8
Processes and Furnace quipment for Heat Treating of Tool Steels Bruce A . Becherer Teledyne Vasco THE HEAT TREATMENT of tool steels is as important to their success as the selection of the grade itself. Machine tools or production dies made from tool steels should never have their rigid metal- lurgical requirements comprom ised or out- weighed by cost considerations• Attempt- ing to reduce production costs by bypassing steps in the heat treat process- ing of tool steels will yield an end product that fails to meet tool life expectations and does not justify its high initial expense. These metallurgical requirements involve the control of the surface condition and chemistry, accurate control of the temper- atures often up to 1315 °C (2400 °F), the time at a given temperature, and the con- trol of the heating and cooling rates. Spe- cial attention must be paid to these re- quirements in the design, construction, and operation of the furnaces used to heat treat tool steels, especially those used for hardening, w here the metallurgical factors involved become all-important. Tool steels are typically heat treated in ceramic-lined salt bath furnaces, in vacuum furnaces, in controlled atmosphere furnac- es, and in fluidized-bed furnaces• Salt ath Furnaces Molten salts of various compositions are well adapted to all operations in the heat treatment of tool steels. For tools that can- not be ground after hardening or for tools that require an excellent surface condition and the maintenance of sharp edges, salt bath heating provides excellent results. Ta- ble 1 lists various salt bath compositions and processing temperatures for the heat treating of tool steels. The salt bath method of hardening is predominant with high- speed steel tools. With correct operating conditions, tools can be heat treated with- out carburization, decarburization, and scaling• The su rface will be fully hard w ith a minimum of distortion. Three types of salt baths are generally used: • Preheating baths • High-temperature baths • Quenching baths Preheating serves to minimize thermal shock, equalize temperature, and minimize the amount of time required at the high- temperature stage• The high-temperature salt bath serves as the austenitizing step. The function of the quenching bath is to equalize the temperature as well as to en- sure a clean surface after heat treatment. Most tools heat treated in salt baths are fully hard from surface to core regardless of the section thickness• Because salt baths provide temperature uniformity in preheat- ing, in high-temperature heating, and in quenching, distortion and residual stress are minimized. Tools that are heat treated in molten salt baths are heated by conduction with the mol- ten salt providing a ready source of heat as required. Although steels come in contact with heat through the tool surfaces, the core of a tool rises in temperature at approximate- ly the sam e rate as its surface. Heat is quickly drawn to the core from the surface• Salt baths provide heat at a rate equal to the heat ab- sorption rate of the total tool. Convection or radiation heating methods are unable to main- tain the rate of heating necessary to reach equilibrium with the rate of heat absorption. The ability of a molten salt bath to supply heat at a rapid rate enhances the uniformity of properties and resultant high quality of tools heat treated in salt baths• Heat-treating times are also shortened; for example, a 25 mm (1 in.) diam bar can be heated to temperature equilibrium in 4 min in a salt bath, while 20 to 30 min would be required to obtain the same properties in convection or radiation furnac- es. Salt baths are an efficient method of heat treating tool steels; about 93 to 97% of the electric pow er consumed in a salt bath operation goes directly into heating. Tool steels that are heat treated in molten salts typically are processed in ceramic-lined fur- naces with submerged or immersed elec- trodes containing chloride-base salts. Table Typical compositions and recommended working temperature ranges of salt mixtures used in heat treating tool steels Composition, % Melting point Working range Salt mixture No. BaCI2 NaCI KCI CaCI z NaN O 3 KNO 3 *C *F 12 *F Austenltizing salts high heat) 1 98-1 00 - • • 2 80-90 10-20 Preheat salts 3 70 30 4 55 20 Quench and temper salts 5 30 20 6 . . . . . . 25 50 • - • • - • 55- 80 20--45 950 1742 1035-1300 1895-2370 870 1598 930-1300 1705-2370 335 635 700-1035 1290-1895 550 1022 590-925 1095-1700 450 842 500 .675 930 1250 250 482 285 575 545 1065 ASM Handbook , Volume 4: Heat Treating ASM Handbook Committee, p 726-733 DOI: 10.1361/asmhba0001198 Copyright © 1991 ASM International® All rights reserved. www.asminternational.org

726-733 Heat Treating of Tool Steels.pdf

Embed Size (px)

Citation preview

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 1/8

Processes and Furnace q uipm en t foHeat Treat ing of Tool SteelsBruce A . Becherer Teledyne Vasco

T H E H E AT T R E AT M E N T o f t oo ls t e e l s i s a s i m p o r t a n t t o t h e i r s u c c e s s a st h e s e l e c t i o n o f t h e g r a d e i t s e lf . M a c h i n et o o l s o r p r o d u c t i o n d i e s m a d e f r o m t o o ls t e e l s s h o u l d n e v e r h a v e t h e i r r ig i d m e t a l -l u r gi c al r e q u i r e m e n t s c o m p r o m i s e d o r o u t -w e i g h e d b y c o s t c o n s i d e r at i o n s • A t t e m p t -

i n g t o re d u c e p r o d u c t i o n c o s t s b yb y p a s s i n g s t e p s i n t h e h e a t t r e a t p r o c e s s -i n g o f to o l s t e e l s w i l l y i e ld a n e n d p r o d u c tt h a t f a i ls t o m e e t t o o l l i fe e x p e c t a t i o n s a n dd o e s n o t j u s t i f y i t s h i g h i n i t i al e x p e n s e .T h e s e m e t a l l u r g i c a l r e q u i r e m e n t s i n v o l v et h e c o n t r o l o f th e s u r f a c e c o n d i t i o n a n dc h e m i s t r y , a c c u r a t e c o n t r o l o f t h e t e m p e r -a t u r e s o f t e n u p t o 1 3 1 5 ° C ( 2 4 0 0 ° F ) , t h et i m e a t a g i v e n t e m p e r a t u r e , a n d t h e c o n -t r o l o f th e h e a t i n g a n d c o o l i n g r a t e s . S p e -c i a l a t t e n t i o n m u s t b e p a i d t o t h e s e r e -q u i r e m e n t s i n t h e d e s i g n , c o n s t r u c t i o n ,a n d o p e r a t i o n o f t h e fu r n a c e s u s e d t o h e a tt r e a t t o o l s t e e l s , e s p e c i a l l y th o s e u s e d f o rh a r d e n i n g , w h e r e t h e m e t a l l u r g i c a l f a c t o r si n v o l v e d b e c o m e a l l - i m p o r t a n t .

To o l s t e e l s a r e t y p i c a l l y h e a t t r e a t e d i nc e r a m i c - l i n e d s a l t b a t h f u r n a c e s , i n v a c u u mf u r n a c e s , i n c o n t r o l l e d a t m o s p h e r e f u r n a c-e s , a n d i n f l u i d i z e d - b e d f u r n a c e s •

S a l t a t h F u r n a c e s

M o l t e n s a l ts o f v a r i o u s c o m p o s i t i o n s a r ew e l l a d a p t e d t o a l l o p e r a t i o n s i n t h e h e a t

t r e a t m e n t o f t o o l s t e el s . F o r t o o l s t h a t c a n -n o t b e g r o u n d a f t e r h a r d e n i n g o r f o r t o o l st h a t r e q u i r e a n e x c e l l e n t s u r f a c e c o n d i t i o na n d t h e m a i n t e n a n c e o f s h a r p e d g e s , s a ltb a t h h e a t i n g p r o v i d e s e x c e l l e n t r e s u l t s . Ta -b l e 1 l i s ts v a r i o u s s a l t b a t h c o m p o s i t i o n sa n d p r o c e s s i n g t e m p e r a t u r e s f o r t h e h e a t

t r e a t i n g o f to o l s t e e l s . T h e s a l t b a t h m e t h o do f h a r d e n i n g i s p r e d o m i n a n t w i t h h i g h -s p e e d s t e e l t o o l s . Wi t h c o r r e c t o p e r a t i n gc o n d i t i o n s , t o o l s c a n b e h e a t t r e a t e d w i t h -o u t c a r b u r i z a t i o n , d e c a r b u r i z a t i o n , a n dsca l i ng • Th e su r f ace w i l l be fu l l y ha rd w i th am i n i m u m o f d i s to r t i o n . T h r e e t y p e s o f s a ltb a t h s a r e g e n e r a l l y u s e d :

• P r e h e a t i n g b a t h s• H i g h - t e m p e r a t u r e b a t h s• Q u e n c h i n g b a t h s

P r e h e a t i n g s e r v e s t o m i n i m i z e t h e r m a ls h o c k , e q u a l i z e t e m p e r a t u r e , a n d m i n i m i z et h e a m o u n t o f ti m e r e q u i r e d a t t h e h i g h -t e m p e r a t u r e s t a g e • T h e h i g h - t e m p e r a t u r es a l t b a t h s e r v e s a s t h e a u s t e n i t i z i n g s t e p .T h e f u n c t i o n o f th e q u e n c h i n g b a t h i s t oe q u a l i z e t h e t e m p e r a t u r e a s w e l l a s t o e n -s u r e a c l e a n s u r f a c e a f t e r h e a t t r e a t m e n t .

M o s t t o o l s h e a t t r e a t e d i n s a l t b a t h s a r ef u l l y h a r d f r o m s u r f a c e t o c o r e r e g a r d l e s s o ft h e s e c t i o n t h i c k n e s s • B e c a u s e s a l t b a t h sp r o v i d e t e m p e r a t u r e u n i f o r m i t y i n p r e h e a t -i n g , i n h i g h - t e m p e r a t u r e h e a t i n g , a n d i n

q u e n c h i n g , d i s t o r t i o n a n d r e s i d u a l s tm i n i m i z e d .

To o l s t h a t a r e h e a t t r e a t e d i n m o l tb a t h s a r e h e a t e d b y c o n d u c t i o n w i t h tt e n s a l t p r o v i d i n g a r e a d y s o u r c e o f r e q u i r e d . A l t h o u g h s t e e l s c o m e i n w i th hea t t h rough the t oo l su r f aces , t

o f a t o o l r i s e s in t e m p e r a t u r e a t a p p r oly the s am e r a t e a s i t s su r f ace . H ea t i sd raw n to t he co re f rom the su r f ace • Sap rov ide hea t a t a r a t e equa l t o t he hs o r p t i o n r a te o f t h e t o t a l to o l . C o n v e cr a d i a t io n h e a t i n g m e t h o d s a r e u n a b l e tt a i n t h e r a t e o f h e a t i n g n e c e s s a r y t oe q u i l ib r i u m w i t h t h e r a t e o f h e a t a b sT h e a b i l it y o f a m o l t e n s a l t b a t h t oh e a t a t a r a p i d r a t e e n h a n c e s t h e u n i f op r o p e r t i e s a n d r e s u l t a n t h i g h q u a l i t y hea t t r ea t ed i n s a l t ba th s • Hea t - t r ea t i na re a l so sho r t ened ; fo r example , a 25i n . ) d i a m b a r c a n b e h e a t e d t o t e m pequ i l i b r ium in 4 min i n a s a l t ba th , wh3 0 m i n w o u l d b e r e q u i r e d t o o b t a i n t hp r o p e r t i e s i n c o n v e c t i o n o r r a d i a t i o nes .

S a l t b a t h s a r e a n e f f i c i e n t m e t h o d t r e a t i n g t o o l s t e e l s ; a b o u t 9 3 t o 9 7 %e l e c t r i c p o w e r c o n s u m e d i n a s ao p e r a t i o n g o e s d i r e c t l y i n t o h e a t in gs t e e l s t h a t a r e h e a t t r e a t e d i n m o l t et y p i c a l l y a r e p r o c e s s e d i n c e r a m i c - l i nn a c e s w i t h s u b m e r g e d o r i m m e r s e dt r o d e s c o n t a i n i n g c h l o r i d e - b a s e s a l t s

Table Typical composit ions and recomme nded w orking temperature ranges of sal t mixtures used in hea t t reat ing toolComposition,% Melting point Working range

Sa l t mix tu re No . BaCI2 NaCI KCI CaCI z NaN O 3 KNO 3 *C *F 12 *F

A u s t e n l t i z i n g s a l t s h i g h h e a t )

1 98-1 00 - • •2 80-90 10-20

P r e h e a t salts

3 70 304 55 20

Q u e n c h a n d t e m p e r s a l t s

5 30 206 . . . . . .

25

50 • - •

• - • 55- 80 20--45

950 1742 1035-1300 1895-2870 1598 930-1300 1705-2

335 635 700-1035 1290-1550 1022 590-925 1095-1

4 5 0 8 4 2 5 00 . 67 5 9 3 0 1 2 5 0

2 5 0 4 8 2 2 8 5 5 7 5 5 4 5 1 0 6 5

A SM Handboo k , Volume 4: H eat TreatingASM Handbook Committee , p 726-733

DOI: 10.1361/asmhba000 11 98

Copyright © 19 9 1 ASM InternationalAll rights reserve

www.asminternational.o

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 2/8

Salt bath furnace used for neutral beatingFig 1 a p p l i c a t i o n s F u r n a c e f e a t u r e s a c e r a m i c p o tand over-the-top immersed) electrodes.

Processes and Furnac e Equipme nt for H eat Tre at ing of Tool St

t

i

Immersed Elect rode Sal t Bath FurnacesC e r a m i c - l i n e d f u r n a c e s w i t h i m m e r s e d

( o v e r - t h e - s i d e ) e l e c t r o d e s h a v e g r e a t l y e x -t e n d e d t h e u s e fu l r a n g e a n d c a p a c i t y o fm o l t e n s a lt e q u i p m e n t w h e n c o m p a r e d w i t he x t e r n a l l y h e a t e d p o t f u r n a c e s ( s e e F i g 1 ) .D e t a i l e d i n f o r m a t i o n i s a v a i l a b l e i n th e a r t i -c l e " S a l t B a th E q u i p m e n t " i n t h i s Vo l u m e .

Submerged Elect rode Sal t BathFurnaces

S u b m e r g e d - e l e c t r o d e f u rn a c e s h a v e t h ee l e c t r o d e s p l ac e d b e n e a t h t h e w o r k i n gd e p t h f o r b o t t o m h e a t i n g . F i g u r e 2 i s ac u t a w a y s h o w i n g t y p i c a l c o n s t r u c ti o n o f as u b m e r g e d - e l e c t r o d e f u r n a ce . D e t a i l e d i n -f o r m a t i o n i s a v a i l a b l e i n t h e a r t i c l e " S a l tB a t h E q u i p m e n t " i n t h i s Vo l u m e .

Autom at i c H ea t Trea t ing o f Too l S tee lsF i g u r e 3 i l l u s t r a t e s t h r e e d i f f e r e n t h e a t

t r e a t i n g a r r a n g e m e n t s f o r t h e p r o d u c t i o nh e a t t r e a t m e n t o f t o o l s t e e l s . Ta b l e 2 g i v e sr e l a t iv e p r o c e s s t i m e s a n d t e m p e r a t u r e s f o rh e a t t r e a t i n g , a n d Ta b l e 3 g i v e s p r o c e s st i m e s f o r t w i s t d r i l l s . T h e s y s t e m s a r ee q u i p p e d f o r c y c l e s r a n g i n g f r o m l e s s t h a n 1m i n t o 1 0 m i n . T h e p a r t s a r e s u s p e n d e d o nt o n g - t y p e f i x tu r e s a n d a r e c a r r i e d t h r o u g ht h e p r o c e s s b y a c h a i n c o n v e y o r o n c a r d e rb a r s . To f a c i l i t a t e r a p i d t r a n s f e r o f th e t o o ls t e e l s , r o t a r y t r a n s f e r a r m s a r e p l a c e d b e -t w e e n t h e p r e h e a t a n d t h e h i g h h e a t u n i t sa n d b e t w e e n t h e h i g h h e a t a n d t h e q u e n c hu n i t s . T r a n s f e r - a r m p l a c e m e n t i s c h i e f l yg o v e r n e d b y t h e p r o d u c t i o n r a t e ; h o w e v e r ,t r a n s f e r a rm s a r e a l w a y s r e q u i r e d b e t w e e nt h e h i g h h e a t a n d t h e q u e n c h u n i t s t o s a t i s fym e t a l l u rg i c a l c o n d i t i o n s . T h e l i n e s a ls oh a v e a r e a s a b o v e t h e f u r n a c e s to a c c o m m o -d a t e a i r c o o l i n g o f t h e t o o l s . I n s p e c i a lc a s e s , l i n e s w i l l b e m a d e w i t h a s t a t i o n f o r

ig Typical submerged-electrode salt bath furnace

a n i s o t h e r m a l n i t r a t e q u e n c h a f t e r t h e n e u -t r a l s a l t q u e n c h . T h i s a d d i t i o n a l s t a g e a l -l o w s r a p i d r e d u c t io n o f th e t e m p e r a t u r e o ft h e t o o l s a n d r e d u c e s t h e a i r c o o l i n g ti m ef r o m 2 4 t i m e s t o 6 t i m e s t h e t i m e a t t h e h i g h -h e a t t e m p e r a t u r e .Caution: I f as little as 600ppm of nitrate salts are allowed to enter thehigh heat furnace extreme surface damagecan be done to the tool being heat treated.

R e c t i f i c a t i o n o f S a l t B a t h s

N e u t r a l s a l t s u s e d f o r a u s t e n i t i z i n g s t e e lb e c o m e c o n t a m i n a t e d w i t h s o l u b l e o x i d e sa n d d i s s o l v e d m e t a l s d u r i n g u s e , r e s u l t i n gf r o m a r e a c t i o n b e t w e e n t h e o x i d e l a y e r sp r e s e n t o n f i x t u r es a n d w o r k p i e c e s a n d t h ec h l o r i d e s a l t s . B e c a u s e t h e b u i l d u p o f r e -s u l t i n g o x i d e s a n d d i s s o l v e d m e t a l s r e n d e r st h e b a t h o x i d i z in g a n d d e c a r b u r i z i n g t o w a r ds t e e l , th e b a t h m u s t b e r e c t i f i e d p e r i o d i c a l -l y.

B a t h s o f s al t s su c h a s s a l t m i x t u r e s N o . 1a n d 2 i n Ta b l e 1 c a n b e r e c t i f i e d w i th s i l ic a ,

m e t h y l c h l o r i d e , o r a m m o n i u m c hT h e h i g h e r t h e t e m p e r a t u r e o f o p et h e m o r e f r e q u e n t t h e n e e d f o r r e c t i fB a t h s i n w h i c h t h e e l e c t r o d e s pa b o v e t h e s u r f a c e r e q u i r e d a i l y r e c t iw i t h e i t h e r f e r r o s i l i c o n o r s i l i c o n cB a t h s o p e r a t e d a b o v e 1 0 8 0 ° C ( 1 9r e q u i r e r e c t i f i c a t i o n a m i n i m u m o f o n c e a d a y, w i t h m o r e f r e q u e n t r e c t ic e r t a in l y r e c o m m e n d e d . D u r i n g r et i o n o f a b a t h , t h e s i l i c a c o m b i n e s wd i s s o l v e d m e t a l l i c o x i d e s t o f o r m s iA l t h o u g h t h e s e s i l i c a t e s s e t t l e o u t ac o u s s l u d g e t h a t c a n b e r e m o v e d , s us o l u b l e s i l i c a t e s c a n r e m a i n t o c a ub a t h t o b e c o m e d e c a r b u r i z i n g . I f t h en o t r e c t i fi e d , i t b e c o m e s m o r e v i s c ow a t e r. A n y s l u d g e o r s a l t s o b t a i n eb y - p r o d u c t o f t h e h e a t t r e a t m e n t md i s p o s e d o f in a c c o r d a n c e w i t h fs t a t e , a n d l o c a l r e g u l a t i o n s .

M e t h y l c h l o r i d e b u b b l e d t h r o u g h to r t h e s u b m e r g i n g o f a m m o n i u m c

Table 2 Relative process t imes and temperatures for automated h eat treating steels

Operating temperature Total tProcess stage *C *F furnac

First preh eat 650-870 1200-1600 Second preheat 760-1040 1400-1900 Hig h hea t 1010-1290 1850-2350 Isothermal quench 540-705 1000-1300 Air cool Room temperature Room temperature 6XWash hot water 80-95 180-200 6Rin se, hot wa ter 80-95 180-20~) (a) See Table 3 for dr ill sizes and times in the high heat indicated by an X in this table.

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 3/8

7 2 8 / H e a t T r e a t i n g o f To o l S t e e ls

LX = cyc le t ime

2X X X

Preheat furnace High heat Quenchfurnace fu rnace

H

Unloa d Load ,~ =a r e a a r e a ~ =4 X 4 X

A i r c o o l

a)

j j I 1 i A i r c o o l c o n v e y o r 2 4 X

~= ~ X = cycle t ime

X X 2 X

- ' ~ II 1 \ f l / l l l h ~ d l l l l ~ ' ]

Quench High heatfu rnace fu rnace

T U

= i { ~ 1

_

6 X

Preheat Load Unloa d Rinse Washfurnace a rea a r e a

b)

_ ;1 - el . .

- = ;

[ ]LJ

4 X 4 X

First wash Second Rinse Load andwash unload

Timed a i r coo l ax , 12X or 24X)

= cyc le t imeY = f i r s t quench t imeZ = second quench t ime . ,

Preheat High heat Quench Secondfurnace furnace furnace quench

c)

N X 3 / /

/ / ,

A

P r o c e s s d e s i g n s f o r a u t o m a t e d s a l t b a t h f u r n a c e s f o r h e a t t r e a t i n g h i g h - s p e e d t o o l s t e e l s . I n s t a l la t i o n sFig 3 c a n b e c u s t o m d e s i g n e d t o m e e t s p e c i f i c c u s t o m e r r e q u e s t s . a ) D o e s n o t i n c l u d e w a s h a n d r i n s e . b )S i m i l a r t o a ) , b u t i n c l u d e s w a s h a n d r i n s e o p e r a t i o n n e c e s s i t a t i n g r e l o c a t i o n o f l o a d a n d u n l o a d o p e r a t i o n s . c )S i m i l a r to b ) , b u t i n c l u d e s s e c o n d q u e n c h a n d a v a r i a t i o n i n w a s h c y c l e s s p e c i f i e d b y c u s t o m e r

Tab le 3 Tim e cyc le s fo r hea t t r ea t ing tw i s t d r i l lsD i a m e t e r

m m i n T i m e

2 . 5 4 - - 4 . 7 8 0 . 1 0 0 - 0 . 1 8 84 . 8 0 - 8 . 0 8 0 . 1 8 9 - - 0 . 3 1 8

8 . 1 0 - 1 2 . 9 0 0 . 3 1 9 - 0 . 5 0 81 2 . 9 3 - 1 8 . 2 4 0 . 5 0 9 - 0 . 7 1 81 8 . 2 6 - 2 3 . 3 2 0 . 7 1 9 - 0 . 9 1 82 3 . 3 4 - 3 8 . 1 0 0 . 9 1 9 - 1 . 5 0 01 0 2 m m ( 4 i n . ) d i a m c u p s6 4 m m ( 2 1 / - i n . ) d i e m e n d m i l l s7 6 m m ( 3 in . ) d i e m e n d m i l l s

i e c e s in h i g h h e a t o n s m a l l e r d i a m e t e r s

2 . 5 4 m m ( 0 . 1 0 0 i n . ) = 1 6 0 p i e c e s / t o n g = 4 8 0 p i e c e s i n b a t h = 1 . 2 k g ( 2 .6 lb )4 . 7 8 m m ( 0 . 1 8 8 in . ) = 8 5 p i e c e s / t o n g = 2 5 5 p i e c e s i n b a t h = 3 . 5 k g ( 7 . 6 5 l b )6 . 5 0 m m ( 0 . 2 5 6 i n . ) = 6 3 p i e c e s / t o n g = 1 8 8, p i e c e s i n b a t h = 5 . 6 k g ( 1 2 . 3 Ib )8 . 0 8 m m ( 0 . 3 1 8 i n . ) = 2 5 p i e c e s / t o n g = 7 5 p i e c e s i n b a t h = 3 . 9 k g ( 8 . 6 l b )

1 2 . 9 0 m m ( 0 . 5 0 8 i n . ) ~ 1 6 p i e c e s / t o n g = 4 8 p i e c e s i n b a t h = 8 . 3 k g ( 1 8 . 2 I b )

I min 30 sI m i n 4 0 s

1 m i n 5 0 s2 min 0 s2 m i n 2 0 s2 m i n 4 0 s

6 m i n7 r a in

10 r a in

p e l l e t s i n a p e r f o r a t e d c a g e i n t h e bm o r e e f f e c t i v e m e t h o d s o f r e c t i f y i nb a t h s . T h e a m m o n i u m c h l o r i d e p e ll ew i t h t h e o x i d e s t o r e g e n e r a t e t h e on e u t r a l s a l t w i t h o u t s l u d g e f o r m a tb a t h t h i c k e n i n g . To r e m o v e d i s s o l v ea l s f r o m h i g h - t e m p e r a t u r e b a t h s , gr o d s a r e i n t r o d u c e d a t o p e r a t i n g t e

t u r e . T h e g r a p h i t e r e d u c e s a n y m e t ai d e s t o m e t a l s t h a t a d h e r e t o t h e r om e t a l c a n b e s c r a p e d o f f a n d t h e r o d

To c o n t r o l t h e d e c a r b u r i z i n g t e n d eh i g h - t e m p e r a t u r e b a t h s , t e s t s p e c i m eq u e n t l y s h o u l d b e h a r d e n e d b y q u e n co i l o r b r ine . A f i l e - so f t su r f ace i nd in e e d f o r m o r e r e c t i f i c a t i o n . T h i s t eb e s u p p l e m e n t e d b y a n a l y s i s o f t h eH i g h - h e a t b a t h s c o n t a i n i n g i n e x c0 . 5 % B a O a r e l i k e l y t o b e d e c a r b u r is t ee l .

T h e f o l l o w i n g m e t h o d c a n b e ur e c t i f y a u s t e n i t i z i n g b a t h s s u c h a s s at u r e s N o . 2 a n d 3 o f Ta b l e 1 :

• A d d 5 7 g (2 o z ) o f b o r i c a c i d f o r e a c( 1 00 I b ) o f s a l t , a f t e r e v e r y 4 h o f t i o n

• I n se r t a 75 mm (3 i n . ) g r ap h i t e rod ib a t h f o r i h f o r e v e r y 4 h o f o p e r a

C o n t r o l l e d A t m o s p h e r e F u r n

I n s e l e c t i n g a n a t m o s p h e r e t h a t wt e c t t h e s u r f a c e o f t o o l s t e e l a g a i na d d i t i o n o r t h e d e p l e t i o n o f c a r b o n h e a t t r e a t m e n t , i t i s d e s i r a b l e t o c h o ot h a t r e q u i r e s n o a d j u s t m e n t o f c o m pt o s u i t v a r i o u s s t e e l s . A n a m m o n i aa t m o s p h e r e ( A m e r i c a n G a s A s s o c i aA G A , c l a s s 6 0 1) m e e t s t h i s r e q u i r e mh a s t h e a d v a n t a g e o f b e i n g s u f f i c ied u c i n g t o p r e v e n t o x i d a t i o n o f h i g h -u m s t e e l s . I n t h e r a n g e o f d e w p o i ne r a l ly f o u n d i n th i s g a s , - 4 0 t o - 5 0 °t o - 6 0 ° F ) , t h e r e i s n o s e r i o u s d e p l ec a r b o n , b e c a u s e t h e d e c a r b u r i z i n g as l o w a n d a n y l o s s o f c a r b o n a t t h e s up a r t i a l l y r e p l a c e d b y d i f f u s i o n f r o m t e r i o r. F o r a p p l i c a t i o n s i n w h i c h h i g hf i ci a l h a r d n e s s i s i m p o r t a n t , a c a r bs u r f a c e c a n b e o b t a i n e d b y t h e a d d ia b o u t 1 % m e t h a n e (CH4) t o t h e as p h e r e . A l t h o u g h a m m o n i a - b a s e d s p h e r e c o s t s m o r e t h a n a n e n d o t h e r ma t m o s p h e r e , t h is s e l d o m b e c o m e s t a n t b e c a u s e t o o l t r e a t i n g fu r n a c e s g ea r e c o m p a r a t i v e l y s m a l l a n d t h e r e f oq u i r e a c o r r e s p o n d i n g l y s m a l l q u a ngas .

E n d o t h e r m i c - b a s e d a t m o s p h e r e s at e n u s e d f o r t h e p r o t e c t i o n o f t o od u r i n g h e a t t r e a t m e n t . S u g g e s t e d r ad e w p o i n t f o r an A G A c l a s s 30 2 e nm i c a t m o s p h e r e w h e n u s e d f o r h a rs o m e c o m m o n t o o l s t e e l s a r e l i s t e d i4 . R e l a t i v e l y s h o r t h e a t i n g t i m e s f oe n i n g s m a l l t o o l s a l l o w t r e a t m e n t c a r r i e d o u t w i t h t h e t h e o r e t i c a l c a r b

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 4/8

Processes and Furnace Equipment fo r H ea t Treat ing o f Tool St

Table 4 Rangesof end othermic atmosphere dew point forhardening tool steelsD a t a c o m p i l e d f o r s h o r t t im e s a t t e m p e r a t u r e ; f u r n a c e d e w p o i n t ; A G A c l as s 3 0 2a t m o s p h e r e

Fur na ce t e mpe ra tu r e a ) Dew po in t r ange

S te e l *C *F °C *F

W2, W3 800 1475 7 toSI 925 1700 4 to

$2 870 1600 4 toOl 800 1475 7 to02 775 1425 7 to07 855 1575 - 4 toD2, I34 995 1825 - 7 toD3, D6 955 1750 - 7 toHI I, HI2 , HI3 1010 1850 2 toT1 1290 2350 - 18 toM 1 1205 2200 - 15 toF2, F3 830 1525 -5 to

(a) Approximate midrange of austenitizing temperatures for the specific types of tool steels

13 45 to 557 40 to 45

16 40 to 6012 45 to 5512 45 to 552 25 to 36- 1 20 to 30-1 20 to 307 35 to 45-12 0to 10-1 2 5 to 101 23 to 34

a n c e o f t h e a t m o s p h e r e v a r y i n g o v e r a r a t h e rw i d e r a n g e . H o w e v e r , f o r t h e h a r d e n i n g o fl a rg e d i e s e c ti o n s , t h e p a r t i c u l a r c o m p o s i t i o no f t he d i e s t ee l be ing t r ea t ed r equ i r e s ca r e fu l

c o n t r o l o f t h e a t m o s p h e r e i f c a r b u r i z a t io n o rd e c a r b u r i z a t i o n i s t o b e a v o i d e d d u r i n g t h ere l a t i ve ly l ong hea t - t r ea t i ng cyc l e .

Va c u u m F u r n a c e s

O n e o f t h e m o s t i m p o r t a n t c o n s i d e r a t i o n st h a t m u s t b e m e t w h e n h e a t t r e a t in g t o o ls t e e l s i s t h a t t h e t r e a t m e n t m u s t b e a c c o m -p l i s h e d w i t h m i n i m a l c h a n g e o f t h e s u r f a c eo f t h e w o r k p i e c e . M i n i m i z i n g t h e e x p o s u r et o a i r d u r i n g h e a t t r e a t m e n t b y m i n i m i z i n go r r e d u c i n g t h e q u a n t i t y o f a i r i n a v e s s e l a sw i t h c r e a t i n g a p a r t i a l v a c u u m i s a n e x c e l -l e n t m e t h o d f o r r e t ai n i n g w o r k p i e c e s u r f a c ei n t e g r it y. Va c u u m f u r n a c e s w i t h p r e s s u r e so f 26 Pa t o 1 .3 mP (200 to 0 .01 Ixm Hg) a r ep o s s i b l e w i th t h e s o p h i s t i c a t e d p u m p i n ge q u i p m e n t i n te g r a l t o v a c u u m f u r n a c e s .

Va c u u m f u r n a c e s h a v e h i s t o r ic a l l y b e e np o p u l a r w i t h h e a t - t r e a t i n g p r o c e s s e s s u c ha s b r a z i n g , s i n t e r i n g , a n d o u t g a s s i n g . M o r e

irection of

ad

He~ra

r e c e n t l y, v a c u u m f u r n a c e s h a v e b e c o m ep r e d o m i n a n t f o r h a r d e n i n g o f s e l e c t e d t o o ls t e e ls . O n e r e a s o n f o r t h e w i d e s p r e a d u s e o fv a c u u m f u r n a c e s i s t h e f r e e d o m f r o m e n v i -

r o n m e n t a l p r o b l e m s t h e y a f f o r d t h e u s e r. I nc o n t r a s t t o s a l t b a t h h e a t t r e a t i n g , d i s p o s a lp r o b l e m s a r e e l i m i n a t e d w i t h t h e u s e o fv a c u u m f u r n a c e h e a t t r e a t i n g . A n o t h e r r e a -s o n f o r t h e w i d e s p r e a d u s e o f v a c u u m f u r -n a c e s i s t h e i r f l ex i b i l i t y. Va c u u m f u r n a c e sc a n b e d e s i g n e d f o r o p e r a t i n g t e m p e r a t u r e sin exces s o f 2760 °C (5000 °F ) and can b ep r o g r a m m e d t o r u n a n a l m o s t l i m i t l e s s v a -r i e t y o f s t r e s s r e l ie v i n g , p r e h e a t i n g , h a r d e n -i n g , a n d q u e n c h i n g c y c l e s . D e s i g n o f c o m -p u t e r h a r d w a r e a n d s o f t w a r e w i l l a l l o wt h e s e s t e p s t o b e p r o g r a m m e d i n d i v i d u a l l yo r s e q u e n t i a l l y t o e n h a n c e p r o d u c t i v i t y.

Hot Wall Furnaces. U n t i l r e c e n t l y, v a c u -u m f u r n a c e s w e r e i n h i b i t e d b y t e c h n i c a lc o n s i d e r a t i o n s i n t h e i r u s e f o r h a r d e n i n g o ft o o l s t e e l s . Tw o f a c t o r s l i m i t e d t h e i r u s e o fv a c u u m f u r n a c e s i n e a r l y h o t w a l l d e s i g n s .F i r s t , t h e r e t o r t i n w h i c h t h e v a c u u m w a sd e v e l o p e d l o s t c o n s i d e r a b l e s t r e n g th w h e ni t w a s h e a t e d a n d w o u l d t e n d t o c o l l a p s e .

Gas di ffuser Wa ter jacketed~re vessel

earthipportpier

learthpier

eramicfiber

ld gascula tor

Fig 4

H e a t e x c h a n g e r

S c h e m a t i c o f a s i n g l e - c h a m b e r b a t c h - t y p e p r e s s u r e - q u e n c h v a c u u m f u r n a c e . S o u r c e : C . I . H a y e s , I n c .

S e c o n d l y, a r e t o r t w a s l i m i t e d in t h ec o o l i n g o r q u e n c h i n g t e c h n i q u e s w hr e q u i r e d b y t o o l s t e e l s .

C o l d Wa l l F u r n a c e s . Va c u u m f un o w i n c o r p o r a t e a h e a t i n g u n i t i nv a c u u m c h a m b e r t h a t i s o f d o u b l e - ws t r u c ti o n . B e t w e e n t h e t w o w a l l s, wc o o l a n t i s c i r c u l a t e d f o r e f f e c t i v e c o

t h e v a c u u m c h a m b e r , t h e r e f o r e eh i g h - t e m p e r a t u r e o p e r a t i o n . T h e sw a l l v a c u u m f u r n a c e s h a v e b e e n db y v a r i o u s m a n u f a c t u r e r s a n d o f f erl e s s v a r i a t i o n s i n s i z e , p u m p i n g c ah e a t i n g c a p a c i t i e s , q u e n c h i n g ms p e e d , c o m p u t e r i z a t i o n , a n d s o o n .

I n c o l d w a l l f u r n a c e s , t h e e l e c t r i c e l e m e n t s a r e l o c a t e d i n s i d e t h e r e t oh e a t i n g e l e m e n t s c a n b e m a d e o f a rr y m e t a l ( m o l y b d e n u m ) o r f r o m gr o d s o r c l o t h . T h e h e a t i n g e l e m es u r r o u n d e d b y r e f r a c t o r y m e t a l b a fp r o v i d e i n s u l a t i o n a n d d i r e c t r a d i a n tt i o n . C e n t e r e d o r p o s i t i o n e d w i t h i n n a c e i s a r e f r a c t o r y ( m e t a l ) h e a r t h o n

a f i x t u r e d o r b a s k e t e d w o r k l o a d p o s i t i o n e d .

Single Chamber Vacuum Furnaces.A p l e v a c u u m f u r n a c e ( F i g 4 ) c o n s i s t sc h a m b e r i n w h i c h t h e w o r k p i e c e h e a t e d a n d c o o l e d . C o o l i n g o r q u e n ca c c o m p l i s h e d b y b a c k f il li n g o r bi n e r t g a s a c r o s s t h e w o r k p i e c e s . I n oq u e n c h r a p i d l y e n o u g h t o o b t a i n t h em i c r o s t r u c t u r e o f t o o l s t e e l , i t i s n e ct o i n c r e a s e t h e p r e s s u r e o f t h e q u e n( u s u a l l y n i t r o g e n ) . T h i s i s a c c o m p l ih i g h - v e l o c i ty, h i g h - p r e s s u r e b l o w e r sh a v e r e p o r t e d c o o l i n g g a s p r e s s u r e s 6 0 k P a ( 6 b a r ) .

T h e c o o l i n g r a t e r e q u i r e d w i l l v ap e n d i n g o n t h e t y p e o f s t e e l u s e d as i ze a n d s h a p e o f t h e w o r k p i e c e . O na l so c o n s i d e r f lo w p a t t e r n s a n d f u r n aw h e n e v a l u a t i n g v a c u u m h e a t tr e a t mv a r i e t y o f v a c u u m f u r n a c e d e s i g nb e e n d e v e l o p e d t h a t p r o d u c e a w i do f c o o l in g r a t e s b y v a r y i n g g a s p r eg a s v e l o c i t i e s , a n d g a s fl o w p a t t es o m e c a s e s , g a s q u e n c h i n g m a y a d e q u a t e t o a c h i e v e t h e n e c e s s a r y r a t e f o r a c o m p o n e n t , a n d o t h e r q u em e t h o d s m a y n e e d t o b e c o n s i d e r e d s a l t b a t h , f l u i d i z e d b e d , o r o i l q u e( see Tab le 1 ) .

Mul t ip le chamber vacuum fu rnacesot e g r a t e d q u e n c h f u r n a c e s h a v e b es i g n e d t o i m p r o v e t h r o u g h p u t o r eq u e n c h r a t e . Va c u u m f u r n a c e s t yh a v e t h e r m o c o u p l e s a v a i l a b le a t s e vc a t i o n s i n t h e f u r n a c e a s w e l l a s s u r f a c e o f th e l o a d o r w i t h i n t h e c o nthe l oad i t s e l f .

M u l t i p l e - c h a m b e r f u r n a c e s ( s e e a l l o w n e a r l y c o n t i n u o u s h a r d e n i n g p o n e n t s . I n s u c h s y s t e m s t h r e e c h a mm o d u l e s e x i s t :

• A p u rg e ( l o a d i n g c h a m b e r )

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 5/8

7 3 0 / H e a t T r e a t i n g o f To o l S t e el s

L _ F _

Loading chamber Zone 1 Zo ne Zo ne Pressurequenchchamber

N i l eatingcham~r

F i g 5 Schem atic of a typical in-line multiple-chamber vacuum furnace. Source: C.l. Hayes, Inc.

• A m u l t i p l e - zo n e h e a t i n g c h a m b e r• A q u e n c h c h a m b e r

A l o a d e d t r a y a u t o m a t i c a l l y m o v e s i n t o t h ep u r g e c h a m b e r w h e r e d e c o m p r e s s i o n b e -g i n s . O n c e t h e v a c u u m l e v e l is s i m i l a r t o t h el e v e l i n t h e h e a t i n g c h a m b e r , t h e t r a y o rb a s k e t i s m o v e d t h r o u g h a n i n s u l a t e d d o o rf o r h e a t i n g . H e a t i n g i s a c c o m p l i s h e d b yt r a n s f e r t h r o u g h m u l t i p l e p r e h e a t i n g z o n e sa n d o n e f i n a l h i g h - h e a t z o n e . M e a n w h i l e ,a n o t h e r t r a y h a s m o v e d i n t o t h e p u r g e

c h a m b e r . O n c e t h e p r e p r o g r a m m e d t i m ei n t e r v a l h a s e l a p s e d i n t h e h i g h - h e a t z o n e ,t h e b a s k e t i s t r a n s f e r r e d t o t h e f i n al q u e n c hc h a m b e r f o r i m m e r s i o n . U l t i m a t e l y, t h eb a s k e t i s t r a n s p o r t e d f r o m t h e q u e n c hc h a m b e r t h r o u g h a d o o r t o a n u n l o a d i n gt r a y.

A d d i t i o n a l i n f o r m a t i o n i s a v a i l a b l e i n t h ea r t ic l e " H e a t T r e a t i n g in Va c u u m F u r n a c e sa n d A u x i l i a r y E q u i p m e n t " i n t h i s Vo l u m e .

F u r n a c e K i n e t i c s T h e s u i t a b i l it y o f a v a c -u u m f u r n a c e t o h a r d e n a p a r t i c u l a r c o m p o -n e n t i s g o v e r n e d b y m a n y f a c t o r s , n o t t h el e a s t o f w h i c h i s t h e q u e n c h i n g c a p a b i l i t y.Wi t h g a s q u e n c h i n g , t h e e f f e c ts o f g a s v a r -i a b l e s s u c h a s p r e s s u r e , v e l o c i t y, a n d f l o wp a t t e r n s a r e s i g n i fi c a n t .

F u n d a m e n t a l l y, i n t h e c o o l in g o f a n ys t e e l , t h e p r o c e s s i s l im i t e d b y :

• G a s p a r a m e t e r s w h i c h c o n t r o l t h e r a t e o fh e a t f r o m t h e s u r f a c e o f th e c o m p o n e n t

( s u r f a c e t h e r m a l r e s i s t a n c e )• C o m p o n e n t p a r a m e t e r s w h i c h c o n tr o l t h e

r a t e o f h e a t t r a n s f e r w i t h i n t h e c o m p o -n e n t f r o m t h e c e n t e r t o t h e s u r f a c e ( c o m -p o n e n t t h e r m a l r e s i s t a n c e e f f e c t ) o f t h ew o r k p i e c e

I n g e n e r a l , t h e g a s p a r a m e t e r s p r e d o m i n a t ei n d e t e r m i n i n g t h e c o o l i n g r a t e i n l a rg ed i a m e t e r c o m p o n e n t s ( g r e a t e r t h a n 2 5 0 m m ,

o r 1 0 i n . , d i a m e t e r ) . B o t h t y p e s o f pt e r s m u s t b e t a k e n i n t o c o n s i d e r a t i o

G a s P a r a m e t e r s T h e g a s p a r a m e t e rs t i t u e n t o f h e a t r e m o v a l i s d e s c r i b e df o l l o w i n g e q u a t i o n :

Q=hA • AT ( E

w h e r e Q i s t h e h e a t r e m o v a l r a t e , h

h e a t t r a n s f e r c o e f f i c i e n t , A i s t h e sa r e a o f c o m p o n e n t , a n d AT is t h e t et u r e d i f fe r e n c e b e tw e e n t h e c o m p o n ethe gas .

D u r i n g t h e i n i ti a l c o o l i n g p e r i o d , t e m p e r a t u r e h a s o n l y a m i n o r e f f e c tw o r k p i e c e . H o w e v e r , a f t e r t h i s i n it ii n g p e r i o d , t h e c o m p o n e n t c o o l in g rc o m e s i n c r e a s i n g l y s e n s i t i v e t o c h ag a s t e m p e r a t u r e w i t h t h e c o o l i n g rc r e a s i n g a s t h e g a s t e m p e r a t u r e i n c r

Tw o i m p o r t a n t f e a t u r e s o f f u r n a c et h a t a f f e c t g a s t e m p e r a t u r e a r e :

• H e a t e x c h a n g e r t y p e , l o c a t i o n , a nb e c a u s e t h e s e f a c t o r s c o n t r o l t h e bt e m p e r a t u r e i n t o t h e f u r n a ce

• F l o w d i s t r i b u t i o n , w h i c h c o n t r o l s c a l g a s t e m p e r a t u r e a r o u n d t h e w o

H i g h g a s t e m p e r a t u r e s u s u a l l y o c ci n t h e i n i t ia l c o o l i n g p e r i o d o f a w o rw h e n t h e e f f e c t o f g a s t e m p e r a t u r e , c u s s e d p r e v i o u s l y, i s m i n i m a l .

T h e e f f e c t o f h e a t t r a n s f e r c o e f f i ct h e c o o l i n g r at e o f a 25 m m ( i n .) d is l u g is s h o w n i n F i g 6 .

I I I I I . 19o . oo \

- - G as t em p er at ur e 5 0 °C-- -- Gas temperature 100 °C

1000 1830 1000 1830

800 800 1470

? °u- ~ ~ V= 2.1 m3/s' ~ X Increasing ~ ' ~ X ~

600 heat trans fer 1110 ~ ~ 600 1110 ~~. X coefficient ~. ~. ~

E,~,, E E

' ~ / X ~ 50w/m2 K 750 ' ' 400 V=3 gm3/s \ ~ ~ 750 '4 ~ ~

~ - - ~ ~ h = 100 W /m2.K390

Increasing gastemperature h = 100 W/m2 • K

o I 1 L I 3 0 o o

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16Time, min

200 200 390

Time, rain

Plot of temperatu re versus time showing the effect o f gas temperature and ig 7 Plot of temperature versus tim e show ing the effect of local gas veloF i g 6 heat transfer coefficient, h, on the coo ling of2S mm (1 in.) diam steel slugs, on the coo ling of 25 mm (1 in.) diam steel slugs. Slu gs are coo leSource: Ref 1 kPa (15 psig) N2 quench gas. Load size is 836.4 kg (1844 Ib). Source: Ref 1

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 6/8

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 7/8

7 3 2 H e a t Tr e a t i n g o f To o l S t e e ls

H e a t t r a n s f e r c o e f f i c i e n t ( h ), B t u / f t 2 • h • °F

0 18 35 53 70 88 106 123 1411 0

0.9 ~ ~ ~ ~

~ mm

o

1 5 0 m m

.~ 0 .4 ~ ,

0 .3

5 0 m m

1 0 0 m m

2 5 0 m m

0.20

Fig 11

158

100 200 300 400 500 600 7 00 800 900

H e a t t r a n s f e r c o e f f i c i e n t ( h ) , W / m 2• K

P l o t o f surface to center t e m p e r a t u r e r a t io v e r s u s th e h e a t tr a n s f e r c o e f f ic i e n t t o s h o w t h e e f f e c t o fv a r y i n g t o o l s t e e l s l u g d i a m e t e r s r a n g i n g f r o m 2 5 t o 2 5 0 m m (1 t o 10 i n . ). S o u r c e : R e f 1

• H i g h h e a t t r a n s f e r c o e f f i c i e n ts c a n c a u s el a rg e v a r i a t i o n s i n t e m p e r a t u r e b e t w e e nt h e c e n t e r a n d s u r f a c e o f c o m p o n e n t s( p a r t i c u l a r l y a s t h e d i a m e t e r i n c r e a s e s )t h a t m a y r e s u l t in c r a c k i n g a n d / o r d i s t o r -t i o n

• E v e n h i g h h e a t t r a n s f e r c o e f f i c i e n t s m a yn o t b e a b l e t o c o o l t h e c e n t e r o f l a rg ed i a m e t e r c o m p o n e n t s f a s t e n o u g h t oh a r d e n t h e m a d e q u a t e l y

Flu id ized Bed Furnaces

F l u i d i z e d - b e d f u r n a c e s o f f e r a n o t h e rm e t h o d o f h e a t t r e a t i n g to o l s t e e l s ( s ee a l s ot h e a rt i cl e " F l u i d i z e d - B e d E q u i p m e n t " i nt h i s Vo l u m e ) . T h i s m e t h o d u s e s a s o l i dr a t h e r t h a n a l i q u id o r g a s f o r th e h e a tt r a n s f e r m e d i u m . I n g e n e r a l , t h e f u r n a c e i sc o m p o s e d o f a l a y e r o f s m a l l m o b i l e p a r t i -c l e s o f a n i n e r t r e f r a c t o r y ( f o r e x a m p l e ,a l u m i n u m o x i d e o r s i l i c a s a n d ) in a c o n t a i n -e r w h i c h i s h e a t e d a n d f l u i d i z e d b y a f l o w i n gs t r e a m o f g a s . O b j e c t s t o b e h e a t t r e a t e d a r ei m m e r s e d d i r e c t l y in t o t h e b e d o f p a r t i c l e s .

A f l u i d b e d r e s u l t s w h e n a g a s i s p a s s e du p w a r d t h r o u g h a b e d o f s m a l l s o l i d p a r ti -c l e s a t a r a t e f a s t enou gh to l i f t t he se pa r t i -c l e s a n d t o c r e a t e t u r b u l e n c e . T h i s m o t i o no f pa r t i c l e s , s imi l a r t o t ha t o f a f l u id , i s

n e n t . A s t h e h e a t t r a n s f e r c o e f f i c i e n t i si n c r e a s ed , t h e c o m p o n e n t p a r a m e t e r s b e g i nt o r e s t ri c t th e c o o l i n g r a t e o f t h e c o m p o n e n ta n d l a rg e d i f f e r e n c e s b e g i n t o d e v e l o p b e -t w e e n t h e t e m p e r a t u r e a t t h e s u r f a c e a n dt h e t e m p e r a t u r e a t t h e c e n t e r o f t h e c o m p o -n e n t . T h e s e t e m p e r a t u r e d i f f e r e n c e s c a nc a u s e d i s t o r t i o n a n d c r a c k i n g i n l a rg e d i a m -e t e r c o m p o n e n t s .

I t is u s u a l l y t h e c o o l i n g r a t e a t t h e c e n t e ro f t h e c o m p o n e n t t h a t i s o f m o s t i n t e r e s t .T h e v a r i a t i o n i n c e n t e r c o o l i n g r a t e i n M 2t o o l s t e e l o v e r t h e t e m p e r a t u r e r a n g e 1 2 0 0to 600 °C (2190 to I 110 °F ) , i s p lo t t ed fo r ar a n g e o f h e a t t r a n s f e r c o e f f i c i e n t s i n F i g 1 2 .

F o r t h e l a rg e 2 5 0 m m ( 1 0 i n . ) d i a m e t e rc o m p o n e n t , t h e c e n t e r c o o l i n g r a t e in -c r e a s e s o n l y m a rg i n a l l y w i t h l a rg e i n c r e a s e si n t h e h e a t t r a n s f e r c o e f f i c i e n t w h e n c o m -p a r e d t o i n c r e a s e s i n t h e c e n t e r c o o l i n g r a teg a i n e d in a s m a l l c o m p o n e n t . F o r s u c h l a rg ed i a m e t e r c o m p o n e n t s , e v e n f a s t o il o r s a ltq u e n c h i n g ( h i s a p p r o x i m a t e l y 1 0 0 0 t o 5 0 0 0W/m 2 - K , o r 200 to 900 B tu / f t 2 • h • °F ) ma yn o t p r o v i d e t h e c e n t e r c o o l i n g r a t e r e q u i r e dt o d e v e l o p t h e d e s i r e d s t e e l h a r d n e s s p r o p -e r t i e s .

Tw o i m p o r t a n t c o n c l u s i o n s d r a w n f r o mt h is d i s c u s si o n o f h o w c o m p o n e n t p a r a m e -t e r s a f f e c t c o o l i n g r a t e s a r e :

H e a t t r a n s f e r c o e f f i c i e n t ( h ) , B t u / f t 2 • h • °

1 .8 18 180 1800 1 .8 x 104

1080 m dla ~ 400 720

~ 200 ~ d i a n ~ l 360

0 010 100 103 104 105

H e a t t r a n s f e r c o e f f i c i e n t ( h ) , W / m 2 • K

P l o t o f c o o l i n g r a t e a t t h e c e n t e r o f t hi g 1 2 v e r s u s t h e h e a t t r a n s f e r c o e f f i c i e n t

t o o l s t e e l t o s h o w e f f e c t o f v a r y i n g d i a m e t e rs otem per a tu re range o f 1200 to 600 °C (2190 to 11S o u r c e : R e f 1

G a s o u t ]

N. - : ; - . :

G a s in

(a )

VL

3_

Par t i c lesa r ef lu id ized

t' ; : ' : : : ' - : ' : ' i• :.r....,.z:.-..r," . . : . ~ - ' - ~ ) . : ~

: . : - : '-; ;-; .;

- . . . .:o . - . . . . . . ,N\\\\\\\\\\\N~

as inIb)

Ruid izei s e x p a n

d i s t an

S c h e m a t i c s h o w i n g p r i n c i p l e o f t h eF i g 3 i z e d - b e d f u r n a c e . ( a) I n i t i a l l y, t h e g au p w a r d t h r o u g h t h e p e r m e a b l e b a s e t o ag i tap a r t i c l e s a s t h e p r e s s u r e i s g r a d u a l l y i n c r e a s eE v e n t u a l l y, t h e g a s f l o w i s s u f f i c i e n t t o l i f t t hp a r t i c l e s o f r e f r a c t o r y m a t e r i a l s a n d t o t r a n s f op a r t ic l e m o v e m e n t i n t o a v i o l e n t t u r b u l e n t mA l t h o u g h t h e p a r t i c l e s a r e a c t u a l l y s o l i d , t h e f lb e d s i m u l a t e s t h e m o t i o n o f a l i q u i d , S o u r c e :

s h o w n i n F i g 1 3. W h e n g a s i s f o r c e d ut h r o u g h s m a l l h o l e s i n a s u p p o r t i n gt w o f o r c e s m e e t t o r a i s e t h e p a r t i c lb u o y a n c y o f t h e g a s a n d t h e r e t a r d i nk n o w n a s a e r o d y n a m i c d r a g .

M o s t f l u i d i z e d - b e d f u r n a c e s a r e ut empera tu re s be low 1095 °C (2000 °t h o u g h s o m e m a n u f a c t u r e r s h a v e f uc a p a b l e o f t r e a ti n g c o m p o n e n t s t o t etu r e s t h rough 1205 °C (2200 °F ) . Thp e r a t u r e / i m i t a t i o n i s r e l a t e d t o t h es u r e d a m a g e o r w e a r a n d t e a r o n t h em a t e r i a l s . F l u i d i z e d b e d s h a v e b e es i g n e d t o p e r f o r m a w i d e v a r i e t y ot r e a t i n g t a s k s i n c l u d i n g s t r e s s r e l i e v i nh e a t i n g , h a r d e n i n g , q u e n c h i n g , a n na n d t e m p e r i n g a s w e l l a s a v a r i e t y o f t r e a t m e n t s s u c h a s c a r b u r i z i n g , n i ta n d s t e a m t e m p e r i n g . T h i s d i s c u s s i od e a l p r i m a r i l y w i t h a s p e c t s o f n e u t rae n i n g o f t o o l s t e e l s .

H e a t t r a n s f e r w i t h f l u i d i z e d - b e d f ui s p a r t i c u l a r l y g o o d a n d o f f e r s c h a r at i c s a p p r o a c h i n g t h a t o f m o l t e n s a lf u r n a c e s . H e a t i n g p r o p e r t i e s o f t h e flc a n b e a d j u s t e d t h r o u g h a w i d e r a n

8/11/2019 726-733 Heat Treating of Tool Steels.pdf

http://slidepdf.com/reader/full/726-733-heat-treating-of-tool-steelspdf 8/8

Proces ses and Fu rnace Equ ipmen t fo r Hea t Trea t i ng o f Too l S te

l hma×

E¢ a . ~ y~.__.

"i- o<-- Static @ Ruidize d I

b e d [ b e d I

vm Vo.L o c a l g a s v e l o c i t y, V , -

H e a t t r a n s f e r c o e f f i c i e n t r i s e s w i t h t h e i n -F i g 1 4 c r e a s e i n v e l o c i t y o f t h e f l u i d i z e d b e d u n t i l ap e a k v a l u e ,hm~x s r e a c h e d a t t h e o p t i m u m v e l o c i t yVo p . S o u r c e : R e f 3

c a u s e t h e r e a r e m a n y p a r a m e t e r s t h a t c a nb e v a r i e d . S o m e o f th e m a j o r v a r i a b l e p a -r a m e t e r s a r e :

• P a r t i c l e p r o p e r t i e s ( s i z e , s h a p e , b u l k d e n -s i t y, a n d a b s o l u t e d e n s i t y )

• P r o p e r t i e s o f t h e g a s u s e d t o f l u i d iz e t h eb e d ( d e n s i t y, v i s c o s i t y, h e a t c a p a c i t y,a n d t h e r m a l c o n d u c t i v i t y )

• S y s t e m p r o p e r t i e s ( f lo w o f g a s t h r o u g h t h eb e d , t o t a l w e i g h t o f t h e p a r t i c l e s i n ag i v e n b e d , c r o s s s e c t i o n a n d s h a p e o f t h er e t o r t o r b e d c o n t a i n e r , a n d t y p e o f p e r -m e a b l e p l a t e u s e d t o s u p p o r t t h e p a r t i -c l e s )

O n e o f th e m a j o r a t t r i b u t e s o f th e f l u i d -i z e d b e d i s t h e h i g h r a t e a t w h i c h h e a t c a nb e t r a n s f e r r e d f r o m t h e b e d o f p a r t i c l e s t oa n i m m e r s e d o b j e c t . C o e f f i c i e n t s o f h e a tt r a n s f e r o n t h e o r d e r o f 4 0 0 t o 7 4 0 W / m 2 . K(70 to 130 B tu / f t 2 • h • °F ) a r e pos s ib l e . Th i sh e a t f l o w r a t e i s t w o t o t e n t i m e s h i g h e r t h a nt h a t p r o v i d e d b y n o r m a l c o n v e c t i o n o r r a -d i a t i o n . I n a d d i t i o n , t h e r a t e o f h e a t t r a n s f e ri n t h e f u ll b e d i s r e l a t i v e l y i n d e p e n d e n t o ft h e e m i s s i v i t y o f t h e o b j e c t w h i c h i s i m -m e r s e d a n d t h e t e m p e r a t u r e l e v e l . T h e t u r -b u l e n c e o f t h e f lu i d i z e d b e d i s i m p o r t a n t i nm i x i n g a n d c a n e f f e c t i v e l y m i n i m i z e t h e r -m a l g r a d i e n t s w i t h i n t h e b e d .

F i g u r e 1 4 i l l u s t r a t e s t h e n a t u r e o f h e a tt r a n s f e r i n a f l u i d i z e d b e d . U n d e r c u r v e 1 ,t h e b e d i s n o n f l u i d i z e d i n a s t a t i c s ta t e w i t hl o w h e a t t r a n s f e r r a t e s t h a t i n c r e a s e o n l ys l i g h t ly w i t h v e l o c i t y. A f t e r t h e m i n i m u mf l u i d i z a t i o n v e l o c i t y Vmf) i s r e a c h e d , t h eh e a t t r a n s f e r c o e f f i c i e n t , h , i n c r e a s e s r a p i d -l y o v e r a c o m p a r a t i v e l y n a r r o w v e l o c i t yr a n g e ( c u r v e 2 ) . A t a c e r t a i n o p t i m u m v e -l o c i t y ( Vop t) , t h e h e a t t r a n s f e r c o e f f i c i e n tr e a c h e s a m a x i m u m ( h m a x ) a n d t h e n t e n d st o d i m i n i s h a s th e f l u i d i z e d b e d a t t a i n s m o r eg a s - l i k e p r o p e r t i e s ( c u r v e 3 ) . T h e a c t u a lh e a t t r a n s f e r r a t e e x p e r i e n c e d i n t h e f l u i d -i z e d b e d d e p e n d s o n t h e f l u i d i z i n g g a s v e -

8 y l I f~ M o l t e n l e a d f

6 0 0 J M o l t e n s a l t 7

o v e c t I400i o n f u rnace

\ . / I i~ . 20 0 ~ / , / z \ F l u i d i z e d b e d

I I

1 4 7 0

111 0 o-

7 5 0

E3 9 0

3O0 200 4 0 0 600 800 1000

l i m e , s

F l u i d i z e d - b e d h e a t i n g c o m p a r e d w i t h c o n -ig 15 v e n t i o n a l i m m e r s i o n ( m o l t e n s a l t a n d m o l -

t e n l e a d b a t h s ) an d c o n v e c t i o n h e a t i n g m e t h o d s f o r 1 6m m ( % i n . ) d i a m s t e e l b a r s . S o u r c e : R e f 3

l o c i t y a n d i t s t h e r m a l c o n d u c t i v i t y, t h e s i z ea n d d e n s i t y o f t h e b e d p a r t i c l e s , t h e i r t h e r -m o p h y s i c a l p r o p e r t i e s , an d o n t h e g e o m e t r ya n d s t r u c t u r a l d e s i g n f e a t u r e s o f t h e f u r -n a c e . G e n e r a l l y, t h e p r i n c i p a l p a r a m e t e r ,o t h e r t h a n v e l o c i t y, t h a t a f f e c ts t h e h e a tt r a n s f e r c o e f f i c i e n t is t h e p a r t i c l e s i z e w i t h

t h e c o e f f i c i e n t r i s in g a s t h e p a r t i c l e d i a m e -t e r i s d e c r e a s e d . T h e s e p a r a m e t e r s r e s u l t i nh e a t t r a n s f e r c o e f f i c i e n t s a s h i g h a s 5 7 0W / m z .K (100 B tu / f t z . h - °F ) , wh ic h i s up t of i v e t i m e s t h a t w h i c h c a n b e o b t a i n e d i n ac o n v e n t i o n a l o p e n - f i r e d f u r n a c e a n d i s s im -i l a r t o t h a t o b t a i n e d i n li q u i d b a t h s . T h ec o m p a r i s o n o f t h e h e a t i n g r a t e i n a f l u i d -i z e d - b e d f u r n ac e w i t h o t h e r t y p i c a l m o d e so f h e a t i n g i s s h o w n i n F i g 1 5.

F l u i d i z e d - b e d h e a t - t r e a t i n g f u r n a c e s a r em a n u f a c t u r e d b y s e v e r a l s u p p l i e r s a n d a r ea v a i l a b l e in t h r e e f u n d a m e n t a l c o n f i g u r a -t i o n s . Tw o o f t h e c o n f i g u r a t i o n s a r e f l u i d -i z ed b y t h e p r o d u c t s o f c o m b u s t i o n a n d a r ek n o w n a s i n t e r n a l l y f i r e d a n d e x t e r n a l l yf i r e d t y p e s . F o r t h e t h i r d c o n f i g u r a t i o n ,k n o w n a s t h e i n d i r e c tl y h e a te d t y p e , t h ef l u i d i z a t i o n a n d t h e h e a t i n g a r e a c c o m -p l i s h ed i n d e p e n d e n t o f o n e a n o t h e r . T h ei n d i r e c t l y h e a t e d t y p e i s m o s t o f t e n u s e d f o rn e u t r a l h a r d e n i n g a n d t h e r e f o r e i s m o r ea p p l i c a b l e t o t o o l s t e e l h e a t t r e a t in g .

B e c a u s e t h e h e a t i n g a n d f l u i d i z a t i o nm o d e s o f a n i n d i r e c tl y h e a t e d f l u i d i z e d - b e df u r n a c e a r e i n d e p e n d e n t o f o n e a n o t h e r , t h i st y p e o f f u r n a c e i s u s e d w h e r e s p e c i a l a t m o -s p h e r e s a r e r e q u i r e d b y t h e p r o d u c t . L i t e r -a l l y, a n y g a s m a y b e u s e d f o r f l u i d i z a t i o na n d t h i s t y p e o f f u r n a c e c a n a c c o m m o d a t e aw i d e r a n g e o f p r o c e s s e s s u c h a s c a r b u r i z -i n g , c a r b o n i t r i d i n g , s t e a m t r e a t i n g , a n db r i g h t a n n e a l i n g . A n e x a m p l e o f an i n d i r e c t -l y h e a t e d f l u i d i z e d - b e d f u r n a c e i s s h o w n i nF i g 1 6 . A l t h o u g h t h e f u r n a c e s h o w n i s h e a t -e d e l e c t r i c a l l y, i t s h o u l d b e e m p h a s i z e d t h a ta f lu i d i z e d - b e d f u r n a c e m a y a l s o b e f u e lf i r e d ( s i m p l y b y r e p l a c i n g t h e e l e c t r i c e l e -m e n t s o n t h e o u t s i d e w i t h a s u i t a b l e b u r n e r

S c h e m a t i c o f a n i n d i r e c t l y h e a t e d f lFig 6 b e d h e a t - t r e a t in g f u r n a c e . T h e g a st h e t u r n a c e f r o m t h e s u p p l y l i n e o n t h e b o tS o u r c e : R e f 4

s y s t e m ) o r b o t h f u e l f i r e d a n d e l e c th e a t e d . I n s p e c i a l c o n f i g u r a t i o n s , f u

m a y a l s o b e c o o l e d t o o p e r a t e a t s ue n t t e m p e r a t u r e c o n d i t i o n s .

T h e f l u i d i z e d -b e d p a r t i c l e s o f f e rs i m i l a r i t i e s t o s a l t b a t h s a n d c a n p r os u p p o r t i n g n e u t r a l e n v i r o n m e n t . T h ei z e d p a r t i c l e s d o n o t c o l l e c t o n t h es u r f a c e a n d t h e r e f o r e t h e r e i s n o d r as u b s e q u e n t c l e a n in g r e q u i r e d . T h e n u m o x i d e o r s i l i c a o x i d e p a r t i c lb e c o m e c o n t a m i n a t e d b u t a r e t y p i c ac o n s i d e r e d a n e n v i r o n m e n t a l h a z a r dl e a d a n d s a lt c o m p o u n d s u s e d i n t hh e a t t r e a t m e t h o d s . T h e w o r k p i e c er e m o v a l f r o m t h e h i g h - t e m p e r a t u rc a n , h o w e v e r , b e e x p o s e d t o s u r f a ct a m i n a t i o n s u c h a s d e c a r b u r i z a t i o n t r a n s f e r to a q u e n c h i n g m e d i a . Bm u l t i p l e f l u i d i z e d - b e d f u r n a c e s o r a n a t i o n o f f u r n a c e s a r e t y p i c a l l y uc o n j u n c t i o n w i t h e a c h o t h e r d u r i ns t e e l h e a t t r e a t m e n t , s u c h f a c t o r s mc o n s i d e r e d i n t h e o v e r a l l l a y o u t o ft r e a t d e p a r t m e n t .

REFERENCES

1. E.J . Radc l i ffe Gas Quenching in um Furnaces: A Rev iew o f Fundatals I n d . H e a t . ,Nov 1987 , p 34 -3

2 . J . D . S t a u f f e r a n d C . O . P e d e r s o n , p l e s o f t h e F l u i d B e d ,M e t . P r o g . ,A1961, p 78-82

3 . A . F e n n e l l , C o n t i n u o u s H e a t Tw i t h F l u i d i z e d B e d s ,I n d . H e a t . ,1981, p 36-38

4 . J . E . J a p k a , F l u i d i z e d - B e d F u r n a cTr e a t i n g A p p l i c a t i o n s fo r t h e D i e I n d u s t r y, Die Cas t . Eng . , M a y -1983, p 22-26