17
FMRFamide-like immunoreactivity in the central nervous system and alimentary tract of the non-hematophagous blow fly, Phormia regina, and the hematophagous horse fly, Tabanus nigrovittatus Aaron T. Haselton 1 , Chih-Ming Yin 2 and John G. Stoffolano, Jr. 2 1 Department of Biology, State University of New York at New Paltz, New Paltz, NY 2 Department of Entomology, University of Massachusetts Amherst, Amherst MA Abstract Phormia regina Tabanus nigrovittatus Keywords: Retrocerebral complex, stomatogastric nervous system, endocrine cell Abbreviations: CC/CA: corpus cardiacum-corpus allatum complex, CC/HCG: corpus cardiacum-hypocerebral ganglion complex, CNS: central nervous system, FaRP: FMRFamide-related peptide, FLI: FMRFamide-like-immunoreactivity Correspondence: [email protected], [email protected] Received: 4 November 2006 | Accepted: 10 December 2007 | Published: 27 October 2008 Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Volume 8, Number 65 Cite this paper as: Haselton AT, Yin C, Stoffolano JG. 2008. FMRFamide-like immunoreactivity in the central nervous system and alimentary tract of the non- hematophagous blow fly, Phormia regina, and the hematophagous horse fly, Tabanus nigrovittatus. 17pp. Journal of Insect Science 8:65, available online: insectscience.org/8.65 Journal of Insect Science: Vol. 8 | Article 65 Haselton et al. Journal of Insect Science | www.insectscience.org 1

7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

FMRFamide-like immunoreactivity in the central nervoussystem and alimentary tract of the non-hematophagous blowfly, Phormia regina, and the hematophagous horse fly, Tabanusnigrovittatus

Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.21 Department of Biology, State University of New York at New Paltz, New Paltz, NY2 Department of Entomology, University of Massachusetts Amherst, Amherst MA

Abstract

Phormia regina Tabanusnigrovittatus

Keywords: Retrocerebral complex, stomatogastric nervous system, endocrine cellAbbreviations: CC/CA: corpus cardiacum-corpus allatum complex, CC/HCG: corpus cardiacum-hypocerebral ganglion complex, CNS:central nervous system, FaRP: FMRFamide-related peptide, FLI: FMRFamide-like-immunoreactivityCorrespondence: [email protected], [email protected]: 4 November 2006 | Accepted: 10 December 2007 | Published: 27 October 2008Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided thatthe paper is properly attributed.ISSN: 1536-2442 | Volume 8, Number 65

Cite this paper as:Haselton AT, Yin C, Stoffolano JG. 2008. FMRFamide-like immunoreactivity in the central nervous system and alimentary tract of the non-hematophagous blow fly, Phormia regina, and the hematophagous horse fly, Tabanus nigrovittatus. 17pp. Journal of Insect Science 8:65, availableonline: insectscience.org/8.65

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 1

Page 2: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Introduction

Drosophila melanogasterCalliphora vomitoria

C. erythro-cephala Neobellieria Sarcophagabullata

Phormia reginaAedes aegypti

Hematomairritans Stomoxys calcitrans Muscadomestica

D.melanogaster C. vomitoria

Phormia reginaTabanus nig-

rovittatus

Materials and Methods

AnimalsP. regina

ad libitum

T. nigrovittatus

Dissection

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 2

Page 3: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Antisera

Histochemistry

P. regina

P. regina

PAP

Results

AnatomyP. regina

T. nigrovittatusP. regina

T. nigrovittatus P. regina

T. nigrovittatusP. regina

T. nigrovittatusP. regina.

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 3

Page 4: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

P. regina T. nigrovittatus

A. aegypti

T. nigrovittatusP. regina

Immunohistochemistry

P. reginaP. regina

P. regina

P. regina

T. nigrovittatusP. regina

P. regina

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 4

Page 5: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 1. FMRFamide-like immunoreactivity (FLI) in the brain of Phormia regina. A) Anterior view of the brain showing FLIthroughout the regions of the brain, including cells in the optic lobes, protocerebrum, and the subesophageal ganglion (SOG). FLI isshown in nerve processes running down the cervical connective (CN) to the thoracico-abdominal ganglion. B) Posterior view of thebrain showing FLI in cells of the protocerebrum, including median neurosecretory cells in the pars intercerebralis (PI) and subesopha-geal ganglion. cervical connective processes originate from cells in the subesophageal ganglion. OL, optic lobe; E, esophagus.

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 5

Page 6: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 2. Mirror staining of the pars intercerebralis (PI) of Phormia regina. A) pars intercerebralisregion of the protocerebrum stained with anti-FMRFamide antiserum using the peroxidase-antiper-oxidase technique of Sternberger (1979). Arrows indicate large, medial FMRFamide-like immunore-active (FLI) cells surrounded by smaller cells exhibiting little or no FLI. B). Adjacent paraffin sectionshowing type-A median neurosecretory cells stained with paraldehyde fuchsin. Arrows indicatelarge, unstained medial cells corresponding to the FLI cells of the previous section. CB, central body.

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 6

Page 7: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 3. FMRFamide-like immunoreactivity (FLI) in the thoracico-abdominal ganglion (TAG) and cervical connective (CN) ofPhormia regina. A) Dorsal aspect of the CN and thoracico-abdominal ganglion of P. regina. Processes arise from cells in thesubesophageal ganglion, run down the cervical connective, and form an anastomosing neurohemal plexus on the dorsum of thethoracico-abdominal ganglion. B) Ventral aspect of the cervical connective and thoracico-abdominal ganglion of P. regina. PairedFLI cells and cell clusters are visible in each neuromere of the thoracico-abdominal ganglion. Processes can be seen runningdown the cervical connective to the thoracico-abdominal ganglion. SOG, subesophageal ganglion; E, esophagus.

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 7

Page 8: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 4. FMRFamide-like immunoreacitivity (FLI) in the retrocerebral complex (RCC) of Phormia regina. A) FLI in the retrocerebralcomplex and anterior dorsal surface of the midgut of P. regina. FLI processes originating from the retrocerebral complex run over theproventriculus (PV) and down the dorsal surface of the anterior midgut (double arrows), as well as down the lateral sides of the cropduct (CD) forming two crop duct nerves (CDN). B) An enlarged view of FLI in the retrocerebral complex of P. regina shows intenseFLI in the corpus cardiacum/hypocerebral ganglion, as well as in the corpus allatum. Processes originating in this intense area of FLIrun over the proventriculus to the midgut and down the crop duct to the crop. MG midgut; CA, corpus allatum; CC/HCG, corpuscardiacum/hypocerebral ganglion.

T. nigrovittatusT. nigrovittatus

P. regina

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 8

Page 9: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 5. FMRFamide-like immunoreactivity (FLI) in the foregut and midgut of Phormia regina. A) Diagram showing FLI in the gut ofP. regina. FLI occurs in the retrocerebral complex (RCC), crop duct nerve (CDN), and on the proximal surface of the crop sac (C) ofthe foregut. In the midgut, FLI occurs in nerves running down the dorsal surface of the anterior midgut and in numerous midgut en-docrine cells of the posterior midgut. B) FLI processes from the crop duct nerves ramify out into a fine network on the proximal sur-face of the crop sac (arrows). C) FLI midgut endocrine cells of the posterior midgut. Open-type endocrine cell morphology (apicalprocesses projecting toward lumen) is evident in many cells (arrow). E, esophagus; PV, proventriculus; CD, crop duct; MT, Malpighiantubules.

Discussion

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 9

Page 10: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 6. FMRFamide-like immunoreactivity (FLI) in the brain of Tabanus nigrovittatus. A) Anterior view of the brain showing FLIthroughout the regions of the brain, including cells in the protocerebrum, pars intercerebralis (PI), optic lobes (OL) and the subeso-phageal ganglion (SOG). B) Posterior view of the brain showing FLI in cells of the protocerebrum and in nerve processes runningdown the cervical connective (CN). At least some cervical connective processes originate from cells in the subesophageal ganglion.

D.

melanogaster

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 10

Page 11: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 7. FMRFamide-like immunoreactivity (FLI) in the cervical connective (CN), thoracic ganglion, and abdominal chain ganglia ofTabanus nigrovittatus. A) FLI processes running down the cervical connective and over the dorsal surface of the thoracic ganglion(arrows). B) Large, paired FLI cells and cell clusters in the ventral region of each neuromere in the thoracic ganglion (arrow). C) FLIprocesses run down the entire length of the abdominal chain of ganglia and FLI cell bodies and neuropil occur in each neuromere.

P. regina T.nigrovittatus

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 11

Page 12: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 8. FMRFamide-like immunoreactive (FLI) cells at the foregut/midgut junction in Tabanus nigrovittatus.A) A cluster of large FLI cells rest on the dorsal surface of the foregut just anterior to the junction with themidgut. Processes that appear to be associated with these cells form a network that innervates the entireouter surface of the anterior midgut. Punctate FLI processes on the esophagus also communicate with the FLIcell bodies (arrow). B) Two nerves originating from the region of the FLI cell bodies at the foregut/midgutjunction run down the lateral sides of the crop duct (arrows). E, esophagus; CD, crop duct.

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 12

Page 13: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Figure 9. FMRFamide-like immunoreactivity (FLI) in the foregut and midgut of Tabanus nigrovittatus. A) diagram showing FLI in thegut of T. nigrovittatus. In the foregut, FLI occurs in cells at the junction of the foregut and the midgut, in the crop duct nerves, and onthe proximal surface of the crop sac of the foregut. In the midgut, FLI occurs in nerves running along the surface of the anteriormidgut and in the midgut endocrine cells of the posterior midgut. FLI in the anterior and posterior midgut of T. nigrovittatus. B) Theentire surface of the anterior midgut is covered by a fine plexus of FLI fibers. Two large FLI nerves emanating from the region of FLIcells and processes at the foregut/midgut junction run posteriorly on the dorsal surface of the anterior midgut. FLI nerves originatingfrom this same region run down the crop duct (CD). C) FLI midgut endocrine cells in the posterior midgut. FLI midgut endocrinecells exhibit open-type endocrine cell morphology and form a dense ring around the terminal end of the midgut, just anterior to thepyloric sphincter. GC, gastric caecum; MG, midgut; E, esophagus; PS, pyloric sphincter; CDN, crop duct nerve; C, crop; MT, Malpighi-an tubules; HG, hindgut.

P. reginaT. nigrovittatus

Carausius morosusRhodnius prolixus D.melanogaster

P. regina

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 13

Page 14: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

R.prolixus

P. re-gina

Drosophila

P.regina

T. nig-rovittatus

P. reginaT. nigrovittatus

P. reginaT. nigrovittatus

C. vomitoria

P. regina

P.regina

R. pro-lixus

R. prolixus

C. morosus

H. irritansS. calcitrans

S. calcitransHeliothis zea

T. nigrovittatus

P. regina

R. prolixus H. irritans S. calcitransDiploptera punctata

D. punctata

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 14

Page 15: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

P. regina

T. nigrovit-tatus

P. regina in situP. re-

gina D. melanogaster

T. nigrovittatus

L. mi-gratoria H. zea

R. prolixus A. aegyptiN.

bullata

P.regina T. nigrovittatus

P. regina.

P. regina T. nigrovittatus

P. reginaT. nigrovittatus

Acknowledgments

References

The nervous systems of invertebrates:an evolutionary and comparative approach

Tissue and Cell

Comparative Biochemistry andPhysiology

The Insects: Structure and Function

Periplaneta americana

Journal of Comparative Neurology

Drosophila melanogaster

Peptides

XIIth Inter-national Congress of Comparative Endocrinology

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 15

Page 16: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

Calliphora vomitoria Proceedings of the National Academy ofSciences USA

Rhodnius prolixus Journal of Insect Physiology

Biomedical Research

Transactions of the American Micro-scopy Society

Neobellieriabullata Comparative Biochemistry and Physiology

Neobellieria bullata Comparative Biochemistry and Physiology

Tabanus nigrovittatus Journal ofMedical Entomology

Musca domesticaJournal of Medical Entomology

Locusta migratoriaPeptides

Nature

Animal Tissue Techniques

Heliothis zea Journal ofExperimental Zoology

Locusta migratoria Peptides

Drosophila Calliphora Journal ofComparative Neurology

Journal of Medical Entomology

Oncopeltus fasciatusRhodnius prolixus

Journal of Insect Physiology

Carausius morosus Peptides

Aedes aegypti Journal of Insect Science

DrosophilaNeuron

Drosophila

Progress in Neurobiology

Zoological Journal of the Linnean Society

Progress in Neurobiology

Journal of Molecular Neuroscience

DrosophilaMolecular and Cellu-

lar Neuroscience

Drosophila melanogaster Annual Reviewof Entomology

Drosophilamelanogaster Cell and Tissue Research

Drosophila Peptides

Advances in Insect Physiology

Science

Insect Neurohormones

Phormia regina Journ-al of Comparative Neurology

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 16

Page 17: 7 D E D Q X V Q LJ UR Y LWWD WX V - BioOne...Aaron T. Haselton1, Chih-Ming Yin2 and John G. Stoffolano, Jr.2 1 Department of Biology, State University of New York at New Paltz, New

DrosophilaProceedings of the National Academy

of Sciences USA

Sarcophaga bullataComparative Biochemistry and Physiology

Sarcophaga bullata ComparativeBiochemistry and Physiology

Diploptera punctata Peptides

Immunocytochemistry

Phormia regina Canadian Journal of Zoology

Phormia reginaEstratto da Redia

Lutzomyia longipalpisMedical and Veterinary Entomology

Rhodnius prolixus Journal of Comparat-ive Neurology

PhD Dissertation

Aedes aegypti Histochemistry and Cell Biology

DrosophilaJournal of Comparative Neurology

Journal of Insect Science: Vol. 8 | Article 65 Haselton et al.

Journal of Insect Science | www.insectscience.org 17