6-2canal Design Viscous Flow

Embed Size (px)

Citation preview

  • 8/18/2019 6-2canal Design Viscous Flow

    1/6

    See discussions, stats, and author profiles for this publication at:https://www.researchgate.net/publication/261686776

    OPTIMAL OPEN CHANNEL

    SECTIONS FOR VISCOUS FLOW

     Article  in  ISH Journal of Hydraulic Engineering · June 2012

    DOI: 10.1080/09715010.2000.10514676

    CITATION

    1

    READS

    42

    1 author:

    Prabhata K. Swamee

    Institute of Technology and Ma…

    78 PUBLICATIONS  754 CITATIONS 

    SEE PROFILE

    Available from: Prabhata K. Swamee

    Retrieved on: 16 April 2016

    https://www.researchgate.net/profile/Prabhata_Swamee2?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_7https://www.researchgate.net/profile/Prabhata_Swamee2?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_1https://www.researchgate.net/profile/Prabhata_Swamee2?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/Institute_of_Technology_and_Management?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Prabhata_Swamee2?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Prabhata_Swamee2?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_1https://www.researchgate.net/publication/261686776_OPTIMAL_OPEN_CHANNEL_SECTIONS_FOR_VISCOUS_FLOW?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_3https://www.researchgate.net/publication/261686776_OPTIMAL_OPEN_CHANNEL_SECTIONS_FOR_VISCOUS_FLOW?enrichId=rgreq-e3b13eb1-ea2a-465f-8f56-9556363ab198&enrichSource=Y292ZXJQYWdlOzI2MTY4Njc3NjtBUzoxNTc0NzAzNDk2MDI4MTZAMTQxNDU1NTI2NTQzMw%3D%3D&el=1_x_2

  • 8/18/2019 6-2canal Design Viscous Flow

    2/6

     40

    THE

    INDIAN

    SOCIETY

    FO R

    HYDRAULICS

    JOURNAL

    OF

    HYDRAULIC ENGINEERING

    OPTIMAL O P EN C HA NN EL S E CT IO N S FOR

    VISCOUS

    FLOW

    by

    Prabhata

    K. Swamee , M.ISH

    ABSTRACT

    VOL. 6. 2)

    Th e

    minimum

    area

    open channel section is generally adopted in chemical plants for

    transferring viscous fluids. Such a section is e co no mi ca l as it in vol ves the least amount of

    ma te ri al and the l east s ur fa ce area for its construction. In this paper explicit equation for the

    optimal dimensions of various open channel sections carrying viscous fluids have been obtained

    and their salient features have been pointed out. It is hoped that these equations will be useful

    to the design engineer.

    KEY W O R D S : Channel design, Explicit equations, Optimal sections, Optimization, Uniform

    flow and Viscous flow.

    INTRODUCTION

    Design

    of

    open channels carrying viscous fluids involves optimization

    o.f

    cost

    by

    reducing

    the flow area and flow perimeter to a minimum. A review of literature reveals that although the

    e qu at io ns for t he o pt im al c ha nne l d im en si on s are a va il abl e f or t ur bu le nt flow e.g. S tr ee te r

    1945;

    Swamee and

    B ha ti a 1972; Tr out 1982; S ak hu ja et al. 1984;

    Gu o

    and Hu gh es 1984;

    Flynn and Mariamno 1987; Loganathan 1991; Froehlich 1994; Monadjemi 1994; and

    Swamee

    1995; Swamee et al. 2000 a-b , no such equations are available for viscous flow.

    ANALYTICAL CONSIDERATIONS

    For steady and unifonn viscous flow the Navier-Stokes equations of motion may

    be

    reduced

    to the following two dimensional

    fonn of

    Poission s equation:

    , 2

    a v

    a v

    g

    - -2

     

    I)

     y z v

    w he re y

    and

    z

    =

    horizontal and vertical distances, respectively, from the

    center ofthe

    channel

    boltom;

    =

    velocity at t he p oint y, z); g

    =

    gravitational acceleration; So

    =

    bed slope; and v

    =

    kinematic viscosity

    of

    the fluid. The solution

    of

    Eq.  I for discharge Q in an open rectangular

    channel as derived by Boussinesq in 1868 and later modified by Cornish 1928), and Woo and

    Brater

      1 961) is as shown in Eq. 2).

    1. Professor

    of

    Civil Engineering, University

    of

    Roorkee, Roorkee  V.P. .

    Note: Written discussion of this paper will be

    open

    until 31 st December, 2000.

    ISH JOURNAL OF HYDRAULIC ENGINEERING, VOL.

    6

    2000. NO.2

  • 8/18/2019 6-2canal Design Viscous Flow

    3/6

    VOL. 6, Z

    OPTIMAL OPEN CHANNEL

    SECTIONS FOR

    VISCOUS FLOW

     41

    2)

     4a)

     4b)

    g b Y ~ [

      8 Y n ~

    -5  2n+l7

  • 8/18/2019 6-2canal Design Viscous Flow

    4/6

     42)

    OPTIM LOP N  H NNELSEcnONS FOR VIS OUS FLOW VOL. 6 2

    • Jl m

     

    m

    b = 3.561 0.375 L

      2 J I + m

    2

     m

    =1.781 2J1+m

    2

     m f 3 7 5 L

    p =3.561 2J1+m

    2

     m

    f 6 2 5

    L

     

    r 0.25

    A · = 3. 1712V 1+ m

    2

     m L

    2

    SALIENT FEATURES

      7a )

     7b

    7c

    7d

    Equation 5 reveals that v has a strong influence on the optimal open channel geometry.

    On

    the other hand, for a smooth turbulent flow, as depicted by the length scale Swamee

    1995 . L is given by

    vO.0

    4

    Q0375

    L = g

    S

    O)O.208  8

    Equation 8 shows the kinematic viscosity has little role to play in determining the optimal

    channel dimensions in turbulent flow

    A perusal

    of

    Table I shows that the semicircular section

    of

    diameter 3L has the least flow

    arca and thc flow perimeter. The other optimal sections, following the constraints

    of

    the shape,

    are closest to this semicircular section

    DESIGN EXAMPLE

    The objective

    is

    to

    design a rectangular channel section

    for

    carrying a discharge

      0.025

    m ls on a slope

    of

    0.005. The kinematic viscosity

    of

    fluid is 4 x 10 m /s Adopting g = 9.8 mis

    and using Eq. 5 , L = 0.213 m. Further, using Eqs. 4 a and 4 b , b = 0.585 m; and   =

    0.293 m. The corresponding flow area

    A

    = b Y = 0.1714

    m

    yielding Y = 0.146 m/s

    jTRIANGULAR

    SECTION  hI RECTANGULAR SECTION

     c

    TRAPEZOIDAL SECTION  d

    CIRCULAR

    SECTION

    FIG CHANNEL SECTIONS:

    ISH

    JOURNAL OF HYDR UliC ENGINEERING VOL 6, 2000. NO.2

  • 8/18/2019 6-2canal Design Viscous Flow

    5/6

    VOL. 6, 2)

    OPTIM L OPEN CH NNEL

    SECTIONS FOR VISCOUS

    R OW

    TABLE-}

    PROPERTIES

    OF

    OPTIMAL

    CHANNEL SECTIONS

      43)

    Section Shape Side Slope Section Shape Coefficients

    k

    b

    or

    m

    k

    D

    k

    y

    k

    p

    k

    A

    k

    v

     1 2) 3) 4)   5)   6) 7)

    Triangular 1.000 0.000 1.942 5.492 3.771 0.265

    Rectangular

    0.000 2.746 1.373 5.492

    3.771 0.265

    Trapezoidal 0.577 1.673 1.449 5.020 3.638

    0.275

    Circular

     

    3.004 1.502

    4.720 3.535 0.282

    • Not applicable,

    CONCLUSIONS

      has been possible to obt in optim l dimensions   open ch nnel sections for viscous

    flow These dimensions are strongly influenced by the kinematic viscosity of the fluid. Subject

    to the geometrical restriction placed by the way of defining the shape, the optimal channel

    section becomes closest to the corresponding semicircular section

    which

    is

    the best

    hydraulic

    section for open ch nnel flow

    REFERENCES

    Cornish, R. J.   1928). Flow in a Pipe ofRectangular Cross Section. Proc.

    Roy

    Soc, of London,

    Series A, 120, pp. 691-700.

    Davis, S. J. and White, C

    M

    1928), An Experimental Study

    of

    Flow of Water in Pipes of

    Rectangular Section. Proc,

    Roy

    Soc. ofLondon, Series A, 119, pp. 92-107.

    Flynn,   and Marimno, M. A.   1987). Canal Design; Optimal Sections. 1 Irrig. and Drain.

    Engg., ASCE, 113 3), pp. 335-355.

    Froehlich, 0, C.   1994). Width and Depth-Constrained Best Trapezoidal Section. J. Irrig. and

    Drain. Engg., ASCE, 120 4), pp. 828-834.

    Guo, C.

    Y

    and Hughes,

    W

    C.   1984). Optimal Channel Sections with Free Board. J Irrig. and

    Drain. Engg., ASCE,

    110 3),

    pp.

    304-313,

    Loganathan, G V 1991). Optimal Design of Parabolic Canals. 1 Irrig. and Drain. Engg.,

    ASCE, II 7 5), pp. 716-735.

    Monadjemi, P

    1994).

    General Formulation

    of

    Best Hydraulic Channel Section. J. Irrig. and

    Drain. Engg., ASCE, 120 1), pp. 27-35.

    Sakhuja, V S., Singh, S.

    and

    Paul, T C.

      1984).

    Discussion

    of

     Channel Design to Minimize

    Lining Material

    Costs

    by

    Thomas J.

    Trout

    J. Irrig. and

    Drain.

    Engg., ASCE, II

    0 2), 253-254.

    Streeter, V 194 . Frooomic CanaJ Cross Sections. Trans. ASCE, 110, pp. 421-430.

    Straub,   G., Sir   - H.C 195 ). Open Channel Flow at SmaIl Reynolds

    Number. Trans. ASCE 1 - -Po

  • 8/18/2019 6-2canal Design Viscous Flow

    6/6

     44)

    OPTIMAL

    OPEN CHANNEL

    SEmONS

    FOR VISCOUS FLOW

    VOL. 6. 2)

    Swamee, P

    K

    1995). Optimal Irrigation Canal Sections. 1 Irrig. and Drain. Engg., ASCE,

    121 6), pp. 467-469.

    Swamee, P K and Bhatia, K G 1972). Economic Open-Channel Sections. 1 Irrig. and

    Power, CBIP, New Delhi, April, pp. 169-176.

    Swamee,

    P

    K., Mishra, G. C. and Chahar,

    B

    R. 2oooa). Design

    of

    Minimum Seepageloss

    Canal Sections. 1 Irrig. and Drain. Engg., ASCE, 126 1), pp. 28-32.

    Swamee,   K., Mishra, G C. and Chahar, B R. 2ooob). Minimum Cost Design of Lined

    Canal Sections. 1 Wat Resour. Mangt., Kluwer Academic Publishers, 14

    I

    pp. 1-12.

    Trout, T 1 1982). Channel Design to Minimize Lining Material Costs. 1 rrig. and Drain.

    Engg., ASCE, 108 4),242-249.

    Woener, 1 L., lones, B. A Ir. and Frenzl, R N 1968). Laminar Flow in Finitely Wide

    Rectangular Channels. 1 Hydr. Div., ASCE, 94 3), pp. 691-704.

    Woo, D C. and Brater, E. F 1961). Laminar Flow in Rough Rectangular Channels. Geoph.

    Res., AGU, 66 12), 4207-4217.

    NOT TIONS

    A Flow area,

    b

     

    Bed width

      iameter

    g

     

    Gravitational acceleration

    k

    A

     

    Area coefficient

    k

    b

     

    Bed width coefficient

    k

    D

     iameter coefficient

    k

    p

     

    Perimeter coefficient

    k

    v

     

    verage velocity coefficient

    k

    y

    Normal depth coefficient

    L

     

    Length scale

    m

     

    Side slope

    P

     

    Flow perimeter

    Q

     

    Discharge

     

    Bed slope

    V

     

    verage velocity

    v

     

    Point velocity

    y

     

    ertic l

    distance

    Y

    n

     

    Normal depth

    z Horizontal distance

    V

     

    Kinematic viscosity

    Superscript

     

    Optimal

    ISH JOURNAL OF

    HYDRAULIC

    ENGINEERING VOL 2000

    NO