20
6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation of Motion and Lagrangian Formalism for Field Operators

6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Embed Size (px)

Citation preview

Page 1: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

6. Second Quantization and Quantum Field Theory

6.0. Preliminary

6.1. The Occupation Number Representation

6.2. Field Operators and Observables

6.3. Equation of Motion and Lagrangian Formalism for Field Operators

Page 2: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

6.0. Preliminary

Systems with variable numbers of particles ~ Second quantization• High energy scattering and decay processes.

• Relativistic systems.

• Many body systems (not necessarily relativistic).

1st quantization:

• Dynamical variables become operators;

• E, L, … take on only discrete values.

2nd quantization:

• Wave functions become field operators.

• Properties described by counting numbers of 1-particle states being occupied.

• Processes described in terms of exchange of real or virtual particles.

For system near ground state:

→ Quasi-particles (fermions) or elementary excitations (bosons).

→ Perturbative approach.

Page 3: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

6.1. The Occupation Number Representation

Many body problem ~ System of N identical particles.

{ | k } = set of complete, orthonormal, 1-particle states that satisfy the BCs.

1 1, ,N Nk k k k is an orthonormal basis.

Uncertainty principle → identical particles are indistinguishable.

→ , , , , , , , ,i j j ik k k k ,i j2 , , , ,i jk k

1 bosons fermions

Bose-Einstein Fermi-Dirac

statisticsintegral half-integral

spin

Spin-statistics theorem: this association is due to causality.

Page 4: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Basis with built-in exchange symmetry:

1 1, ,P

N P P NP

k k C k k bosons fermions

P denotes a permutation 1, , 1, , 1 , ,N P N P P N

1

1P

if P consists of an

even odd

number of transpositions (exchanges)

!

!

jj

n

CN

is orthonormal:

1, , Nk k

1 1 '1 1 ' , , , , ,, , , ,N NN N k k k kk k k k

1 1 ', , , , ,

1

0N Nk k k k

1 1 ', , , ,N Nk k P k k

otherwise

if

With ,

2 states with N N are always orthogonal.

Page 5: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Number Representation: States

Let { | α } be a set of complete, orthonormal 1-P basis.

α = 0,1,2,3,… denotes a set of quantum numbers with increasing E.

E.g., one electron spinless states of H atom: | α = | nlm

| 0 = | 100 , | 1 = | 111 , | 2 = | 110 , | 3 = | 111 , …

Number (n-) representation:

Basis = (symmetrized) eigenstates of number operator

0 1 0 1ˆ , , , , , , , ,n n n n n n n n nα= number of particles in | α

0 0 1 10 1 0 1, , , , , , , , n n n n n nn n n n n n orthonormality

0 1

0 1 0 1, , , ,

, , , , , , , ,n n n

t n n n n n n t

0 1

0 1

0 1 , , , ,, , , ,

, , , , n n nn n n

n tn n

Page 6: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Creation and Annihilation Operators

Conjugate variables in n-rep:

a aannihilation operators creation operators

ˆ ˆ ˆn a a

a

0 1 0 1ˆ , , , , , , , ,n n n n n n n n

0 1 0 1ˆ , , , , , , , 1,a n n n A n n n n

0 1 0 1ˆ , , , , , , , 1,a n n n C n n n n

0 1 0 1, , , , , , , ,n n n n a a n n n

2

0 1 0 1, , , 1, , , , 1,A n n n n n n n 2A n

1C n A n 0 1 0 11 , , , , , , , ,C n A n n n n n n n

Page 7: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

For bosons, nα = 0, 1, 2, 3, …

0 1 0 1ˆ , , , , , , , 1,a n n n A n n n n

0 1 0 1ˆ , , , , , , , 1,a n n n C n n n n

For fermions, nα = 0, 1 → A(0) = 0, C(1) = 0 and 1 = C(0) A(1).

Set: C(0) = A(1) = 1.

0 1 0 1ˆ , , , , , , , 1,S

a n n n n n n n

0 1 0 1ˆ , , , , 1 , , , 1,S

a n n n n n n n

0 11 , , , 1,S

n n n n

0 1, , , 1,S

n n n n

21n A n C n A n A,C real →

0 1, , , 1,n n n n

0 11 , , , 1,n n n n

Completeness of this basis is with respect to the Fock space.

There exists many particle states that cannot be constructed in this manner. E.g., BCS states (Cooper pairs).

1

0

S n

Page 8: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Commutation Relations Exchange symmetries of states Commutation relations between operators

1 0

1 0

1 0

1 0

0 1 1 1 1

1 00 0 0

ˆ ˆ ˆ, , , ,

n n n

n n n

m m m

a a an n n

C m C m C m

0,0, is the “vacuum”.

For fermions, nα = 0, 1 → 1

0

1n

m

C m

α

Fock space

Exchange symmetries are established by requiring , 0ˆ aa

Boson Fermion

,a b ab ba

Commutator

Anti-commutator

,

,

a b

a b

Page 9: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

, 0ˆ aa → ˆ ˆ 0,a a

ˆ ˆ, 1, , 1, , , , ,

1 1 0for

1 1 1

ˆ ˆn n a a n n

n n n n

n n n

a a

ˆ , aa →

Page 10: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Number Representation: Operators

1-P operator : ,A A p x A

A A = matrix elements

a ˆ ˆ ˆA A a a

The vacuum projector confines A to the 1-particle subspace.

i.e., 0A if the number of particles in either or is not one.

Many body version : ˆ ˆ ˆA A a a

Page 11: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

2-Particle Potential

1

1,

2

N

i ji j

V V

x x 1

,N

i ji j

V

x x

Basis vector for the 2-P Hilbert space: 1 21 2 1 2

1 2 2 1

1 22 1

Completeness condition:

1 2 2 1,

I

,

1 2 1 2

1 2 2 1 1 2 2 1

1

2V V

1 2 1 2 1 2 1 2

1

2V

Page 12: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

1 2 1 2 1 2 1 2

1

2V V

1 2 1 2 ˆ ˆa a

1 2 2 1 1 2

ˆ ˆa a

ˆ ˆa a

ˆ ˆ ˆ1

2ˆˆ a a VV a a

*1

3 3 *1 2 2 1 2 12,V d d V x x x x x xx x

confines V to the 2-particle subspace.

Many body version : ˆ ˆˆ1

2ˆˆ a Va aV a

Page 13: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Summary

ˆ ˆ ˆn a a

ˆ ˆ ˆ 0ˆ, ,a aa a

ˆ ~ˆ ,a a

0 1 0 1ˆ , , , , , , , ,n n n n n n n n

0 1 0 1ˆ , , , , , , , 1,S

a n n n n n n n

0 1 0 1ˆ , , , , 1 , , , 1,S

a n n n n n n n

0 0 1 10 1 0 1, , , , , , , , n n n n n nn n n n n n

ˆ ˆ ˆA A a a 1-P operator:

2-P operator: ˆˆ ˆ1

2ˆˆ V a aa aV

1

0

S n

Page 14: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

6.2. Field Operators and Observables

Momentum eigenstaes for spinless particles: p

k

32 k k k k

3

3 12

d k

k k

Orthonormality: Completeness:

x x x x 3 1d r x x

k x x k ie k x

, t t x x

3

32

d kt

x k k

3

32

id ke t

k x k

3

3ˆ0

2ik

e tad

k x k

k k ˆ 0a k ˆ0 a kwhere

Page 15: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

The field operators are defined in the Schrodinger picture by

ˆ a

xx a

x ˆ a xx * a

x

Momentum basis: 3ˆ ˆd k a kx x k

3

2id k

e a

k x k

3 *ˆ ˆd k a kx x k

3

2id k

e a

k x k

Commutation relations :

ˆ ˆ 0ˆ ˆ, , aa

x x x x

ˆ ˆ ˆ 0ˆ, ,a a

x x x x

ˆ ˆ ˆ, , aa

x x x x

x x x x x x

Field Operators

Page 16: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

ˆ ˆ ˆ x x x

3 3ˆ ˆ ˆd x d x x x x

3 3

33 3

ˆ ˆ2 2

i id k d kd x e a e a

k x k xk k

3 33

3 3ˆ 2

2a

d k d ka

k k k k

3

3ˆ ˆ

2a a

d k

k k

3

2

d kn N

k = total number of particles

ρ(x) is the number density operator at x.

3 3

3 3ˆ,

2ˆA A

d ka a

d k

k x p k k k 3 ˆ ˆ,d x A

i

x x x

33 3 331 2 4

3 3 3 1 2 3 4 1 2 4 332 2 2

1ˆ ˆ ˆ ˆ ˆ,2 2

V Vd kd k d k d k

a a a a

k k x x k k k k k k

3 31ˆ ˆ ˆ ˆ,

2d x d x V x x x x x x

Page 17: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

6.3. Equation of Motion & Lagrangian Formalism for Field Operators

Heisenberg picture:

ˆ ˆˆ ˆ, exp expi i

t H t H t

x x

ˆ ˆˆ ˆ, exp expi i

t H t H t

x x

ˆ ˆ ˆ ˆ, , exp , expi i

H t H t H H t

p x p x ˆ ,H p x

Equal time commutation relations:

ˆ ˆ ˆ ˆ, , , , , , 0t t t t x x x x

ˆ ˆ, , ,t t x x x x

23

3 3

2ˆ ˆ ˆ, ,2

1ˆ ˆ ˆ ˆ, , , , ,

2

H d x t tm

d x d x t

U

t V t t

x x

x x x x

x

x x

Page 18: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Equation of Motion ˆˆ ˆ, , ,i t t Ht

x x

,a bc abc bca abc bac bac bca , ,a b c b a c

,ab c abc cab abc acb acb cab , ,a b c a c b

ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

t t t

t t t t t t

x x x

x x x x x x

ˆ , t x x x

ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

t t t

t t t t t t

x x x

x x x x x x

ˆ ˆ, ,t t x x x x x x

2

32ˆ ˆ ˆ ˆ ˆ, , , , , ,2

i t t d x t tt m

U t V x x x x xx x x

Page 19: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Lagrangian

32

2* , ,2

S dt d x t Ui tt m

x x 3dt d x L

is complex → it represents 2 degrees of freedom ( Re , Im ) or ( , * ).

Variation on * :

0

*t

L

0*j

L 2

2

* 2U

t mi

L

0* * *t j

t j

L L L

E-L eq:

→2

2

2U

t mi

Schrodinger equation

Page 20: 6. Second Quantization and Quantum Field Theory 6.0. Preliminary 6.1. The Occupation Number Representation 6.2. Field Operators and Observables 6.3. Equation

Variation on :

*

t

i

L

2

*2 j

j m

L*U

L

→2

2 **

2U

t mi

integration by part

Generalized momentum conjugate to = *

t

i

L

Hamiltonian density t H L

22*

2U

m

32

2*2

Um

H d x

Quantization rule: ˆˆ , , ,t t i x x x x

Quantum field theory

~ Classical field