M7

Vout3

Iout3

Iout = ( (W/L)5 / (W/L)b ) Iin Iout / Iin =

( (W/L)6 / (W/L)b )

Iout / Iin =

( (W/L)7 / (W/L)b )

Page 10: 741 Op-Amp

Diode-Capacitor Dynamics

C (dVi/dt) = I

in - Ico exp(V

i/U

T)

Iout

= Ico

exp(Vi/U

T)

(C / Iout

) (d Iout

/dt) = Iin - I

out

C (d Iout

/dt) = Iout

( Iin - I

out )

GND

Iin

GNDGND

Iout

Vi

C

Page 11: 741 Op-Amp

Basic One-Transistor Circuits

Common GateCommon Source Source Follower

The fundamental two-transisor circuit: Differential Pair

Common BaseCommon Emitter Emitter Follower

Page 12: 741 Op-Amp

Multiple Transistor Configurations

GND

10A

Vdd

GND

Vout

Vin

500A

Vdd

100pA

Vdd

Vout

Vin

GND

Vout

Vin

JFETs as well….

SubthresholdMOS

Above thresholdMOS

BJT

Page 13: 741 Op-Amp

Above Threshold MOSFET Equations

I = (K/2) ( ((Vg - VT) - Vs)2 - ((Vg - VT ) - Vd) 2 )

Saturation: Qd = 0

I = (K/2) ( ((Vg - VT) - Vs)2

If = 1 (ignoring back-gate effects):

I = (K/2) ( 2(Vgs - VT) Vds - Vds2 )

Page 14: 741 Op-Amp

Gummel Plots

0.1 0.2 0.3 0.4 0.5 0.6 0.710

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Base-Emitter Voltage (V)

Cur

rent

s

Ic: n=1, Is = 5.52fA

Ib: n=1.019, Is = 0.048fA

Page 15: 741 Op-Amp

Small-Signal Modeling

gmV ro

V3

V2V2

r

V1 +

V

-

V3

V2

V1

V3

V2

V1

gm ror

BJT

Above VTMOSFET

Sub VTMOSFET

Av

(UT ) / I

I I

I / UT

I / UT

2I /(V1-V2 -VT)

VA / I

VA / I

VA / I

VA / UT

VA / UT

2VA/(V1-V2 -VT)

Page 16: 741 Op-Amp

Signal Flow in Transistors

Rules of Thumb

• The collector or drain can never be an input terminal.

• The base or gate can never be an output terminal.

In addition it is important to note polarity reversals on these signal paths.

• The base-collector or gate-drain path inverts.

• All other paths are noninverting.

(This of course assumes that there are no reactive elements causing phase shifts)

(Never is too strong a word)

Page 17: 741 Op-Amp

Spectrum of Amplifier “Loads”Vdd

GND

R1

Vout

Vin

10A

Vdd

GND

Vout

Vin

Vb

Vdd

GND

Vout

Vin

Ideal CurrentSource Load

Transistor CurrentSource Load

ResistiveLoad

Remember: On-chip resistors are expensive

Page 18: 741 Op-Amp

Basic One-Transistor Circuits

Source Follower or Emitter Follower

Buffers (Isolates) the input to (from) the output

Assuming an ideal current source:

Ibias = Ieo e(Vin -Vout )/UT

Vout = -UT ln(Ibias/Ieo) + Vin

Vout = Vin

Ibias = Ibias eVin -Vout )/UT

100A

Vdd

GND

Vout

Vin

Page 19: 741 Op-Amp

Basic One-Transistor CircuitsAssuming an ideal current source:

Ibias = Io eVin/UT e

-Vout/UT

Vout = UT ln(Ibias/Io) + Vin

Vout = Vin

Ibias = Ibias eVin/UT e

-Vout/UT

10nA

Vdd

GND

Vout

Vin

If we use a transistor as a current source:

Id = Ibias eVout/VA = Io e

Vin/UT e-Vout/UT

Vout = UT ln(Ibias/Io) + ( // (VA/UT))Vin

Page 20: 741 Op-Amp

MOS Follower Circuits

Page 21: 741 Op-Amp

Source Degeneration

GND

Vout

Vin

GND

Vout

Vin

CircuitElement

Why do this?

• Higher Linearity• Possible Stability

Why not do this? gm

• Lower Bandwidth• Higher Noise / f

Page 22: 741 Op-Amp

Source Degeneration

GND

Vout

Vin

GND

Vout

Vin

V1

Neglect VA of Q1 and assume matched devices:

Q1

II = Ieo e

V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT

2 V1 = Vin + Vout / Av

I = Ieo e(Vin + Vout/Av )/(2 UT)

A similar result for MOSFETs