38
www.compphys.cn South China University of Technology www.compphys.cn Structural Relaxation Xiaobao Yang Department of Physics http://www.compphys.cn/~xbyang/lectures.ht

6-DFT-StructrualStability

Embed Size (px)

DESCRIPTION

no se que es esto pero parece bacano por eso lo estoy subiendo

Citation preview

N18

South China University of Technologywww.compphys.cnStructural RelaxationXiaobao Yang

Department of Physicshttp://www.compphys.cn/~xbyang/lectures.html

www.compphys.cn1.Schrdinger Equation

www.compphys.cn

www.compphys.cn

www.compphys.cn

www.compphys.cn

INCAR POTCARKPOINTS POSCARINCAR

ENCUT = 700ISMEAR = 0SIGMA =0.2NSW = 0EDIFF = 0.001

POTCAR

PAW_PBE H 15Jun2001 1.00000000000000000 parameters from PSCTR are: VRHFIN =H: ultrasoft test LEXCH = PE EATOM = 12.4884 eV, .9179 RyKPOINTS

Automatic mesh0 ! number of k-points = 0 ->automatic generation scheme Monkhorst-Pack ! select Monkhorst-Pack (first letter is significant)1 1 1 ! size of mesh (4x4x4 points along b1, b2, b3)0. 0. 0. ! shift of the k-mesh

POSCAR

H2 1.0 12 0 0 0 12 0 0 0 12 2Cart0 0 00 0 0.75

www.compphys.cn running on 2 nodes distr: one band on 1 nodes, 2 groups vasp.4.6.31 08Feb07 complex POSCAR found : 1 types and 2 ions LDA part: xc-table for Pade appr. of Perdew POSCAR, INCAR and KPOINTS ok, starting setup WARNING: wrap around errors must be expected FFT: planning ... 1 reading WAVECAR WARNING: random wavefunctions but no delay for mixing, default for NELMDL entering main loop N E dE d eps ncg rms rms(c)DAV: 1 -0.469211785182E+01 -0.46921E+01 -0.23142E+02 12 0.981E+01DAV: 2 -0.738346878115E+01 -0.26914E+01 -0.26914E+01 12 0.252E+01DAV: 3 -0.741841946701E+01 -0.34951E-01 -0.34951E-01 18 0.423E+00DAV: 4 -0.741843794358E+01 -0.18477E-04 -0.18477E-04 12 0.955E-02DAV: 5 -0.741843809963E+01 -0.15606E-06 -0.15606E-06 18 0.878E-03 0.436E+00DAV: 6 -0.698113710837E+01 0.43730E+00 -0.22006E-01 12 0.179E+00 0.237E+00DAV: 7 -0.674222335613E+01 0.23891E+00 -0.52473E-01 24 0.281E+00 0.269E-01DAV: 8 -0.674568380323E+01 -0.34604E-02 -0.54198E-03 12 0.257E-01 0.257E-01DAV: 9 -0.674122836271E+01 0.44554E-02 -0.74399E-03 12 0.325E-01 0.324E-02DAV: 10 -0.674397109933E+01 -0.27427E-02 -0.55758E-04 12 0.997E-02 0.187E-02DAV: 11 -0.674418356913E+01 -0.21247E-03 -0.58782E-05 18 0.303E-02 1 F= -.67441836E+01 E0= -.67441836E+01 d E =-.241108E-10 writing wavefunctions

www.compphys.cn

Test everything to ensure convergence

cluster, nanowire, thin film

www.compphys.cnfor i in 250 350 450 500 dofor j in 8 10 12 15 20docat >INCAR "$PBS_JOBID".out.$i.$jrm WAVECAR CHG CHGCARdonedone

for j in 250 300 350 400 450 500 600 700 docat >INCAR "$PBS_JOBID".out.$j.$irm WAVECAR CHG CHGCARdonedone

www.compphys.cnHow to move atoms?

Energy is minimum.The gradient is zero.

www.compphys.cnOptimization and Curse of Dimensionality

www.compphys.cnQuasi-Newton method

www.compphys.cnQuasi-Newton method in VASP

www.compphys.cnQuasi-Newton method in VASP

www.compphys.cnSteepest descent method

www.compphys.cn

Searching directionOptimized stepNew start point

www.compphys.cn

Optimized stepNew start pointNew start pointSearching directionStop searching

www.compphys.cn

f(x) = 1/2 (x - x*)TA(x - x*) , Annx*f(x) 1/2 (x - x*)TA(x - x*) = c x*.

f(x*) = A(x - x*) = 0Ax*f(x)x(1)x(1)f(x(1)) = A(x(1) - x*)

d(1)x(1), d(1)f(x(1))d(1)Tf(x(1)) = 0; , d(2) = x* - x(1), d(1)TAd(2) = 0

A

www.compphys.cnConjugate Gradient method

Steepest descent method

Conjugate Gradient

www.compphys.cn

www.compphys.cnStructural relaxationTo obtain the ground state relaxed geometry of the system.

the equilibrium lattice constants

a given ionic configuration the forces obtained

these forces are greater than some minimum tolerance

the ions are moved in the direction of the forces

www.compphys.cnIBRION-tag in VASP0 Standard ab-initio molecular dynamics A Verlet algorithm is used to integrate Newton's equations of motion. POTIM supplies the timestep in femto seconds. 1 A quasi-Newton algorithm is used to relax the ions into their instantaneous ground state.2 A conjugate-gradient algorithmi)In the first step ions :the direction of the steepest descent. The energy and the forces are recalculated. ii) Interpolation of the change of the total energy and of the forces, then a corrector step. iii) After the corrector step the forces and energy are recalculated and it is checked whether the forces contain a significant component parallel to the previous search direction.1 initial position 2 trial step 3 corrector step, i.e. positions corresponding to anticipated minimum 4 trial step 5 corrector step

www.compphys.cnISIF-tag in VASP

www.compphys.cnRelaxation with VASP

www.compphys.cnEnergies vs. Forces

H2 molecularC-2.629 3.681 0.018 C-1.415 2.939 0.026 C-1.493 1.580 0.024 C-2.618 0.818 -0.011 C-3.851 1.541 0.016 C-3.904 2.981 -0.033 H-2.682 4.664 0.020 H-0.585 3.486 -0.047 H-0.544 1.065 -0.022 H-2.613 -0.192 -0.045 H-4.764 1.084 -0.040 H-4.683 3.483 0.032

C6H6 molecular

www.compphys.cn

www.compphys.cnAWK and VASP aa=`awk '$2 == "TOTAL-FORCE" {print NR}' OUTCAR` a=`expr $aa + 1` bb=`expr $aa + $num + 2` awk 'NR > a && NR < bb {print $4,$5,$6}' a=$a bb=$bb OUTCAR >force.1 paste site.1 velocity.1 force.1 >all.1 awk '{print $1+$4*h+$7*h*h/2/m*0.0096,$2+$5*h+$8*h*h/2/m*0.0096,$3+$6*h+$9*h*h/2/m*0.0096}' h=$dt m=$mass all.1>site.2

paste velocity.1 force.1 force.2 >all.2 awk '{print $1+$4*h/2/m*0.0096+$7*h/2/m*0.0096,$2+$5*h/2/m*0.0096+$8*h/2/m*0.0096,$3+$6*h/2/m*0.0096+$9*h/2/m*0.0096}' h=$dt m=$mass all.2>velocity.2

www.compphys.cnReview of QN,SD and CG

Steepest descent methodConjugate Gradient

www.compphys.cnPeriodical structures

three lines the three lattice vectors defining the unit cell of the system are given (first line corresponding to the first lattice vector, second to the second, and third to the third

Latticeofgraphene & latticeofgrapheneD

www.compphys.cnK-mesh -- Monkhorst-PackSpecial points for Brillonin-zone integrations, PRB, 13,5188(1976)

q q k-sampling to define the Fermi surface precisely

www.compphys.cnKPOINTS testAutomatic mesh0 ! number of k-points = 0 ->automatic generation scheme Monkhorst-Pack ! select Monkhorst-Pack (first letter is significant)Gamma5 5 1 ! size of mesh (4x4x4 points along b1, b2, b3)4 4 10. 0. 0. ! shift of the k-mesh

KPOINTS & IBZKPT

www.compphys.cn

LREAL.FALSE. projection done in reciprocal space .TRUE. projection done in real space, This expression can be evaluated in reciprocal or real space:

In reciprocal space the number of operations scales with the size of the basis set (i.e. number of plane-waves).

In real space, the projection-operators are confined to spheres around each atom. Therefore the number of operations necessary to evaluate one does not increase with the system size (usually the number of grid points within the cut-off-sphere is between 500 and 2000).

The number of atom