11
6. COMPRESSIBLE FLOW 6. COMPRESSIBLE FLOW 6. COMPRESSIBLE FLOW Review of thermodynamics Equation of state Where is constant for each gas  is univ ers al ga s constant , 8314 . / (1544 . / . ) and is molecula u m u u m  pv RT   R  R  R M  R R N m kgmole  ft lbf lbmole R M  = = = r mass of the gas. The ideal gas, the internal energy of a substance may expressed as ( , ) then  The specific heat at constant volume is defined as v T v u u v T  u u du dT dv T v u c T = = +   so that  for the ideal gas ( ) con seque ntly  v v T v u du c dT dv v u u T du c dT      = + = =

6. Kompresible_1

Embed Size (px)

Citation preview

Page 1: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 1/11

6. COMPRESSIBLE FLOW6. COMPRESSIBLE FLOW6. COMPRESSIBLE FLOW

Review of thermodynamics

Equation of state

Where is constant for each gas

 

is universal gas constant, 8314 . /

(1544 . / . ) and is molecula

u

m

u u

m

  pv RT  

 R

 R R

  R R N m kgmole

  ft lbf lbmole R M  

=

=

=

r mass of the gas.

The ideal gas, the internal energy of a substance may expressed

as ( , ) then

 

The specific heat at constant volume is defined as

v T 

v

u u v T  

u udu dT dvT v

uc

=

∂ ∂ = + ∂ ∂

∂ ≡∂ 

so that

 

for the ideal gas ( ) consequently

 

v

v

v

udu c dT dv

v

u u T 

du c dT  

 

 

∂ = + ∂ =

=

Page 2: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 2/11

( )

The enthalpy of a substance is defined as

for an ideal gas and hence

We express in its most general form as

,

thenv T 

h u pv

  p RT h u RT  

h

h h p T  

h hdh dT dpT p

 ρ 

= +

= = +

=

∂ ∂ = + ∂ ∂

 

for an ideal gas

 

The specific heats for an ideal gas have been shown to be function

of T only.

 

 P 

 P 

hdh c dT dp

 p

dh c dT  

h u RT  

dh du

∂= + ∂

=

= +

= +

.

then

The ratio of specific heat is defined as

 

 P v

 P v

 P 

v

 RdT 

c dT c dT R dT  

c c R

ck 

c

= += +

=

2 2

1 1

2 2

1 1

2 1 2 1

2 1 2 1

For an ideal gas, the specific heats are functions of temperature.

( )

( )

u T 

v v

u T 

h T 

 P P 

h T 

u u du c dT c T T  

h h dh c dT c T T  

− = = = −

− = = = −

∫ ∫ 

∫ ∫ 

Page 3: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 3/11

2 2

2 1 2 12 1 2 1

2 1

The first law thermodynamics

2 2 s

  p p v vq w u u gz gz   ρ ρ 

− = − + − + − + −

T

s

qin

qout

1

23

4

elirreversib prosesT

dqss

reversibel prosesT

dqss

2

1

rev12

2

1

rev12

∫ >−

∫ =−

1

2

1

2v12

1

2

1

2 p12

lnR T

Tlncss

 p plnR 

TTlncss

ρρ

−=−

−=−

Page 4: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 4/11

12 2 2

1 1 1

1

12 2

1 1

2 2

1 1

Equation isentropic prosessconstant

 pc k 

 R k 

  p T T  

  p T T  

 p

 p

 pv

 ρ 

 ρ 

 ρ 

 ρ 

= =

=

=

=

T1

= 440 oK

p1

= 188 kPa

v1

= 210 m/s

= 0,15 kg/s

0Q <

24

311

1

3

25

1

11

21222111

222111

VA

m10.79,4

sm210.

m

kg49,1

skg

15,0

V

mA

m

kg49,1

K 440.kgK 

 Nm287

m

 N10x88,1

RT

 p

AAA;AVAVm

0AVAV

0Ad.VdVt

−==ρ

=

===ρ

==ρ=ρ=

=ρ+ρ−

=ρ+ρ∂∂

∫ ∫ 

kgK 

kJ282,0

10.88,1

10.13,2ln

kgK 

kJ287,0

440

351ln

kgK 

kJ1

 p

 plnR 

T

Tlncss

5

5

1

2

1

2 p12 −=−=−=−

Page 5: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 5/11

=

3

5

1

o

K

p

2

=

2

1

3

k

P

a

kg

kJ89K )440351(

kgK 

kJ1)TT(cdTchhh

2

1

T

T12 p p12 −=−∫  =−==−=∆

∫  −=−=−==−=∆2

1

T

T

12vv12kg

kJ8,63)440351(

kg

kJ717,0)TT(cdTcuuu

kgK 

kJ282,0

10.88,1

10.13,2ln

kgK 

kJ287,0

440

351ln

kgK 

kJ1

 p

 plnR 

T

Tlncss

5

5

1

2

1

2 p12 −=−=−=−

Propagation of soundwaves

x

c

ρ+dρp+dp

dVx

ρp

Vx=0

y

x

ρ+dρc-dVx

p+dp

ρc

p

Page 6: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 6/11

a. Continuity Equation

. 0

Assumption : 1) Steady Flow

2) Uniform Flow at each section

then

( )( ) 0

0

neglecting the prod

CV CS  

 x

 x x

dV v dA

cA d c dV A

or 

cA cA dV A d cA d dV A

 ρ ρ 

  ρ ρ ρ  

  ρ ρ ρ ρ ρ  

∂+ =

− + + − =

− + − + − =

∫ ∫ 

uct of differentials

0 x  AdV cAd  ρ ρ − + =

 b. Momentum Equation

.

Assumption : 3. 0

4. = 0

The surface forces acting pn the infinitesimal CV are

- ( )

wher 

 x

 x

Sx Bx rfx x x xyz  

cv

 B

rfx

S x

  F F a dV V dV V V dAt 

 F 

a

  F dR pA p dp A

  ρ ρ ρ  ∂

+ − = +∂

=

= + +

∫ ∫ ∫ 

e represents all forces applied to the horizontal portion of CS,

Consider only a portion of moving sound wave, 0

-

substituting into the basic equation

 x

 x

 x

dR

dR

  F Adp

=

=

{ } { }{ }

{ } { }{ }

gives

- - ( ) ( )( )

using the continuity equation, reduces this to

- - ( )

-

or 

 x x

 x

 x

 x

  Adp c cA c dV d c dV A

  Adp c cA c dV cA

  Adp cAdV  

dV d c

  ρ ρ ρ  

 ρ ρ 

 ρ 

 ρ  ρ 

= + − + −

= + −

=

=

Page 7: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 7/11

2

combining continuity and momentum

1 x

cdV dp d  

c

dpcd 

 pc

 ρ  ρ ρ 

 ρ 

 ρ 

= =

=

∂=

c kRT  =

For an ideal gas, the pressure and density in isentropic

Flow are related by .

ln ln ln .

0

 pcons

  p k cons

dp d k 

 p

 p pk kRT  

 ρ 

 ρ 

 ρ 

 ρ 

 ρ ρ 

=

− =

− =

∂= =

v=0

v=0

c.2∆t

c.3∆t

v<c

c.2∆t

c.∆t

12

3

123

v=c v>c

1

23

α

1

The cone angle can be related to the Mach number 

at which the source moves

1sin

or 

1sin

c

V M 

α 

α  −

= =

=

Page 8: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 8/11

dx

Rxu

x

Stream line

V = 0

p = po

T = To

ρ + dρVx+dVx

A+dA

p+dp

T+dT

1

a. Continuity equation

. 0

Assumptions : 1). Steady Flow

2). Uniform flow at each solution

( )( )( )

VA VA

  x x x

dV v dAt 

V A d V dV A dA

 ρ ρ 

  ρ ρ ρ  

∂+ =

= + + +

∫ ∫ 

Momentum Equation

.

Assumptions : 3) 04) 0

5) Frictionless

 x

 x

  s Bx rfx x x xyz  

 B

rf  

  F F a dV V dV V V dAt 

 F a

  ρ ρ ρ  ∂

+ + = +∂

==

∫ ∫ ∫ 

2

( ) 02 xdp V 

d  ρ 

+ =

The average pressure and the area component in direction x

( ) ( )( )2

 sx

dp  F p dA pA p dp A dA dpA= + + − + + = −

substituting into the Momentum Equation,

( ) ( )( )( )( )  x x x x x xdpA V V A V dV d V dV A dA  ρ ρ ρ  − = − + + + + +

2

obtain

( )

2

 x x x

V dp V dV d   ρ ρ = − = −

1 12

For an ideal gas became

2k k 

v dpd p C dp

 ρ 

− − = = −

o p

 p

1k 

k /12

 p1k 

k C

2

v

−=

−1

211

2

o k v

  p k p

 ρ −

−= +

Page 9: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 9/11

12

2

1

12

The isentropic stagnation properties of 

an ideal gas as follows

11

2

11

2

11

2

k o

o

k o

 p k M 

 p

T k M 

k M 

 ρ 

 ρ 

− = + −

= +

− = +

1 2

p1 = 350 kPa

T1 = 60oC

V1 = 183 m/s

p02 = 385 kPa

T02 = 350K

M2 = 1,3

s

m366K )60273(kgK 

 Nm287x4,1kRTC 11 =+==

5,0366

183

C

VM

1

11 ===

186,1M2

1k 1

 p

 p 1k 

21

1

1o =

+=−

Page 10: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 10/11

338,1M2

1k 1

T

T

kPa139kPa77,2

385

77,2

 p p

77,2M2

1k 1

 p

 p

K 350T05,1T

05,1M2

1k 1

T

T

22

2

2o

2o2

1k 

22

2

2o

11o

21

1

1o

=−

+=

===

=

+=

==

=−

+=

K 262338,1

K 350

338,1

TT 2o

2 ===

T

∆s

po2po1

p1

T1

p2

T2

To1 = To2 =350K

s

kgK 

kJ0252,0

50,3

39,1ln

kgK 

kJ287,0

333

262ln

kgK 

kJ1

 p

 plnR 

T

TlnCss

1

2

1

2 p12 =−=−=−

577,12

1k 1

2,12

1k 1

T

T

4,1k ;893,12

1k 1

 p

 p

1k 

1

*

*o

*

*o

1k 

*

*o

=

+=ρ

ρ

=−

+=

==

+=

Page 11: 6. Kompresible_1

8/6/2019 6. Kompresible_1

http://slidepdf.com/reader/full/6-kompresible1 11/11

* *

*1

*

*

*

1*

1

*

* *

** *

* *

Critical Condition M=1 or V

11 1,893 ; 1,4

2

11 1,2

2

11 1,577

2

 

2

  1 112

1

k o

o

k o

o

o

c

 p k k 

 p

T k 

c kRT  

T T k  k 

k v c RT  

 ρ 

 ρ 

=

− = + = =

−= + =

− = + =

=

= =− ++

= =+

*

o