65216885-Metro-Logy

Embed Size (px)

Citation preview

  • 7/28/2019 65216885-Metro-Logy

    1/55

    1

    NRI INSTITUTE OF TECHNOLOGY

    LABORATORY MANUAL

    METROLOGY(I II B Tech Mechanical Engineering)

    M Rajesh

    DEPARTMENT

    OF

    MECHANICAL ENGINEERING

  • 7/28/2019 65216885-Metro-Logy

    2/55

    2

    METROLOGY LABLIST OF EXPERIMENTS

    Sl.No. Name of the Experiment

    1.Measurement of Length, Height & Diameter by

    Vernier caliper and Micrometer

    2.Measurement of bores by using Micrometer and

    Dial bore indicator

    3.

    Measurement of Gear tooth thickness by using

    Gear tooth Vernier.

    4.Angular measurement by Bevel protractor and

    Sine bar

    5.

    Measurement of Flatness of surface plate by

    using spirit levels.

    6.

    Surface roughness measurement by using Taly

    Surf.

    7.Alignment test of Lathe machine

    8. Alignment test of Milling Machine

  • 7/28/2019 65216885-Metro-Logy

    3/55

    3

    EXPERIMENT-1

    MEASUREMENT OF LENGTH, HEIGHT & DIAMETER BY VERNIERCALIPERS, MICROMETER.

    1. AIM: To measure Length, Height and Diameter of given objects by usingVernier Calipers & Micrometer.

    2. APPARATUS: Vernier Calipers, Outside Micrometer & Objects

    3. DESCRIPTION:

    Pierre Vernier, a Frenchman, devised principle of Vernier for precise measurements in1631. The Vernier Caliper consists of two scale one is fixed mad the other is movable.

    The movable scale, called Vernier Scale. The fixed scale is calibrated on L-shape frameand caries a fixed jaw. The Vernier scale slides over the main scale and carries over the

    movable jaw. Also an arrangement is provided to lock the sliding scale on fixed mainscale.

    Principle of Vernier Caliper:

    The principle of Vernier is based on the difference between two scales or divisions,

    which are nearly, but not quite alike for obtaining small difference. It enables to enhancethe accuracy of measurement.

    Least Count:Least count is the minimum distance which can be measured accurately by theInstrument.Least Count of Vernier Caliper is the difference between the value of main scale divisionand Vernier Scale Division.Thus Least Count = (Value of Smallest Division on Main Scale)-

    (Value of Smallest Division on Vernier Scale)

    = 1-49/50= 0.02 mm.

    (or) Least Count = (Value of Minimum Division on the Main Scale)/ (Number of

    Division on Vernier Scale ) = 1/50 = 0.02 mm.

  • 7/28/2019 65216885-Metro-Logy

    4/55

  • 7/28/2019 65216885-Metro-Logy

    5/55

    4

    4. PROCEDURE:

    The given component is fixed between the jaws firmly, i.e.. in between fixed jaw and

    movable jaw.

    The reading is to be noted down.

    Procedure for taking the Reading:

    1. After closing the jaws on the work surface, take the readings from the main as well asVernier Scale. To obtain the reading , the number of divisions on the main scale is firstread off. Ihe Vernier Scale is then examined to determined which of its division coincide

    or most coincident with a division on the main scale.

    2. Before using the instrument should be checked by zero error. The zero line on VernierScale should coincide with zero on the main scale.

    3. Then take the reading in mm on main scale to the left of zero on sliding scale.4. Now Count the no. of divisions on Vernier Scale from zero to a line which

    exactly Coincides with any line on the main scale.

    Thus total reading = [ Main scale reading ] + [No. of divisions with a division on Main Scale

    ] X Least Count.

    ( OR ) TR = MSR + VC X LC

    5. Take the reading for 4 times.

    Sample Reading :

    TABULAR FORM :

    SLNO. MSR VC TR

  • 7/28/2019 65216885-Metro-Logy

    6/55

    5

    The length / dia / height = Average of the readings

    = ( Trial 1+2+3+4+5) / 5 = ------------------ mm

    RESULT:

    Length / Diameter / Height = ----------------------- mm

  • 7/28/2019 65216885-Metro-Logy

    7/55

    6

    OUTSIDE MlCROMETER

    5. APPARATUS:

    Components to be measured outside micrometer.

    6. DESCRIPTION:

    Micrometers are designated according to screw and nut principle where a calibrated

    screw thread and a circular scale divisions are used to indicate the principle practicalpart of main scale divisions.

    The semi circular frame caries a fixed anvil at one extremely and cylindrical barrel atthe other end. A fine accurately cut screw of uniform pitch is machined on a spindle.The spindle passes through the barrel and its left hand side constitutes the movableanvil. A sleeve fits on the screw and caries on its inner edge a circular scale divided -

    into desired no. of divisions. The spindle with its screw and thimble are in one piece

    and sleeve forms the nut. The thimble scale serves to measure the friction of itscircular rotations. The number of complete rotations is read from main scale, which is

    graduated in mm on nut parallel to axis of screw.

    7. PROCEDURE:

    The work piece is held between the 2 anvils without undue pressure. This is

    Accomplished by having a retched drive to turn the thimble when the anvils contacteach other directly or indirectly through work piece placed in between the ratchet tips

    over the screw cap without moving the screw forwards and thus avoids unduepressure.

    Least Count = Pitch of the screw/ No. of Divisions on Circular Scale. If Pitch of

    screw is 0.5 mm and Circular Scale has 50 divisions on it, then

    Least Count = 0.5 / 50 ~ 0.01 mm

    In measuring, the dimension of work piece the main scale upto the leveled edge ofthimble and no. of divisions of thimble scale to axial line on barrel are observed

    addition of two given result.

  • 7/28/2019 65216885-Metro-Logy

    8/55

    7

  • 7/28/2019 65216885-Metro-Logy

    9/55

    8

    8. OBSERVATIONS :

    Measuring the below given component with 0-25 , 0.01 mm Micrometer.

    SAMPLE CALCULATIONS :

    TR = SR + (CSR X LC )

    TR = TOTAL READING ; SR = SLEVE READING ; CSR = CIRCULAR SCALE

    READING ; LC = LEAST COUNT

    TABLE FORMAT :

    SLNO. MSR VC TR

    ------------------------------------------------------------------------- The average diameter of the component is

    ------------------------------------------------------------------------- ......... mm.

    9. PRECAUTIONS :

    The thimble should be turned with ratchet only and to have standard condition and to prevent excess

    deformation of work piece.

    10. RESULT:

    The required outer diameter of the given components using outside micrometer is obtained.

  • 7/28/2019 65216885-Metro-Logy

    10/55

    9

    REVIEW QUESTI ONS .

    1. What are Vernier Calipers?2. What is Micrometer ?

    3. What is the Least Count of Vernier & Outside Micrometer ?

    4. What are applications of Vernier & Outside Micrometer ?5. What are the errors in Vernier & Outside Micrometer ?6. Compare Vernier & Outside Micrometer .

  • 7/28/2019 65216885-Metro-Logy

    11/55

    10

    EXPERIMENT-2

    1. AIM :

    To measure bores of a given specimen by using Inside Micrometer and Dial Bore

    Indicator.

    2. APPARATUS AND ACCESORIES REQUIRED :

    a ) Inside micrometerb ) Dial bore indicator

    c ) Dial indicatord ) Specimen

    3. SPECIFICATION :

    a) Inside micrometer : Range 5-30 mm, Least count = 0.01 mm.b) Dial bore indicator : Range 18-34 mm, Least count = 0.01 mm.c) Dial Indicator : Range 0-10 mm, Least count = 0.01 mm.

    4. THEORY AND DESCRIPTION :

    A) INSIDE MICROMETER :

    This micrometer caliper has U shape frame and spindle. The measuring tips areconstituted by the jaws with contact surfaces which are hardened and ground to a radius.

    One of the Jaws is held stationary at the end and second one moves by the movement ofthimble. A lock nut is provided to arrest the moment of movable right jaw.

    5. PRINCIPLE : Inside

    micrometer work on screw and nut principle.

    6. PROCEDURE :

    1. Keep the inside micrometer Jaws in the work piece.2. When two anvils touches the sides of bore , apply pressure with ratchet.3. See the reading & note down.

  • 7/28/2019 65216885-Metro-Logy

    12/55

    11

    INSIDE MICROMETER

    CD Left jaw

    (2) Right jaw

    (3) Contact point

    (4) Clamping knob

    (5) Sleeve

    (6) Thimble

    (7) Ratchet stop

    Sleeve 22.5mm

    Thimble 37mm

    Reading 22.87mm

  • 7/28/2019 65216885-Metro-Logy

    13/55

    12

    7. TABULAR FORM :

    SLNO. MSR VC TR

    LC = LEAST COUNTSR = SLEEVE READINGCR = CIRCULAR SCALE READINGTR = TOTAL READING =SR +CSR X L .C

    8. IDEAL CONDITION/BEHAVIOUR :

    a) When the fixed anvil and movable spindle are near during operation apply

    final pressure with ratchet in that position sleeve reading is zero andcircular scale zero coincides with center.

    b) The dial bore gauge reading checked the standard bore it give the

    same reading.

    B) DIAL BORE INDICATIOR

    THEORY AND DESCRIPTION:

    Dial bore indicator consists of measuring head and guide is attached with extension rod &

    collars for specific dimension chosen from the table in the instrument box, holder isassembled to the measuring head and dial indicator is fixed inside the holder during

    tightening. The condition is initially 1 kgf is applied to the dial indicator for getting exactreading.

    PRINCIPLE : Dial bore indicator is works on comparator principle.

    PROCEDURE :

    1) Once approximate bore is finding out by using inside micrometer.2) Chose the same little more size extension rod & collar if necessary select and fit.3) Keep the dial bore indicator into the specimen bore.

  • 7/28/2019 65216885-Metro-Logy

    14/55

    13

  • 7/28/2019 65216885-Metro-Logy

    15/55

    14

    TABULAR FORM :

    Sl.No.

    Length of

    extensionrod +Spacing

    collar

    Dial gauge reading Total reading

    ------------------------------------------------- Average bore on right side is mm.

    PRECAUTIONS :

    a) Thimble should be turned with ratchet only and to have standard condition and toprevent excess deformation of work piece.

    b) Only after checking the reading with inside micrometer, then use the dial bore gauge.c) The specimen measured surface should be smooth.d) See the reading without parallax error.e) Initially set the brezel of dial gauge to zero.VIVA QUESTIONS :

    1) What are the precautions required during use of inside micrometer & dial Boreindicator ?

    2) Which one is more precise when compared to inside micrometer& dial boreIndicator ?

    3) What are the applications of inside micrometer & dial bore indicator ?4) How do you find the least count of inside micrometer ?5) What are the other instruments for measuring bores ?INFERENCE : The size of bore is minimum 18 mm & maximum 30 mm.

    TROUBLE SHOTING :

    a) Calibration is done by using standardsb) Error adjustc) Recheck after error adjustmentAPPLICATIONS :

    a) Internal diameter of engineering components, slot width and length.

  • 7/28/2019 65216885-Metro-Logy

    16/55

    15

    EXPERIMENT- 3

    MEASUREMENT OF GEAR TOOTH THICKNESS

    1. AIM:

    To measure spur gear tooth thickness by using Gear tooth vernier.

    2 INSTRUMENTS AND MATERI AL REQUIRED :

    a) Gear tooth vernier caliper

    b) Spur gear

    3 SPECIFICATIONS:a) Gear Tooth vernier calipers range 0-150 mm , LC = 0.02mmb) Spur gear size = Standard sizec) Vernier calipers - range 0-150 mm, LC = 0.02mm

    4. TERMINLOGY OF GEAR TOOTH : Fig (3.1)

    Pitch circle diameter (P.C.D): It is the diameter of a circle which by pure rolling actionwould produce the same motion as the toothed gear wheel.

    Module (m) : It is defined as the length of the pitch circle diameter per tooth. Thus ifP.C.D of gear be D and number of teeth N, then module (m) = D/N. it is generally expressedin mm.

    Diametric pitch : It is expressed as the number of teeth per inch of the P.C.D.

    Circular pitch : It is the arc distance measured around the pitch circle from the flank ofone tooth to a similar flank in the next tooth. C.P = D/N = m

    Addendum : This is the radial distance from the pitch circle to the tip of the tooth. Its value isequal to one module.

    Clearance : This is the radial distance from the tip of a tooth to the bottom of a mating toothspace when the teeth are symmetrically engaged. Its standard value is 0.157 m

    Dedendum : This is the radial distance from the pitch circle to the bottom of the tooth space.

  • 7/28/2019 65216885-Metro-Logy

    17/55

    16

    Dedendum = Addendum + clearance = m + 0.157 m = 1.157 m.

    Blank diameter : This is the diameter of the blank from which gear is cut. It is equal to P.C.Dplus twice the addendum.

    Blank diameter = P.C.D + 2m = mN + 2m = m (N+2)

    Tooth thickness : This is the arc distance measured along the pitch circle from its intercept withon flank to its-intercept with the other flank of the same tooth.

    Normally tooth thickness = 1/2 (C.P) = 1/2 (M)

    But thickness is usually reduced by certain amount to allow for some amount of backlash andalso owing to addendum correction.

    Face of tooth : It is that part of the tooth surface which is above the pitch surface.

    Flank of tooth: It is that part of the tooth surface which is lying below the pitch surface.

    5. PRINCIPLE :

    MEASUREMENT OF TOOTH THICKNESS :

    The permissible error or the tolerance on thickness of tooth is the variation of actual thickness of tooth

    from its theoretical value. The tooth thickness is generally measured at pitch circle and is therefore, the

    pitch line thickness of tooth i.e., length of an arc, which is difficult to measure directly. In most of the

    cases, it is sufficient to measure the chordal thickness i.e, the chord joining the intersection of the toothprofile with the pitch circle. Also the difference between chordal tooth thickness and circular tooth

    thickness is very small for gear of small pitch. The thickness measurement is the most important

    measurement because most of the gears manufactured may not undergo checking of all other parameters,

    but thickness measurement is a must for all gears.

    The tooth thickness can be very conveniently measured by a gear tooth vernier. Since the gear tooth

    thickness varies from the tip to the base circle of the tooth, the instrument must be capable of measuring

    the tooth thickness at a specified position on the tooth. Further this is possible only when there is some

    arrangement to fix that position where the measurement is to be taken. The gear tooth vernier has two

    vernier scales and they are set for the width (w) of the tooth and the depth (d) from the top, at which w

    occurs.

  • 7/28/2019 65216885-Metro-Logy

    18/55

    17

  • 7/28/2019 65216885-Metro-Logy

    19/55

    18

    Considering one gear tooth, the theoretical values of w and d can be found which may be verified by

    the instrument. From fig .3.2) Chordal thickness = w = AB = 2AD

  • 7/28/2019 65216885-Metro-Logy

    20/55

    19

    8. CALCULATIONS:

    i) Chordal addendum (d) = =

    + NCosN

    mN 090212

    .

    ii) Chordal thickness (w) = N.m Sin =

    N

    090

    9. IDEAL CONDITIONS / BEHAVIOUR :The instrument should be error free, Repeatability is required.

    10. PRECAUTIONS:

    i) Dont press the jaws to tight.ii) See the reading without parallax error.

    11. RESULTS:The theoretical value of gear tooth thickness may differ from the measured value due to themanufacturing inaccuracies.

    12. VIVA QUESTIONS:i. Define various elements of a gear?

    ii) What is Chordal addendum?iii) What is chordal thickness of gear toothiv) What are the various parts of gear tooth Vernier?v) Differentiate gear tooth Vernier from ordinary Vernier?vi) What are the different types of gears?vii) What are the various tests conducted on gears?viii) What is the other parameter to be measured in gear by using other testing equipment?ix) What is rolling gear test?x) What are the various quantitative test on gears?

    13. INFERENCES:

    14. TROUBLE SHOOTING:i) Any worn out parts are there replace with new one.ii) Calibrate the instrument with standard slip gauges.

    15. APPLICATIONS:It is used for measuring gear tooth thickness & depth

    12. REVIEW QUESTIONS :

    i) Define various elements of a gear.

    ii) What is Chordal addendum ?

    iii) What is Chordal thickness of gear tooth ?

    iv) What are various parts of gear tooth vernier ?

  • 7/28/2019 65216885-Metro-Logy

    21/55

    20

  • 7/28/2019 65216885-Metro-Logy

    22/55

    21

    EXPERIMENT-4

    ANGULAR MEASUREMENT BY BEVEL PROTRACTOR AND SINE BAR

    1. AIM :

    a)To measure the angle between two faces of a given component using Bevel protractor.b)To measure the taper angle of a given component using sine bar.

    2. EQUIPMENT AND ACCESSORIES REQUIRED :

    i) Bevel protractor with vernier and acute angle attachment (150/300 mm blades),

    ii) Sine bar (100 mm size)iii) Surface plate

    iv) Slip gaugesv) Dial gauge (0.01 mm least count),vi) Slotted angle plate,

    vii) Bolts for locking sine bar to angle plateix) clamps for locking component to sine bar.

    3 THEORY AND DESCRIPTION :

    3.1 Bevel Protractor:

    It is the simplest instrument for measuring angle between two faces of component. Itconsists of a base plate attached to the main body and an adjustable blade which is attached to a

    circular plate called turret containing vernier scale. The adjustable blade is capable of rotating

    freely about the centre of the main scale ( graduated around a complete circle from 0 to 90, 90to 0 and 0 to 90

    0,90 to 0 ) engraved on the body of the instrument and can be locked in any

    position. An acute angle attachment is provided at the top as shown in fig (4.1) to measure acute

    angles. The base of the base plate is made flat so that it could be laid flat upon the work and anytype of angle measured. It is capable of measuring from 0 to 360.

    The vernier scale has 24 divisions coinciding with 46 main scale divisions (23 on eitherside ) as shown in fig (4.2) The vernier scale is graduated to the right and left of zero upto 60

    minutes, each of the 12 graduations representing 5 minutes. Since both the protractor dial andvernier scale have graduations in both directions from zero, any angle can be measured, but it

    should be remembered that the vernier must be read in the same direction from zero as the

    protractor either left or right. If the zero graduation on the vernier scale coincides with a

    graduation on the protractor dial, the reading is in exact degrees, but if some other graduation onthe vernier scale coincides with a protractor graduation, the number of vernier graduations

    multiplied by 5 minutes, must be added to the number of degrees read between the zeros on theprotractor dial and vernier scale. Magnified view of main scale is shown in fig (4.2a)

  • 7/28/2019 65216885-Metro-Logy

    23/55

    22

  • 7/28/2019 65216885-Metro-Logy

    24/55

    23

    3.2 Sine Principle and Sine bar :The Sine principle uses the ratio of the length of two sides of a right angle trianglein deriving a given angle. The measurement is usually limited to 45 from loss of

    accuracy point of view. The accuracy with which the sine principle can be put touse is dependent in practice, on some form of linear measurement. The sine bar in

    itself is not a complete measuring instrument. Another datumsuch as a surface plateis needed, as well as other auxiliary equipment, notably slip gauges, and indicating

    device to make measurements. Sine bars used in conjunction with slip gaugesconstitute a very good device for the precise measurement of angles. Sine bars are

    used either to measure angles very accurately or for locating any work to a givenangle within very close limits.

    Sine bars are made from high carbon, high chromium, corrosion resistant steel,

    hardened, ground and stabilized. Two cylinders of equal diameter are attached at theends. The axes of these two cylinders are mutually parallel to each other and alsoparallel to and at equal distance from the upper surface of the sine bar. The distance

    between the axes of the two cylinders is exactly 5 inches or 10 inches in BritishSystem and 100, 200 and 300 mm in metric system.

    The Various parts are hardened and stabilized before grinding and lapping. All the

    working surfaces and the cylindrical surfaces of the rollers are finished to surfacefinish of 0.2 Ra value or better. Depending upon the accuracy of the centredistance, sine bars are graded as of A grade or B grade. B grade of sine bars areguaranteed accurate upto 0.02 mm/m of length and A grade sine bars are more

    accurate and guaranteed upto 0.01 mm/m of length. There are several forms of sinebars, but the one shown in fig (4.3) is most commonly used. Some holes are drilled

    in the body of the bar to reduce the weight and to facilitate handling.

    The accuracy of sine bar depends on its constructional features :

    i) The two rollers must have equal diameter and be true cylindersii) The rollers must be set parallel to each other and to the upper face,iii) The precise centre distance between the rollers must be known

    iv) The upper face must have a high degree of flatness.

    3.2.1 Use of Sine bar:

    a) Measuring known angles or locating any work to a given angle :

    For this purpose the surface plate is assumed to be having a perfectly flat surface, sothat its surface could be treated as horizontal. One of the cylinders or rollers of sine

    bar is placed on the surface plate and other roller is placed on the slip gauges of

    height h as shown in fig (4.4) . Let the sine bar be set at angle . Then

    Sin = h/LWhere, L = Distance between the centre of rollers.

    Thus knowing , h can be found out and any work could be set at this angle as the

    top face of sine bar is inclined at angle to the surface plate. The use of angleplates and clamps could also be made in case of heavy components. For better

    results, both the rollers could also be placed on slip gauges of height h1 and h2

    respectively. Then Sin = (h2-h1)/L

  • 7/28/2019 65216885-Metro-Logy

    25/55

    24

    Fig 4.3 Sine Bar

    Fig 4.4 Use of Sine Bar Sin = L

    h

    Fig (4.5) Checking of unknown angles.

  • 7/28/2019 65216885-Metro-Logy

    26/55

    25

    b) Checking of unknown angles :

    Many a times, angle of a component to be checked is unknown. In such a case, it is

    necessary to first find the angle approximately with the help of a bevel protractor. Letthe angle be . Then the sine bar is set at an angle and clamped to an angle plate.Next, the work is placed on sine bar and clamped to angle plate as shown in fig (4.5)

    and dial indicator is set at one end of the work and moved to the other, and deviationis noted. Again slip gauges are so adjusted that dial indicator reads zero across work

    surface.

    If deviation noted down by the dial indicator is h over a length of L of work, then

    height of slip gauges by which it should be adjusted is equal to h x L/L1.

    4 PROCEDURE :4.4.1 Angle measurement by Bevel protractor :

    i) The base plate of the Bevel protractor is placed on the top horizontal surfaceof the component,

    ii) Blade locking nut is loosened and by rotating the blade about the centre of

    the main scale, the working edge of the blade is made to coincide with the inclinedsurface of the component,

    iii) Blade is locked in that position by tightening the nut.iv) Vernier scale division coinciding with main scale division is noted.

    Inclination of the surface with respect to horizontal is calculated as follows : Angular

    reading = (Vernier scale division x 5minutes) + Main scale division in degrees.

    4.4.2 Angular measurement by sine bar :

    i) The sine bar is made to rest on surface plate with rollers contacting the datum

    (surface plate)ii) Place the component on sine bar and lock it in position.

    iii) Lift one end (roller) of the sine bar and place a pack of slip gauges,underneath the roller. The height of the slip gauges (h) should be selected such that

    the top surface of component is parallel to the datum plate (surface plate). Theparallelism can be assessed by making the stylus of a dial indicator mounted on a dial

    gauge stand in contact with the upper surface of component and sliding the stylusalong the component surface. If both the surfaces are perfectly parallel, the pointeron the dial gauge shows the same reading throughout the travel of the dial gaugestylus. If the surfaces are not parallel, then the height of the slip gauge pack (h) can

    be altered and procedure for checking parallelism can be repeated.)

    Record the final height of slip gauge pack used for achieving parallelism

    Calculate inclination = Sin-1

    (h/L)

  • 7/28/2019 65216885-Metro-Logy

    27/55

    26

    5 PRECAUTIONS :

    i) The sine bar should not be used for angle greater than 60 because any possible error

    in construction is accentuated at this limit.ii) Accuracy of sine bar should be ensured.

    iii) As far as possible longer sine bar should be used since many errors are reduced by

    using longer sine bars.

  • 7/28/2019 65216885-Metro-Logy

    28/55

    27

    EXPERIMENT - 5

    FLATNESS TEST

    1. AIM: To find the flatness of a given surface plate.

    2. APIARATUS: Surface plate and precision spirit level.

    3. THEORY AND DESCR.PTION:

    The simplest form of flatness testing is possible by comparing the surface with an accuratesurface.

    Spirit level is used in special cases and called Clinometers, precision micro-optic clinometersutilizes bubble unit with a prismatic coincidence reader which presents both ends of thebubble an adjacent images in a spirit field.

    Leveling helps in the coincidence of the 2 images, making it very easy to sec when thebubble is exactly centered without reference to any graduations. The special features toprecision micro-optic clinometers arc direct reading over range 0-360, optically readingsystem, main coarse setting, slow motion screw to fine setting. The least count of precisionspirit level is 0.01 mm.

    4. PROCEDURE:1. Place the spirit level on the surface plate and adjust its into suitable reference point.2. Divide the plate (surface) into no. of sections and note the reading.3. Thus a number of readings w.r.t to surface plate reference is found.4. A plot is done on the performance.

    1 2 3 4 5

    a

    b

    c

    d

    Dividing the surface plate into sections.

    5. RESULT: The Flatness of a surface plate is determined.

  • 7/28/2019 65216885-Metro-Logy

    29/55

    28

    EXPERIMENT-6

    SURFACE ROUGHNESS MEASUREMENT

    1. AIM:

    i) To measure the surface roughness of the given specimens using surface roughnesstester.

    ii) To show the variation of surface roughness as a function of cutting conditions i.e.,speed, feed, depth of cut and tool geometry etc.,

    2. MEASURING INSTRUMENTS AND MATERIAL REQUIRED :a) Surface roughness tester ( SJ - 201)b) Precision roughness specimen, Test specimens, Calibration stagec) Height gauge, Adapter for the height gauge, support feetd) Nose pieces, Digimatic data processor ( DP- 1 HS)

    3 TERMINOLOGY AS PER INDIAN STANDARDS : Fig (6.1)

    Surface roughness : It concerns all those irregularities which form surface relief and which areconventionally defined within the area where deviations of form and waviness are eliminated.

    Primary texture (Roughness) : It is caused due to the irregularities in the surface roughnesswhich result from the inherent action of the production process. These are deemed to includetransverse feed marks and the irregularities within them.

    Secondary texture (Waviness) : It results from the factors such as machine or workdeflections, vibrations, chatter, heat treatment or warping strains, waviness is the component ofsurface roughness upon which roughness is superimposed.

    Centre line: The line about which roughness is measured.

    Lay : It is the direction of the predominant surface pattern: ordinarily determined by themethod of production used.

    Traversing length : It is the length of the profile necessary for the evaluation of the surfaceroughness parameters. The traversing length may include one or more sampling lengths.

    Sampling length (l) : Is the length of profile necessary for the evaluation of irregularities to betaken into account. This is also known as the cut - off length as regard to the measuringinstruments. It is measured in a direction parallel to the general direction of profile.

    4. THEORY:

    Surface texture is deemed to include all those irregularities which, recurring many times acrossthe surface, tend to form on it a pattern or texture. The irregularities in the surface texture whichresult from the inherent action of the production process is called roughness or primary texture.That component of surface texture upon which roughness is super imposed is called waviness orsecondary texture. This may result from such factors as machine or work deflections, vibrations,chatter, heat treatment or warping strains. The direction of the predominant surface pattern,ordinarily determined by the production method used is called lay. The parameters of thesurface are conveniently defined with respect to a straight reference line. The most widelyused parameter is the arithmetic average departure of the filtered profile from the meanline. This is known as the CLA (Centre - Line - Average) or Ra (roughness average)

  • 7/28/2019 65216885-Metro-Logy

    30/55

    29

    Arithmetic mean deviation of the Profile, Ra:Ra is the arithmetic mean of the absolute values of the profile deviations (Y i) from the mean line.

    Ra = =N

    iiyN 1

    1

    Root-mean-square deviation of the Profile, Rq:Rq is the square root of the arithmetic mean of the squares of profile deviations (Yi) from the

    mean line.

    Ra = =

    N

    iiy

    N 1

    21

    Maximum height of the Profile, Ry:Ry is the sum of height Yp of the highest peak from the mean line and depth Yv of the deepest

    valley from the mean line.Ry= Yp + Yv

    5. OUTL INE OF SURF TEST SJ -201 :

    The surftest - 201 is a shop-floor type surface roughness measuring instrument, which traces thesurfaces of various machines parts, calculates their surface roughness based on roughnessstandards, and displays the results.

    5.1. Surf Test SJ -201 Surface roughness measurement principle :A pick-up which is usually called as the Stylus attached to the detector unit of the surf testSJ-201 will trace the minute irregularities of the work piece surface. The vertical stylusdisplacement during the trace is processed and digitally displayed on the liquid crystal displayof the surf test SJ-201. The measurement principle of surf test SJ-201 is shown in fig (6.2). Theinstrument consists of the display unit and drive/detector unit. The drive/detector unit isdesigned to be removable from the display unit. Depending on the shape of the work-piece, itmay be easier to perform measurement without mounting the drive/detector unit to the displayunit. Name of each part on the display unit is shown in fig (6.3). The detector inturn can bedetached from the drive unit. Each time a measurement task has been completed with the surftest SJ-201, it is recommended that the detector be detached from the drive unit and stored in asafe place.

    5.2. List of Surf Test SJ -201 Operation mode:

    The surf test SJ-201 has various operation modes including the measurement mode,calibration mode, condition setting mode, RS-232 C communication mode, and detectorretraction mode.

    Measurement mode :Starts and stops measurement, calculates and selects measurements parameters to be displayed,and performs SPC output.

    Calibration mode:

  • 7/28/2019 65216885-Metro-Logy

    31/55

    30

    Sets the calibration value prior to measurement and performs calibration measurement.

    Condition Setting mode:Sets and modifies measurement conditions. This mode has 11 sub-modes as shown in chart(6.A).

    RS-232C Communication mode:Used for communication with a personal computer.

    Detector retraction mode:Retracts the detector as required.Relationship between the operation modes and available keys is shown inTable (6.B)

    6 MEASUREMENT OF SURFACE ROUGHNESS :Surface roughness measurement with the surf test SJ-201 includes

    i) Mounting/dismounting the drive unit/detector, and cable connection, etc.according to he feature of the work piece to be measured,ii) Selection of power supply i.e., either the AC adapter or built-in battery,iii) Modifying the measurement conditions as necessary,iv) Calibrating surf test SJ-201 to adjust the detector gain for correctmeasurements,v) Measuring the roughness specimen and display the result,vi) outputting the measurement data or perform communication with a personalcomputer via the RS-232C interface.

    7. PROCEDURE :

    8. Modifying measurement conditions :

    Table (6.C) shows the measurement conditions that can be modified by the user. If they are notmodified, then measurement will be performed according to the default values, measurementconditions are modified according to the surface roughness parameters, the amplitude ofroughness, the conditions of the objective area of measurement, etc.

    Table (6.A)

    Table (6.B)

    Table (6.C)

    The surf test SJ-201 can obtain each roughness parameter based on the new JIS, old JIS,DIN ISO and ANSI standards. Evaluation according to any one of the standards may beobtained from Reference information (Users manual)

    8.1. Calibration of measuring instrument:

    The process of calibration involves the measurement of a reference work piece (precisionroughness specimen) and the adjustment of the difference ( gain adjustment), if there is any

    between the measured value and the reference value (precision roughness specimen). Without properly calibrating the instrument, correct measurements cannot be obtained. Calibration

    of surf test SJ-201 with the supplied precision roughness specimen must be performed withthe default values mentioned in Table (6.D).

  • 7/28/2019 65216885-Metro-Logy

    32/55

    31

    i) Precision roughness specimen and calibration stage are placed on a level table.

    ii) Surf Test SJ-201 is mounted on the calibration stage.

    iii) Surf Test SJ-201 is set so that the detector traversing direction is perpendicular to thecutter mark of the precision roughness specimen. It should be confirmed that the detector is

    parallel to the measured .surface as shown in fig (6.3).

    iv) If [CAL/STD/RANGE] key is pressed in the measurement mode, the calibrationmode is entered and current calibration value is displayed. In this state the calibration valuecan be modified, if the displayed value is different from that marked on the precisionroughness specimen. .

    v) [n/Ent] key is pressed after confirming the displayed value, so that the entered

    calibration value is set.

    vi) [START/STOP] key is pressed to begin the calibration measurement. The symbol --

    is displayed while the detector is traversing and the measured value will be displayed when

    the measurement has been completed.

    vii) [n/Ent] key is pressed so that the calibration factor is updated, completing the entire

    calibration operation.

    viii) [MODE/ESC] key is pressed. This restores the measurement mode and retains thecalibration factor obtained in the previous operation.

    8.2. Actual measurement of roughness specimen :

    Surf Test SJ-201 is placed on the work piece, if the work piece surface is large enough. For

    measurement to be successful, it should be performed on a firm base that is insulated as wellas possible from all sources of vibration. If measurement is performed being subject to

    significant vibrations, results may be un reliable.

    i) Work piece is positioned so that the measured surface is level.

    ii) Surf Test SJ-201 is placed on the work piece, In this operation SJ-201 is supported by

    two reference surfaces at the bottom of driving unit. It must be confirmed that the stylus is in

    proper contact with the measured surface and the detector is parallel to the measured surface.

  • 7/28/2019 65216885-Metro-Logy

    33/55

    32

  • 7/28/2019 65216885-Metro-Logy

    34/55

    33

  • 7/28/2019 65216885-Metro-Logy

    35/55

    34

  • 7/28/2019 65216885-Metro-Logy

    36/55

    35

    Relation ship between the operation modes and available keys.

    TABLE (6.B)

    Operation mode Symbol (onLCD)

    Key for mode switching

    Calibration mode CAL [CAL/STD/RANGE]

    Surface roughness standard

    setupSTD [CAL/STD/RANGE]

    Measurement range setup

    modeRAN [CAL/STD/RANGE]

    Filter setup mode FIL [FILTER/TOL/CUST]

    GO/NG judgment functionsetup mode

    TOL [FILTER/TOL/CUST]

    Parameter calculatingcondition setup mode

    PAR [FILTER/TOL/CUST]

    Traversing speed setup mode TSP [MODE/ECE]

    Pre-travel/post travel lengthsetup mode

    TRA [MODE/ECE]

    RS-232 C baud rate setup

    modeSPD [MODE/ECE]

    Calibrating condition setup

    modeCAL [MODE/ECE]

    Default value restoration

    modeINI

    Press [POWER/DATA] whilesimultaneously holding down

    [PARAMETER] and [STAR/STOP]

    during auto sleep.

    Rs-232 C communicationmode

    RMT Press [POWER/DATA] While holdingdown [REMOTE] during auto sleep

    Detector retraction modeOFF

    ON

    Retraction: Press [POWER/DATA] whileholding down[START/STOP] during auto

    sleep. Cancelling retraction:

    Press [STAR/STOP] if the detector isretracted and the power is on.

  • 7/28/2019 65216885-Metro-Logy

    37/55

    36

  • 7/28/2019 65216885-Metro-Logy

    38/55

    37

  • 7/28/2019 65216885-Metro-Logy

    39/55

    38

  • 7/28/2019 65216885-Metro-Logy

    40/55

    39

    iii) [START/STOP] key is pressed in the measurement mode, the detector starts

    traversing to perform measurement,

    iv) After the measurement has been completed, the measured value is displayed

    on the LCD.

    v) [PARAMETER] key is pressed until the desired parameter value is displayed

    on the LCD.

    8.3. Outputting measurement result:

    i) The Surf Test SJ-201 is connected to a Digimatic data processor (DP - IHS)

    to output the measurement results ( including the unit of measurement ) asSPC data,

    ii) DP-IHS is turned to ON position,iii) [PARAMETER] key is pressed until the objective parameter for output is

    displayed,iv) [POWER/DATAJ key is pressed so that the measurement result will beoutputted from the Surf Test SJ-201 to the DP-1HS.

    9. PRECAUTIONS :

    i) Never touch the stylus, otherwise it may be damaged.ii) Do not hold the detector when detaching the drive/detector unit. Otherwise,

    the detector may be damaged,iv) Confirm that the detector is parallel to the measured surface,v) Confirm that the stylus is in proper contact with the measured surface,vi) Calibration of SJ - 201 with the precision roughness specimen must beperformed with the default values that have been used for calibrating theroughness specimen.

    10. REVIEW QUESTIONS :

    i) What is primary texture ?

    ii) What is secondary texture ?

    iii) What is Lay?

    iv) What do you mean by traversing length and sampling length ?

    v) Define Ra, Rq and Ry

    vi) What is calibration ? and why is it necessary for roughness measurement ?

    vii) How will you output the SPC data from surf test SJ-201 to DP-IHS printer ?viii) What is the measurement principle of surf test SJ-201 ?

    ix) What are the various operation modes in surf test SJ-201 ?

    x) How will you modify the measurement conditions ?

  • 7/28/2019 65216885-Metro-Logy

    41/55

    40

    EXPERIMENT - 7

    ALIGNMENT TEST OF LATHE

    1. AIM :

    To perform various alignment tests on Lathe.

    2. INSTRUMENTS REQUIRED:

    i) Dial gauges

    ii) Test mandrelsiii) Straight edges and squares

    iv) Spirit levels etc.

    v) Angle brackets

    3. MACHINE TOOL TESTS :

    In most cases the production or machining of a given geometric surface is achieved throughcombination of work-tool movements. In other words, the machined surface is generated, andthe accuracy of the surface depends on the accuracy of the mating elements present in the

    machine tool.

    The various tests applied to any machine tool could be grouped as below.

    a) Tests for the level of installation of machine in horizontal and vertical planes.b) Tests for flatness of machine bed and for straightness and parallelism of bed ways

    or bearing surfaces.

    c) Tests for perpendicularity of guide ways to other guide ways or bearing surfaces.d) Tests for the true running of the main spindle and its axial movements.e) Tests for parallelism of spindle axis to guide ways or bearing surfaces.f) Tests for the line of movement of various members, i.e. saddle and table cross-

    slides etc. along their ways.

    4. AL IGNMENT TESTS ON LATHE :

    4.1 Leveling of the machine : The level of the machine bed in longitudinal and transversedirections is tested by a sensitive spirit level. The saddle is kept approximately in the centre ofthe bed support feet. The spirit level is then placed at a-a (Fig 7.1), to ensure the level in the

    longitudinal direction. It is then traversed along the length of bed and readings at variousplaces noted down.

    For tests in transverse direction the level is placed on a bridge piece to span the front and rearguide ways and their reading is noted. It is preferable to take two readings in longitudinal and

    transverse directions simultaneously so that the effect of adjustments in one direction may alsobe observed on the other. The readings in transverse direction can reveal any twist in the bed. It

    may be noted hat the two guide ways may be perfectly leveled in longitudinal direction, butmight not be parallel to each other. This is revealed by the test in transverse direction.

  • 7/28/2019 65216885-Metro-Logy

    42/55

    41

  • 7/28/2019 65216885-Metro-Logy

    43/55

    42

    4.2 : True Running of Locating Cylinder of Main Spindle:

    Locating cylinder is provided to locate the chuck or face plate and the true running of which

    depends on true running of the locating cylinder.

    The dial indicator is fixed to the carriage (or any other fixed member) and the feeler of the

    indicator touches the locating surface as shown in fig (7.2). The surface is then rotated on its axisand indicator should not show any movement of needle. If there is any change in the indicator

    reading, it must be recorded and be verified with the limiting values.

    4.3 Axial Slip of Main Spindle and True Running of Shoulder Face of Spindle

    Nose:

    Axil slip is the movement of the spindle in axial direction and is due to the manufacturing error.To test this, the feeler of the dial gauge rests on the face of the locating spindle shoulder and thedial gauge holder is clamped to the bed as shown in fig (7.3). The locating cylinder is thenrotated and the change in reading noted down. The readings are taken at two diametricallyopposite points. The total error indicated by the movement of the pointer includes three mainsources of errors.

    i) Axial slip due to error in bearings supporting the locating shoulder, i.e. the bearings arenot perpendicular to the axis of rotation and due to it a point on the shoulder will move axially in

    & out at diametrically opposite points,ii) Face of the locating shoulder not in a plane perpendicular to the axis of rotation

    iii) Irregularities of front face. Due to axial slip, in screw cutting, the pitch will notbe uniform due to periodic movement of the spindle.

    4.4: True running of L ive centre:

    Work piece is rotated along with the Live centre. If it is not true with the axis of movement ofthe spindle, eccentricity will be caused while turning a work, as the job axis would not coincidewith the axis of rotation of the main spindle.

    For testing this error, the feeler of the dial indicator is pressed perpendicular to the taper surface

    of the centre as shown in fig (7.4), and the spindle is rotated. The deviation indicated by the dial

    gauge gives the trueness of the centre.

    4.5: Parallelism of the main spindle to Saddle movement:

    If the axis of the spindle is not parallel to bed in horizontal direction, a tapered surface isproduced. Any deviation from parallelism of spindle axis from bed in vertical axis will produce

    a hyperboloid surface. For this test, a mandrel is fitted in the taper socket of the spindle.Mandrel has a concentric taper shank which is close fit to the spindle nose taper. The feeler of

    the dail-indicator is pressed on the mandrel and the carriage is moved. The indication in thehorizontal plane is given by dial (b) and in vertical plane by dial (a) as shown in fig (7.5).

    4.6: running of taper socket in main spindle:If the tapered hole of the socket is not concentric with the main spindle axis, eccentric and

    tapered jobs will be produced. To test it, a mandrel is fitted into the tapered hole and readings at

    two extremes of the mandrel are taken by means of a dial indicator as shown in fig (7.6).

  • 7/28/2019 65216885-Metro-Logy

    44/55

    43

  • 7/28/2019 65216885-Metro-Logy

    45/55

    44

    4.7: Parallelism of tail stock guide ways with the movement of carriage:

    Sometimes the job is held between head stock and tail stock for turning. In that case, they axis must

    coincide with the tail stock centre. If the tail stock guile ways are not parallel wit the carriage

    movement there will be some offset of the tail stock centre results in taper turning To check theparallelism of tail stock guide ways in horizontal and vertical planes, a block placed on the guide

    was as shown in fig (7.7) and the feeler of the indicator is touched on tl horizontal and verticalsurfaces of the block. The dial indicate: is held in the carriage ai carriage is moved. Any error is

    indicated by the pointer of dial indicator.

    4.8 : Movement of upper slide parallel with main spindle in vertical plane: Fig (7.8)

    The dial indicator is fixed in the tool post. A mandrel is fitted in the spindle. The feeler of the dialgauge is pressed against the mandrel in vertical plane and the upper slide is moving longitudinally.

    This error is not tested in horizontal plane because there is swiveled arrangement for taper running.

    4.9 : Parallelism of tail stock sleeve to saddle movement:

    If the tail stock sleeve is not parallel to the saddle movement, the height of dead centre would vary

    as varying lengths of sleeve are taken out. For the jobs held between two centers, it necessary thatthe central axis of the dead centre be coaxial with the job axis in both the plane If it is not so, the job

    may be ti lt ed up or down or in sideways due to the support of the de; centre. The test is carried outby fixing the dial indicator on the tool post and pressing tl plunger against the sleeves first in verticaland then in horizontal plane as shown in fig (7.S The carriage is moved along the full length of thesleeve and the deviations as indicated by di indicator are noted down.

    4.10 : Parallelism of tail stock sleeve taper socket to saddle movement:

    A mandrel is put in the sleeve socket. The dial gauge is on the tool post and plunger is press* against

    the mandrel and saddle is moved from fixed one side to the other. This test is came out in both thehorizontal and vertical planes as shown in fig (7.10).

    4.11 : Alignment of both the centers in vertical plane :

    Besides testing the parallelism of the axes individually (main spindle axis and tail stock axi it isnecessary to check the relative position of the axes also. Both the axes may be parallel carriage

    movement but they may not be coinciding. So when a job is fitted between the centre the axis of thejob will not be parallel to the carriage movement. This test is to be carried out i vertical plane only. A

    mandrel is fitted between the two centres and dial gauge on the carriag The feeler of the dial gaugeis pressed against he mandrel in vertical plane as shown in fi (7.11) and the carriage is moved anderror noted down.

    5. PRECAUTIONS :

    i) The mandrel must be so proportioned that its overhang does not produce appreciable sag,

    else the sag must be calculated and accounted for. ii) The indicator set up must be rigid,otherwise variations in readings as recorded by point may be solely due to deflection of the

    indicator.

    6 REVIEW QUESTI ONS

  • 7/28/2019 65216885-Metro-Logy

    46/55

    45

    a) What is the necessity of conducting various alignment tests on lathe?b) What are the various alignment tests to be conducted on the lathe?c) What is straightness?d) What is flatness?e) What is square ness?f) What is parallelism?g) What do you mean by axial slip of main spindle?h) It is necessary to conduct alignment tests on other machine tools? If so why? Not,

    why not?

  • 7/28/2019 65216885-Metro-Logy

    47/55

    46

    EXPERIMENT - 8

    ALIGNMENT TEST OF VERTICAL MILLING MACHINE1 AIM :

    To perform various alignment tests on vertical knee type milling machine.

    2. MEASURING INSTRUMENTS REQUIRED :

    i) Test mandrels

    ii) Straight edges and squaresiii) Spirit levelsiv) Slip gauges

    3 ALIGNMENT TESTS ON MILLING MACHINE :

    Machine tools are very sensitive to impact or shock, even heavy cast iron standards arenot always solid and rigid enough to withstand stresses due to falling duringtransportation, and deformations may be set up. Although the machine is always carefullyadjusted and aligned in the assembly department of the manufacturer, it is well known fromexperience that erection in the work shop of the user is not always done with sufficient careand thus inaccuracies of the work may result from the faulty erection of the machine. Sothe machine should be carefully leveled up by means of a spirit level before starting withthe actual trial tests. Each trial measurement is based on the correct erection of themachine. No upright, base etc. can be made so rigid that it will be thoroughly free from

    deformation resulting from faulty erection.

    Machine tools in the workshop must be able to produce work pieces of given accuracywithin prescribed limits consistently and without requiring artistic skill on the part of theoperator.

    For acceptance test of a machine, its alignment test is performed and to see its dynamicstability, which may be poor though alignment tests are right, certain specific jobs areprepared and their accuracy checked.

    The relative alignment of all parts of machine and the accuracy of the control devices anddriving mechanisms are measured under no load condition. The results of these

    measurements must lie within the prescribed limits given by the manufacturer dependingupon the grade of the machine tool.

    The various tests performed on the milling machine are as described below.

    3.1 Straightness of the vertical movement of the knee:

    Straightness of the vertical movement of the knee is checked in two planes

    a) In the vertical plane of symmetry of the machine as shown in fig ( 8.1a)b) In the plane perpendicular to the vertical plane of symmetry of the machine as

    shown in fig (8.1b)

  • 7/28/2019 65216885-Metro-Logy

    48/55

    47

    Fig 3 1(a)Fig 8.1.(b)

    Straightness of the Vertical movement of the knee

    ^9 8.2(a) p,-g 8.2(b)

    Straightness of the table surface to column ways for knee

    Square ness of the table surface to the spindle head slide vertical movement

  • 7/28/2019 65216885-Metro-Logy

    49/55

    48

    This test is conducted by arranging the table in its central position, locking table,cross - slide and unlocking the knee. A square with an arm about 300 mm long isfixed on the table surface and the dial gauge is mounted on he fixed part of the

    machine in such a way that the feeler rests on the arm (vertical face)of the squarenear the bottom edge. The dial gauge can also be mounted directly on the spindle, ifthere is a provision of locking the spindle. Then the dial gauge reading is observedby moving the table upwards about 300mm. The difference in readings is the directindication of the error of straightness of the vertical movement of the knee. Thesame procedure is adopted for the measurement in two planes. The permissibledeviation for measurement in both the planes is 0.025 mm for a measuring length of300mm.

    3.2. Squareness of the table surface to the column ways :

    This test is also conducted by the similar arrangements of the table, cross - slide and

    knee. This test also uses the same square with an arm about 300 mm fixed on thetable surface. The dial gauge is either mounted on the fixed part of the machine ordirectly mounted on the spindle, if there is a provision of locking the spindle inposition. The feeler of the dial gauge is made to touch the arm (vertical face) of thesquare approximately at the middle as shown in fig (8.2a & 8.2 b) The dial gaugereading is observed in three positions i.e., middle and near the extremities of thehorizontal travel of the table. The difference in readings is* the direct indication ofthe squareness of the table surface to the column ways for the knee. The permissibledeviation for the measurement in both the planes is 0.025 mm for a measuring lengthof 300mm.

    3.3 Squareness of the table surface to the vertical movement of the spindle

    head slide :

    This test is conducted by arranging the table in its central position, and locking kneeand table. A square with an arm is fixed on the table surface and the dial gauge ismounted on the spindle head slide of the machine in such a way that the feeler restson the vertical face of the square near the bottom edge as shown in fig ( 8.3a & 8.3b). Then the dial gauge reading is observed by moving the spindle head slide upwardsabout 300 mm. The difference in reading is the direct indication of the error ofsquareness of the table surface to the vertical movement of the spindle head slide.The permissible deviation for measurement in both the planes is 0.025mm for ameasuring length of 300mm.

    3.4. Flatness of the table surface: Fig (8.4)

    Flatness of the table surface is checked by precision level or straight edge and slipgauges. This test is conducted by arranging table and cross-slide in its centralposition, locking knee and cross - slide and unlocking the table. Maximumpermissible deviation is 0.05 mm.

  • 7/28/2019 65216885-Metro-Logy

    50/55

    49

  • 7/28/2019 65216885-Metro-Logy

    51/55

    50

    3.5 Parallelism of the table surface to its movement:

    Parallelism of the table surface to its movement in transverse direction andlongitudinal direction is checked by straight edge and dial gauge. The dial gauge ismounted on a fixed part of the machine in such a way that the stylus or the feeler isplaced approximately at the working position of the tool as shown in fig ( 8.5a & 8.5b) parallelism of the table surface to its transverse movement is tested by lockingtable and spindle head slide and parallelism to its longitudinal movement is tested bylocking cross slide and spindle head slide. The deviations from parallelism betweenthe table surface and its movement in both directions are noted down. If the table" isuneven, a straight edge may be placed on the surface.

    3.6 Run-out of the internal taper of the spindle :

    This test is conducted by setting the table in its main position longitudinally and themandrel of 300 mm long is fixed in the spindle taper. A dial gauge is set on themachine table and the feeler is adjusted to touch the surface of the mandrel as shownin fig( 8.6) The mandrel is then turned and the dial gauge readings at two points arenoted i.e., one at the place nearest to spindle nose and other at about 300 mm fromit. There can be two errors. i) Axis of the spindle and the axis of taper may not beparallel, ii) Eccentricity of the taper hole which, if present, should indicate same errorat both the places. The permissible deviation is 0.01-0.02 mm.

    3.7. Squarenessof the spindleaxis to the table surface :

    Squareness of the spindle axis to the table surface is checked in two planes by lockingspindle head slide, table, cross slide and knee. The dial gauge is set on the machinetable. A mandrel 300 mm long is fitted in the spindle taper. The feeler of dialgauges made to touch the surface of the mandrel as shown in fig(8.7 a and 8.7 b).With mandrel in position, the readings at the maximum vertical travel of the tablesurface is observed at two positions. The permissible error for measurement in twoplanes is 0.025 mm for 300mm length.

    3.8 Squareness of the movement of the table transversely to itslongitudinal movement

    This test is conducted by setting the straight edge parallel to the table longitudinalmovement, then the square shall be placed against the straight edge. The table islocked in central position and dial gauge reading is observed. The dial gauge may beplaced on a fixed part of the machine as shown in fig (8.8a & 8.8 b) the permissibledeviation is 0.02 mm for 300 mm length.

    3.9 Practical Test

    Alignment test is performed to see its. dynamic stability, which maybe poor thoughalignment tests are right, certain specific jobs are prepared and their accuracy ischecked.

  • 7/28/2019 65216885-Metro-Logy

    52/55

    51

    The test piece with dimensions shown in fig (8.9) is prepared on the milling machine asdescribed below.

  • 7/28/2019 65216885-Metro-Logy

    53/55

    52

    i) Milling of surface B by automatic longitudinal movement of the table and

    manual vertical movement of the knee, in two cuts overlapping by about 5 to10mm.ii) Milling of strips of surfaces A, B, C and D by automatic longitudinal movement of thetable, automatic vertical movement of the knee and manual transverse movement of the cross -slide.

    All surfaces A, B, C and D are checked for its flatness and perpendicularity with respect toeach other.

    4 PRECAUTIONS:

    i) All moving parts of the machine must be locked while reading the dial gauge,

    ii) If the table surface is uneven, straight edges must be used.

    5 REVIEW QUESTIONS:

    i) Distinguish between geometric tests and practical tests.ii) How will you measure the flatness of the table surface ?iii) What are the various alignment tests conducted on vertical milling machine ?iv) What are the various measuring instruments used in alignment test of a milling machinev) What are the dimensions of a test piece used in practical test ?

  • 7/28/2019 65216885-Metro-Logy

    54/55

    53

  • 7/28/2019 65216885-Metro-Logy

    55/55