12
 Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us  IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 2, Issue 7, Jul 2014, 35-46 © Impact Journals DISCRETE QUARTIC SPLINE INTERPOLATION Y. P. DUBEY & K. K. NIGAM Department of Mathematics, L. N. C. T, Jabalpur, Madhya Pradesh, India ABSTRACT In this paper, we have obtained existence, uniqueness and error bounds for deficient discrete quartic spline interpolation. KEYWORDS: Deficient, Discrete, Quartic Spline, Interpolation, Error Bounds Subject Classification Code: 41AO5, 65DO7 1. INTRODUCTION Let us consider a mesh on [0, 1] which is define b y 1 ...... 0 1 0  = < < < = n  x  x  x  with i i i  P  x  x  = 1  for i = 1,2,....n. and h > 0, will be a real number, consider a real continuous function s(x,h) defined over [0, 1] which is such that its restriction i  x  x on s i i , 1  is a polynomial of degree 4 or less for i = 1, 2,....n. Then s(x, h) defines a discrete quartic spline if ( ) ( ) 1 , 0 , , 1 } { } 1 { = = +  j h  x s  D h  x s  D i i  j h i i h  (1.1) Where the difference operator h  D  are defined as ) ( ) ( } 0 {  x  f  x  f  D h  =  ( ) h  x  f h  x  f  x  f  D h ) ( ) ) ( } 1 {  + =  ( ) h h  x  f  x  f h  x  f  x  f  D h 2 ) ( ) ( 2 ) ) ( } 2 {  + + =  Let ) , , 1 , 4 (  h  D   is the class of deficient discrete quartic spline interpolation of deficiency one, where in ) , , 1 , 4 ( *  h  D   denotes the class of all discrete deficient quartic splines which satisfies the boundary condition ) , ( ) , ( 0 0  h  x  f h  x s  =  ) , ( ) , (  h  x  f h  x s n n  =  (1.2)

6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

Embed Size (px)

DESCRIPTION

In this paper, we have obtained existence, uniqueness and error bounds for deficient discrete quartic spline interpolation.

Citation preview

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    IMPACT: International Journal of Research in Applied,

    Natural and Social Sciences (IMPACT: IJRANSS)

    ISSN(E): 2321-8851; ISSN(P): 2347-4580

    Vol. 2, Issue 7, Jul 2014, 35-46

    Impact Journals

    DISCRETE QUARTIC SPLINE INTERPOLATION

    Y. P. DUBEY & K. K. NIGAM

    Department of Mathematics, L. N. C. T, Jabalpur, Madhya Pradesh, India

    ABSTRACT

    In this paper, we have obtained existence, uniqueness and error bounds for deficient discrete quartic spline

    interpolation.

    KEYWORDS:Deficient, Discrete, Quartic Spline, Interpolation, Error Bounds

    Subject Classification Code:41AO5, 65DO7

    1. INTRODUCTION

    Let us consider a mesh on [0, 1] which is define by

    1......0 10 =

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    36 Y. P. Dubey & K. K. Nigam

    Index Copernicus Value: 3.0 - Articles can be sent to [email protected]

    Mangasarian and Schumaker [6, 7] introduced discrete quartic splines to find minimization problem. Existence,

    uniqueness and convergence properties of discrete cubic spline interpolation matching the given function at mesh point

    have been studied by Lyche [4, 5] which have been generalized by Dikshit and Power [1] (see also Dikshit and Rana [2]).

    It has been by Baneva, Kendall and Stefanov [3] that the local behaviour of the derivative of a cubic spline interpolator issome times used to smooth a histogram which has been estimated in [8], Rana [8] has obtained a precise estimate

    concerning the discrete cubic spline interpolating the given function at the mesh points (See also [9], [10]). In the present

    paper we obtain a similar precise estimate concerning the deficient quartic spline interpolant matching the given function at

    two intermediate points between successive mesh points and first difference of interior points of interval [0, 1].

    2. EXISTENCE AND UNIQUENESS

    We introduced the following interpolating conditions for a given function f.

    )()( ii fs = (2.1)

    )()( ii fs = (2.2)

    )()( }1{}1{ihih

    fDsD = (2.3)

    Whereiiii Px =+=

    3

    11 , for i = 1, 2,....n.

    ii Px2

    111 +=

    we shall prove the following.

    Theorem 2.1

    Let f be a 1-periodic, then for any h>0 then these exist a unique 1-periodic deficient discrete quartic spline s in the

    class ),,1,4(* hD which satisfies interpolatory condition (2.1) - (2.3).

    Proof

    Let P(z) be a quartic polynomial on [0, 1], then we can show that

    )()1()()0()(3

    1)(

    2

    1)(.

    3

    1)( 543

    }1{

    21 zqPzqPzqPDzqPzqPzP h ++

    +

    +

    = (2.4)

    Where

    ( )

    +

    ++

    +

    +

    =

    2

    4223222

    1

    3

    1

    81

    2

    ]183246

    29

    2

    92

    2

    3

    6

    1

    )(

    h

    zhhzzhzh

    zq

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Discrete Quartic Spline Interpolation 37

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    ++

    +

    +

    +

    =

    2

    242322

    2

    3

    1

    81

    2

    169

    32

    3

    64

    27

    160

    3

    16

    81

    224

    81

    32

    )(

    h

    hzhzzhz

    zq

    ++

    =

    2

    432

    3

    3

    1

    81

    2

    3

    2

    9

    11

    3

    2

    9

    1

    )(

    h

    zzzz

    zq

    ++

    +

    ++

    ++

    =

    3812

    49

    4

    3

    16

    27

    26

    381

    58

    3

    4

    27

    21

    )(2

    423222

    2

    4

    h

    zhzhzh

    zh

    zq

    +

    ++

    +

    +

    =

    381

    2

    29

    1

    3

    8

    54

    7

    6

    7

    162

    8

    6

    1

    162

    1

    )(2

    4232222

    5h

    zhzhzhzh

    zq

    Denoting 10,

    = t

    p

    xxt

    i

    i, we can expressed (2.4) in the form of restriction ),( hxsi of the deficient discrete

    quartic spline s(x, h) on [ ]11, + ii xx as follows :-

    ( ) )()()()()(),( 3}1{

    21 xqDPxqfxqfhxs ihiii ++=

    ( ) )()()( 514 xqxsxqxs ii +++ (2.5)

    Observing (2.5) it may easily be verify that ),( hxsi is a quartic on [ ]1, +ii xx for i=0, 1,...., n-1 satisfying

    (2.1) - (2.3) and writing2),( bhabaH += , for real a, b we shall apply continuity of the first difference of ),( hxs at

    ix in (2.5) to see that

    ]

    +

    1

    22

    1

    3

    13

    32,

    189

    23262,

    81

    92ii

    shHPHP

    [

    +

    +

    22

    1

    3

    3

    16,

    54

    17

    6

    13,

    27

    4hHPHP

    ii

    iii shHPHP

    +

    223

    1 3

    16

    ,27

    26

    3

    4

    ,9

    2

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    38 Y. P. Dubey & K. K. Nigam

    Index Copernicus Value: 3.0 - Articles can be sent to [email protected]

    1

    223

    13

    8,

    54

    7

    6

    1,

    162

    1+

    +

    + iii shHPHP (2.6)

    iF=

    i = 1, 2,.....n-1.

    Where

    +

    =

    222

    1

    3

    1 486

    56959,

    6

    37hHhPHPF ii

    ( )

    +

    223

    11 24,6

    29

    2

    3,

    6

    1hHPHPf iii

    ( ) }

    +

    +

    22

    1

    3

    3

    128,

    27

    224

    9

    736,

    81

    128hHPHPf iii

    ( ) ( )

    +

    22

    13

    64,

    27

    1600,

    81

    32hHPHff iii

    ( ) ]9

    11,

    9

    1)(

    9

    13,

    9

    2 31

    }1{

    1

    }1{

    1

    3

    +

    +

    HPPfDfDHPP iiihihii

    Existence, uniqueness of s(x, h) depend on the existence of a unique solution of set of equation (2.6). It is easy to

    observe that in (2.6) absolute value of the coefficient of sidominates over the sum of the absolute values of the coefficient

    of 1+is and 1is i.e. is positive.

    +

    =

    22

    13

    16,

    126

    1511

    6

    1,

    81

    80),( hHPHhPT ii

    +

    +

    22

    3

    8,

    54

    45

    6

    7,

    162

    35hHPH i

    Thus the coefficient matrix of equation (2.6) is diagonally dominant and hence invertible.

    Remark: In the case 0h theorem 2.1 gives the corresponding result for continuous quartic spline

    interpolation under condition (2.1) - (2.3).

    3. ERROR BOUNDS

    Now system of equation (2.8) may be written as

    FhMhA =)()(

    Where A(h) is coefficient matrix and )()( hshM i= . However, as already shown in the proof of theorem 2.1.

    A(h) is invertible. Denoting the inverse of A(h) by A-1

    (h) we note that row max norm A-1

    (h) satisfies the following

    inequality :-

    )(||)(|| 1 hyhA (3.1)

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Discrete Quartic Spline Interpolation 39

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    Where { } 1)(max)( = hThy i . For convenience we assure in this section that 1 = Nh when N is positive integer.

    It is also assume that the mesh points }{ix are such that hix ]1,0[ for i = 0, 1.....n. Where discrete interval [ ]h1,0 is the

    set of points { }Nhh......,0 for a function fand two distinct points 21,xx in it domain the first difference is defined by

    [ ] [ ]

    21

    2121

    )()(,

    xx

    xfxfxx

    f

    = (3.2)

    For convenience, we write)1(f for fDh

    }1{and ),( pfw for modules of continuity of f, the discrete norms of a

    functionfover the interval [0, 1]his defined by

    |)(|max||||]1,0[

    xffhx

    = (3.3)

    We shall obtain in the following the bound of error function )(),()( xfhxsxe = over the discrete

    intervalh]1,0[ .

    Theorem 3.1

    Suppose ),( hxs is the discrete quartic spline interpolant of Theorem 2.1. Then

    ),(),(||)(|| pfwhPkxe (3.4)

    ),(),(*)(||)(|| pfwhPKhyxe i (3.5)

    ),(),(||)(|| 1)1( pfwhPKxe (3.6)

    Where K (p, h), K*(P,h) and ),(1 hPK are some positive functions of p and h.

    Proof

    Writing ii fxf =)( equation 3.1 may be written as

    ( ) )()()()()(.)( fLfhAhFxehA iiii == (Say) (3.7)

    When we replace )(hsi by iiii fhxsxe = ),()( (3.8)

    We need the following Lemma due to Lyche [4, 5], to estimate inequality (3.5).

    Lemma 3.1

    Let { }mii

    a1=and { }n

    jjb

    1=be given sequence of non negative real numbers such that

    ==

    =

    n

    j

    j

    m

    i

    i ba11

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    40 Y. P. Dubey & K. K. Nigam

    Index Copernicus Value: 3.0 - Articles can be sent to [email protected]

    Then for any real valued function f, defined on discrete interval [0, 1]h, we have

    [ ] [ ] = =

    m

    i

    n

    j

    jjijfieei fyyybxxna

    kk

    1 1

    .....,,.......,1010

    ( )!

    |1|,)(

    K

    aKhfw

    ik (3.9)

    Where hjj kkyx ]1,0[, for relevant value of i, j and k. We can write the equation (3.9) is of the form of error

    function as follows

    +

    1

    22

    1

    3

    13

    32,

    189

    23262,

    8

    92ii ehHPHP

    +

    +

    22

    1

    3

    13

    16,

    54

    17

    6

    13,

    27

    4hHPHP i

    iii ehHPHP

    +

    223

    13

    16,

    27

    26

    3

    4,

    9

    2

    1

    223

    13

    8,

    54

    7

    6

    1,

    162

    1+

    +

    + iii ehHPHP )(fRi=

    Where 122

    1

    3

    3

    32

    189

    23262,

    81

    92)(

    +

    = iiiii fhHPHPFfR

    +

    22

    1

    3

    3

    16,

    54

    17

    6

    13,

    27

    4hHPHP ii

    iii fhHPHP

    223

    13

    16,

    27

    26

    3

    4,

    9

    2

    1

    223

    13

    8,

    54

    7

    6

    1,

    162

    1+

    +

    iii fhHPHP (3.10)

    Writing equation (3.9) is the form of divided different and using Lemma 3.1 given by Lyche [5]

    [ [ ]

    +

    =

    8,

    36

    43

    4

    7,

    9

    2,)( 221111

    3HhPHPPfR ifiiiii

    [ ] [ ]

    +

    12

    1,

    81

    10,,

    3

    1,

    81

    1111

    33

    1

    3HxPPPPxH

    fiiiiiiii i

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Discrete Quartic Spline Interpolation 41

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    [ ] 1322

    11

    22

    13

    32,

    27

    222,

    81

    8,

    3

    8,

    108

    61

    +

    +

    + iiifiii PPHhPHxxHhP

    [ ] [ ]fiiiiiiii hhHPphhPP +++ 111

    331

    3 ,9

    13,92,

    91

    +

    +

    223

    118

    64,

    81

    800,

    243

    16hHPHPP iii

    [ ]

    +

    22

    9

    16,

    81

    26

    9

    1,

    81

    5, hHPH ifii

    [ ] ]

    +

    +

    22

    19

    16,81

    7

    9

    1,243

    1, hHpHx fii

    [ ]

    +

    2

    19

    11, hx

    fii [ ]

    fii hh + ,

    [ ] [ ] = =

    =5

    1

    5

    11010

    ,,)(i j

    fjjjfiiii yybxxafL (3.11)

    ( )

    ==

    = =

    5

    1

    5

    1

    )1(

    , i j ji baPfw

    +

    =

    8,

    36

    43

    12

    25,

    81

    20 2211

    3HhPHPP iii

    +

    +

    223

    19

    16,

    81

    73

    9

    1,

    81

    5hHPHPP iii (3.12)

    Where

    +

    =

    13

    8,

    108

    61

    12

    1,

    81

    10 221

    3

    11 HhPHPPa iji

    +

    =

    22

    11

    3

    123

    32,

    27

    222,

    81

    8hHPHPPa ii

    =

    9

    13,

    9

    21

    3

    13 HPPa i

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    42 Y. P. Dubey & K. K. Nigam

    Index Copernicus Value: 3.0 - Articles can be sent to [email protected]

    +

    =

    22

    1

    3

    1418

    64,

    81

    800,

    243

    16hHPHPPa ii

    +

    =

    221

    215

    916,

    817

    91,

    2431 hHPHPPa ii

    +

    =

    22

    1

    3

    11 8,36

    43

    4

    7,

    9

    2hHPHPPb jii

    =

    3

    1,

    81

    113112 HPPb i

    3

    1

    3

    3 9

    1

    =ii ppb

    +

    =

    2223

    149

    16,

    81

    26

    9

    1,

    81

    5hhHpHppb iii

    ii pphb3

    1

    2

    59

    11

    =

    and11110 4211111

    , yxxxyx i =====

    hyxxx iji == 132 00 , ,

    hxi += 131

    00100 544211, xxyyy ii =====

    1100 5353, =+=== hyyhy ii

    154 11,

    +== ii xxx

    Now using the equation (3.10) and (3.9) in (3.8).

    ( )pfhhPKhyxei ,),(*)(||)(||

    )1( (3.13)

    This is the inequality (3.5) of Theorem 3.1.

    To obtain inequality (3.4) of Theorem 3.1. Writing equation (2.5) in the form of error function as follows:

    )()()()( 541 fMtQetQexe iii ++=

    Where )()()()()( 21 tQftQffM iii +=

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Discrete Quartic Spline Interpolation 43

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    )()()()()( 5413)1(

    1 xftQftQftQfp iiii +++ (3.14)

    Again, we write )(fMi in form of Divided difference and using Lemma 3.1, we get

    ( ) = =

    =

    3

    1

    2

    1

    )1( ,|)(|i j

    jii bapfwfM

    +

    +

    +=

    222

    14

    3

    3

    1

    4

    1

    36

    1ththPa i

    +

    +

    +

    4232 32

    14

    36

    29thth

    +

    ++

    +

    =

    4232222

    2 29

    5

    3

    8

    27

    13

    6

    1

    18

    19

    3

    2

    9

    1ththththPa i

    +++= 4323

    3

    2

    9

    11

    3

    2

    9

    1 ttttPq i

    +

    +

    +

    +

    +=

    4232222

    118

    1

    3

    4

    108

    7

    36

    59

    108

    5

    12

    1

    324

    1ththhthPb i

    =

    2

    23

    1

    27

    8htPb i

    and ii xx ==

    10 11 ,

    ii xxx == 10 212 ,

    hhx i +== 133 10 ,

    ii nyy == 10 11 ,

    xyxy ji = 10 22 ,

    Thus = =

    ==3

    1

    2

    1i j

    iji Pba

    +

    +

    32222

    3

    4

    108

    7

    12

    7

    81

    2

    12

    5

    36

    1 ththth

    +

    +

    42

    18

    5th

    using (3.5) and(3.13) in (3.14), we get inequality (3.4) of theorem 3.1.

    We now proceed to obtain bound of )(}1{ xe

    ( ) )()()()( }1{2}1{1}1{ tQftQfxsP iiii +=

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    44 Y. P. Dubey & K. K. Nigam

    Index Copernicus Value: 3.0 - Articles can be sent to [email protected]

    ( ) )()()()( }1{51}1{

    4

    }1{

    3

    }1{tQstQxstQfDP iiihi ++++ (3.15)

    )()()()(}1{

    5

    }1{

    41

    }1{fUtQetQexePA

    iiiii ++= (3.16)

    Where )()()()()()()(}1{

    3

    }1{}1{

    2

    }1{

    1 tQyfDPtQftQffU ihiiii ++=

    )()()(}1{}1{

    5

    }1{

    41 xfAPtQftQf iii ++

    By using Lemma 3.1, we get

    ( ) ( )

    ==

    = = 12

    7,

    324

    1,

    3

    1

    2

    1

    )1(HPbaPfwfU i

    i j

    jii

    ( ) ( )

    +

    ++

    +

    + 22222 43,

    2134,

    3629

    23,

    32 httHhtHthH (3.17)

    Where ( )

    ++

    =

    22

    1 33

    1,

    81

    58

    3

    2,

    9

    1httHHPa i

    ( )

    +

    222,4

    24

    3

    8,

    27

    157httHH

    ( )

    ++

    +

    =

    22

    2 36

    7

    ,81

    4

    12

    1

    ,324

    1

    httHHpa i

    ( )

    ++

    1,

    18

    14

    3

    4,

    108

    23 22HhttH

    ( ) ( )

    ++++

    =

    2222

    33

    83

    4

    1

    3

    4

    9

    1htthttpa i

    +

    +

    =

    3

    12,

    36

    29

    2

    3,

    3

    2

    4

    1,

    36

    11 HtHHpb i

    ( ) ( )]2222 3,2

    143 httHht +

    ++

    =

    3

    1,

    81

    22 Hpb i and

    110 211, xxxx ii ===

    hxhxxx iii +=== + 102 3312 ,,

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey

    Discrete Quartic Spline Interpolation 45

    Impact Factor(JCC): 1.4507 - This article can be downloaded from www.impactjournals.us

    ii yy ==

    10 11,

    hxyhxy +==10 22

    ,

    By using (3.5), (3.13) and (3.17) in (3.16), we get inequality (3.6) of Theorem 3.1.

    REFERENCES

    1.

    Dikshit, H.P. and Powar, P.L. Area Matching interpolation by discrete cubic splines, Approx Theory and

    Application Proc.Ind. Cont.St. Jhon's New Foundland (1984), 35-45.

    2.

    Dikshit, H.P. and Rana, S.S. Discrete Cubic Spline Interpolation with a non-uniform mesh, Rockey Mount Journal

    Maths 17 (1987), 700-718.

    3. Boneva, K. Kandall D, and Stefanov, I. Spline transformation. J.Roy. Statis, Soc, Ser B 33 (1971), 1-70.

    4.

    Lyche, T. Discrete Cubic Spline Interpolation, Report RRS, University of Cyto 1975.

    5. Lyche, T. Discrete cubic spline interpolation, BIT 16, (1978), 281-290.

    6.

    Mangasarian, O.L. and Schumaker, L.L. Discrete spline via Mathematical Programming SIAMJ Controla (1971),

    174-183.

    7. Mangasarian, O.L. and Schumaker L.L. Best Summation formula and Discrete Splines Num. 10 (1973).

    8.

    Rana, S.S. Local Behavior of the first difference of discrete cubic spline Interpolation, Approx. Theory and Appl.

    8(4), 120-127.

    9. Rana, S.S. and Dubey, Y.P. Local behavior of the deficient discrete cubic spline Interpolation, J. Approx. Theory

    86 (1996), 120-127.

    10.

    Rana, S.S. and Dubey, Y.P. Best error bounds for quantic spline interpolation, Indian Journal of Pure and Appl.

    Mathematics 28 (2000), 1337-1344.

  • 5/21/2018 6. Applied-Discrete Quartic Spline Interpolation-Y.P.dubey