34
6: Wireless and Mobile Networks 6-1 Chapter 6 outline 6.1 Introduction Wireless 6.3 IEEE 802.11 wireless LANs (“wi-fi”) 8.8 Securing wireless LANs

6: Wireless and Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 8.8 Securing wireless LANs

  • View
    224

  • Download
    1

Embed Size (px)

Citation preview

6: Wireless and Mobile Networks 6-1

Chapter 6 outline

6.1 Introduction

Wireless 6.3 IEEE 802.11

wireless LANs (“wi-fi”)

8.8 Securing wireless LANs

6: Wireless and Mobile Networks 6-2

Elements of a wireless network

network infrastructure

wireless hosts laptop, PDA, IP phone run applications may be stationary

(non-mobile) or mobile wireless does not

always mean mobility

6: Wireless and Mobile Networks 6-3

Elements of a wireless network

network infrastructure

base station typically connected to

wired network relay - responsible for

sending packets between wired network and wireless host(s) in its “area” e.g., cell towers,

802.11 access points

6: Wireless and Mobile Networks 6-4

Elements of a wireless network

network infrastructure

wireless link typically used to

connect mobile(s) to base station

multiple access protocol coordinates link access

various data rates, transmission distance

6: Wireless and Mobile Networks 6-5

Characteristics of selected wireless link standards

Indoor10-30m

Outdoor50-200m

Mid-rangeoutdoor

200m – 4 Km

Long-rangeoutdoor

5Km – 20 Km

.056

.384

1

4

5-11

54

IS-95, CDMA, GSM 2G

UMTS/WCDMA, CDMA2000 3G

802.15

802.11b

802.11a,g

UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO 3G cellularenhanced

802.16 (WiMAX)

802.11a,g point-to-point

200 802.11n

Dat

a ra

te (

Mbp

s)

data

6: Wireless and Mobile Networks 6-6

Elements of a wireless network

network infrastructure

infrastructure mode base station

connects mobiles into wired network

handoff: mobile changes base station providing connection into wired network

6: Wireless and Mobile Networks 6-7

Elements of a wireless network

ad hoc mode no base stations nodes can only

transmit to other nodes within link coverage

nodes organize themselves into a network: route among themselves

6: Wireless and Mobile Networks 6-8

Wireless network taxonomy

single hop multiple hops

infrastructure(e.g., APs)

noinfrastructure

host connects to base station (WiFi,WiMAX, cellular)

which connects to larger Internet

no base station, noconnection to larger

Internet

host may have torelay through several

wireless nodes to connect to larger Internet: mesh net

no base station, noconnection to larger Internet. May have torelay to reach other a given wireless node

MANET, VANET

6: Wireless and Mobile Networks 6-9

Wireless Link Characteristics (1)

Differences from wired link ….

decreased signal strength: radio signal attenuates as it propagates through matter (path loss)

interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well

multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

…. make communication across (even a point to point) wireless link much more “difficult”

6: Wireless and Mobile Networks 6-10

Wireless Link Characteristics (2) SNR: signal-to-noise ratio

larger SNR – easier to extract signal from noise (a “good thing”)

SNR versus BER (bit error rate) tradeoffs given physical layer:

increase power -> increase SNR->decrease BER

given SNR: choose physical layer that meets BER requirement, giving highest thruput

• SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

10 20 30 40

QAM256 (8 Mbps)

QAM16 (4 Mbps)

BPSK (1 Mbps)

SNR(dB)B

ER

10-1

10-2

10-3

10-5

10-6

10-7

10-4

6: Wireless and Mobile Networks 6-11

Wireless network characteristicsMultiple wireless senders and receivers create

additional problems (beyond multiple access):

AB

C

Hidden terminal problem B, A hear each other B, C hear each other A, C can not hear each

othermeans A, C unaware of their

interference at B

A B C

A’s signalstrength

space

C’s signalstrength

Signal attenuation: B, A hear each other B, C hear each other A, C can not hear each other

interfering at B

6: Wireless and Mobile Networks 6-12

Chapter 6 outline

6.1 Introduction

Wireless 6.3 IEEE 802.11

wireless LANs (“wi-fi”)

8.8 Securing wireless LANs

6: Wireless and Mobile Networks 6-13

802.11 LAN architecture

wireless host communicates with base station base station = access

point (AP) Basic Service Set (BSS)

(aka “cell”) in infrastructure mode contains: wireless hosts access point (AP): base

station ad hoc mode: hosts

only

BSS 1

BSS 2

Internet

hub, switchor routerAP

AP

6: Wireless and Mobile Networks 6-14

802.11: Channels, association 802.11b: 2.4GHz-2.485GHz spectrum divided

into 11 channels at different frequencies AP admin chooses frequency for AP interference possible: channel can be same as

that chosen by neighboring AP! host: must associate with an AP

scans channels, listening for beacon frames containing AP’s name (SSID) and MAC address

selects AP to associate with may perform authentication [Chapter 8] will typically run DHCP to get IP address in

AP’s subnet

6: Wireless and Mobile Networks 6-15

802.11: passive/active scanning

AP 2AP 1

H1

BBS 2BBS 1

122

3 4

Active Scanning: (1) Probe Request frame broadcast

from H1(2) Probes response frame sent from

APs(3) Association Request frame sent:

H1 to selected AP (4) Association Response frame

sent: H1 to selected AP

AP 2AP 1

H1

BBS 2BBS 1

1

23

1

Passive Scanning: (1) beacon frames sent from APs(2) association Request frame sent:

H1 to selected AP (3) association Response frame sent:

H1 to selected AP

6: Wireless and Mobile Networks 6-16

IEEE 802.11: multiple access avoid collisions: 2+ nodes transmitting at same

time 802.11: CSMA - sense before transmitting

don’t collide with ongoing transmission by other node

802.11: no collision detection! difficult to receive (sense collisions) when transmitting

due to weak received signals (fading) can’t sense all collisions in any case: hidden terminal,

fading goal: avoid collisions: CSMA/C(ollision)A(voidance)

AB

CA B C

A’s signalstrength

space

C’s signalstrength

6: Wireless and Mobile Networks 6-17

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender1 if sense channel idle for DIFS then

transmit entire frame (no CD)2 if sense channel busy then

start random backoff timetimer counts down while channel idletransmit when timer expiresif no ACK, increase random backoff

interval, repeat 2

802.11 receiver- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

sender receiver

DIFS

data

SIFS

ACK

6: Wireless and Mobile Networks 6-18

Avoiding collisions (more)

idea: allow sender to “reserve” channel rather than random access of data frames: avoid collisions of long data frames

sender first transmits small request-to-send (RTS) packets to BS using CSMA RTSs may still collide with each other (but they’re

short) BS broadcasts clear-to-send CTS in response to RTS CTS heard by all nodes

sender transmits data frame other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

6: Wireless and Mobile Networks 6-19

Collision Avoidance: RTS-CTS exchange

APA B

time

RTS(A)RTS(B)

RTS(A)

CTS(A) CTS(A)

DATA (A)

ACK(A) ACK(A)

reservation collision

defer

6: Wireless and Mobile Networks 6-20

framecontrol

durationaddress

1address

2address

4address

3payload CRC

2 2 6 6 6 2 6 0 - 2312 4

seqcontrol

802.11 frame: addressing

Address 2: MAC addressof wireless host or AP transmitting this frame

Address 1: MAC addressof wireless host or AP to receive this frame

Address 3: MAC addressof router interface to which AP is attached

Address 4: used only in ad hoc mode

6: Wireless and Mobile Networks 6-21

Internetrouter

AP

H1 R1

AP MAC addr H1 MAC addr R1 MAC addr

address 1 address 2 address 3

802.11 frame

R1 MAC addr H1 MAC addr

dest. address source address

802.3 frame

802.11 frame: addressing

6: Wireless and Mobile Networks 6-22

framecontrol

durationaddress

1address

2address

4address

3payload CRC

2 2 6 6 6 2 6 0 - 2312 4

seqcontrol

TypeFromAP

SubtypeToAP

More frag

WEPMoredata

Powermgt

Retry RsvdProtocolversion

2 2 4 1 1 1 1 1 11 1

802.11 frame: moreduration of reserved transmission time (RTS/CTS)

frame seq #(for RDT)

frame type(RTS, CTS, ACK, data)

6: Wireless and Mobile Networks 6-23

hub or switch

AP 2

AP 1

H1 BBS 2

BBS 1

802.11: mobility within same subnet

router H1 remains in same

IP subnet: IP address can remain same

switch: which AP is associated with H1? self-learning (Ch. 5):

switch will see frame from H1 and “remember” which switch port can be used to reach H1

6: Wireless and Mobile Networks 6-24

Mradius ofcoverage

S

SS

P

P

P

P

M

S

Master device

Slave device

Parked device (inactive)P

802.15: personal area network (WPAN) less than 10 m diameter replacement for cables

(mouse, keyboard, headphones)

ad hoc: no infrastructure master/slaves:

slaves request permission to send (to master)

master grants requests

802.15: evolved from Bluetooth specification 2.4-2.5 GHz radio band up to 721 kbps

6: Wireless and Mobile Networks 6-25

802.16: WiMAX like 802.11 &

cellular: base station model transmissions to/from

base station by hosts with antenna

base station-to-base station with point-to-point antenna

unlike 802.11: range ~ 6 miles (“city

rather than coffee shop”)

~14 Mbps

point-to-multipoint

point-to-point

6: Wireless and Mobile Networks 6-26

Chapter 6 outline

6.1 Introduction

Wireless 6.3 IEEE 802.11

wireless LANs (“wi-fi”)

8.8 Securing wireless LANs

6: Wireless and Mobile Networks 6-27

IEEE 802.11 security

war-driving: drive around Bay area, see what 802.11 networks available? More than 9000 accessible from public

roadways 85% use no encryption/authentication packet-sniffing and various attacks easy!

securing 802.11 encryption, authentication first attempt at 802.11 security: Wired

Equivalent Privacy (WEP): a failure current attempt: 802.11i

6: Wireless and Mobile Networks 6-28

Wired Equivalent Privacy (WEP):

authentication as in protocol ap4.0 host requests authentication from access point access point sends 128 bit nonce host encrypts nonce using shared symmetric

key access point decrypts nonce, authenticates

host no key distribution mechanism authentication: knowing the shared key is enough

6: Wireless and Mobile Networks 6-29

WEP data encryption

host/AP share 40 bit symmetric key (semi-permanent)

host appends 24-bit initialization vector (IV) to create 64-bit key

64 bit key used to generate stream of keys, kiIV

kiIV used to encrypt ith byte, di, in frame:

ci = di XOR kiIV

IV and encrypted bytes, ci sent in frameFundamental problem: ki

IV should never be reused

WEP is based on RC4 that is secure if keys are used just once

6: Wireless and Mobile Networks 6-30

802.11 WEP encryption

IV (per frame)

KS: 40-bit secret

symmetric key k1

IV k2IV k3

IV … kNIV kN+1

IV… kN+1IV

d1 d2 d3 … dN

CRC1 … CRC4

c1 c2 c3 … cN

cN+1 … cN+4

plaintext frame data

plus CRC

key sequence generator ( for given KS, IV)

802.11 header IV

WEP-encrypted data plus CRC

Figure 7.8-new1: 802.11 WEP protocol Sender-side WEP encryption

6: Wireless and Mobile Networks 6-31

Breaking 802.11 WEP encryption

security hole: IV and ki

IV per frame, -> eventually reused IV transmitted in plaintext -> IV reuse detected attack:

Trudy causes Alice to encrypt known plaintext d1 d2 d3 d4 …

Trudy sees: ci = di XOR kiIV

Trudy knows ci di, so can compute kiIV

Trudy knows encrypting key sequence k1IV k2

IV k3IV …

Next time IV is used, Trudy can decrypt!

6: Wireless and Mobile Networks 6-32

802.11i: improved security

numerous (stronger) forms of encryption possible

provides key distribution uses authentication server separate

from access point

6: Wireless and Mobile Networks 6-33

AP: access point AS:Authentication

server

wirednetwork

STA:client station

1 Discovery ofsecurity capabilities

3

STA and AS mutually authenticate, togethergenerate Master Key (MK). AP servers as “pass through”

2

3 STA derivesPairwise Master

Key (PMK)

AS derivessame PMK, sends to AP

4 STA, AP use PMK to derive Temporal Key (TK) used for message

encryption, integrity

802.11i: four phases of operation

6: Wireless and Mobile Networks 6-34

wirednetwork

EAP TLSEAP

EAP over LAN (EAPoL)

IEEE 802.11

RADIUS

UDP/IP

EAP: extensible authentication protocol EAP: end-end client (mobile) to

authentication server protocol EAP sent over separate “links”

mobile-to-AP (EAP over LAN) AP to authentication server (RADIUS over UDP)