33
8/4/2019 6.1 Exponential Functions http://slidepdf.com/reader/full/61-exponential-functions 1/33 Transcendental Functions 6.1 Exponential Functions RA Idoy MATH17

6.1 Exponential Functions

Embed Size (px)

Citation preview

Page 1: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 1/33

Transcendental

Functions6.1 Exponential Functions

RA Idoy

MATH17

Page 2: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 2/33

• Theorems

• Simple interest

• Compound interest

• The number e

• Exponential Function with baseb

• Natural Exponential Function

• Application

Page 3: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 3/33

Theorems

Theorem 1.

If r and s are rational

numbers, then

(i) if b>1, r<s implies br <bs,

(ii)if 0<b<1, r<s implies br>bs 

Page 4: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 4/33

Theorems

Theorem 2.

If a and b are any positive

numbers, and x and y are any

real numbers, then

)

)

)

  x y x y

 x

 x y y

 y  x xy

i a a a

aii aa

iii a a

)

)

 x  x x

 x  x

 x

iv ab a b

a av

b b

Page 5: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 5/33

Simple Interest

Definition:

Simple interest is interest

due only on the original amount

that is borrowed. It is given

by the formula

where

P dollars is the investment, i is the

simple interest rate, n is the years

1  A P Pni P ni

Page 6: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 6/33

Simple Interest

1  A P Pni P ni

Page 7: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 7/33

Simple Interest

Example:

A loan of $500 is made

for a period of 90 daysat a simple interest rate

of 16 percent annually.

Determine the amount tobe repaid at the end of

90 days.

Page 8: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 8/33

Simple Interest

Solution:

Let P = 500, i=0.16, n=90/360

Therefore, the amount to be repaid at

the end of 90 days is $520.

1

1500 1 0.16

4

520

  A P ni

Page 9: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 9/33

Compound Interest

When the interest for each

period is added to the

principal and itself earns

interest, we have compound interest.

1

mt 

i A Pm

Page 10: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 10/33

Compound Interest

Example:

Suppose that $400 isdeposited into a saving account

that pays 8 percent per yearcompounded semiannually. If nowithdrawals and no additionaldeposits are made, what is theamount on deposit at the end of3 years?

Page 11: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 11/33

Compound Interest

Solution: Let P = 400, i=0.08, m=2,

t=3

The amount of deposit at the end of 3

years is therefore $506.13.

2 3

6

1

0.08400 1

2

400 1.04

506.13

mt i

 A Pm

Page 12: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 12/33

Compound Interest

Let P=1,

i=1, and

t=1.

1

11

mt 

m

i A P

m

m

Page 13: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 13/33

The number e

Continuous compound interest

2.7182818e

it   A Pe

Page 14: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 14/33

Exponential Function with

 base b

If b>0 and b≠1, then the

exponential function with base

b is the function f defined by

Note:

x  f x b

  Dom f 

  Rng f 

Page 15: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 15/33

Page 16: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 16/33

 Natural Exponential

Function

The natural exponential function 

is the function f defined by

Note:

x

  f x e

  Dom f 

  Rng f 

Page 17: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 17/33

 Applications

• Exponential Growth

• Exponential Decay

Bounded Growth

Page 18: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 18/33

Exponential Growth

Usually applied to:

Bacteria growth

Population growth

Given by the function:

0kt   f t Be t  

Page 19: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 19/33

Exponential Growth

Graph: 0kt   f t Be t  

B

t

f(t)

Page 20: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 20/33

Exponential Growth

Example: In a particular bacteria

culture, if f(t) bacteria are

present at t minutes, then

where B is a constant. If there are

1500 bacteria present initially,how many bacteria will be present

after 1 hour?

0.04t   f t Be

Page 21: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 21/33

Exponential Growth

Solution:

Given: At time

t=0, f(0)=1500. After one hour… 

0.04

0.04 0

0

0

1500

1500

t   f t Be

  f Be

 Be

 B

0.041500

t   f t e

0.04 60

2.4

60 1500

1500

1500 11.023

16535

 f e

e

Page 22: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 22/33

Exponential Growth

Conclusion:

Therefore, there are 16535

 bacteria present in the culture

after 1 hour.

Page 23: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 23/33

Exponential Decay

Usually applied to:

Radioactivity

Sales

Given by the function:

0kt   f t Be t  

Page 24: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 24/33

Exponential Decay

Graph: 0kt   f t Be t  

B

t

f(t)

Page 25: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 25/33

Exponential Decay

Example: If V(t) dollars is thevalue of a certain piece ofequipment t years after itspurchase, then

where B is a constant. If the

equipment was purchased for$8000, what will be its value in2 years?

0.20t V t Be

Page 26: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 26/33

Exponential Decay

Solution:

Given: At time

t=0, V(0)=8000. After 2 years… 

0.20

0.20 0

0

0

8000

8000

t V t Be

V Be

 Be

 B

0.208000

t V t e

0.20 2

0.4

2 8000

8000

8000 0.670320

5362.56

V e

e

Page 27: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 27/33

Exponential Decay

Conclusion:

Therefore, the value of the

equipment in 2 years will be

$5362.56. 

Page 28: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 28/33

Bounded Growth

Given by the function:

1 0

kt 

  f t A e t  

Page 29: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 29/33

Bounded Growth

Graph:

A

t

f(t)

1 0kt   f t A e t  

Page 30: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 30/33

Bounded Growth

Example: A typical worker at a certainfactory can produce f(t) units perday after t days on the job, where

(a)How many units per day can theworker produce after 7 days on thejob?

(b)How many units per day can theworker eventually be expected toproduce?

0.34

50 1t 

  f t e

Page 31: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 31/33

Bounded Growth

Solution for a:

We wish to find

f(7)

Conclusion:

The worker can

produce 45 units 

per day after 7days on the job.

0.34 7

2.38

7 50 1

50 1

50 1 0.093

45

 f e

e

Page 32: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 32/33

Page 33: 6.1 Exponential Functions

8/4/2019 6.1 Exponential Functions

http://slidepdf.com/reader/full/61-exponential-functions 33/33

Bounded Growth

Bounded growth is also described

by a function defined by

kt 

  f t A Be

0,t A B