5e77e257-75e2-4499-b0e1-9070dce22e1a

Embed Size (px)

Citation preview

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    1/66

    093-

    2013/9/20 1

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    2/66

    CONTENTS

    MOLECULAR WEIGHTS OF POLYMERS

    INTRINSIC VISCOSITY

    GEL PERMEATION CHROMATOGRAPHY

    MASS SPECTROMETRY

    INSTRUMENTATION FOR MOLECULARWEIGHT DETERMINATION

    SOLUTION THERMODYNAMICS ANDMOLECULAR WEIGHTS

    3.7

    3.8

    3.9

    3.10

    3.11

    3.12

    2013/9/20 2

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    3/66

    3.7 MOLECULAR WEIGHTS OF POLYMERS

    3.7.1 Molecular Weight of CommercialPolymers

    Commercial use30,000-1,000,000 g/mol

    High enoughmolecular weights toobtain good physical

    properties

    Low enough molecularweights to permit

    reasonable processing

    conditions2013/9/20 3

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    4/66

    3.7.2 Thermodynamics and

    Kinetics of Polymerization

    Thermodynamics

    Kinetics

    The molecularweights and

    the

    polydispersityindex

    2013/9/20 4

    AFFECT

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    5/66

    3.7.2.1 Thermodynamics of Chain

    PolymerizationKRTG ln0

    Consider a chain polymerization of monomerM:

    1nn MMM

    The rate constant of theforward reaction, polymerization, is kp

    The rate constant of the reverse reaction, depolymerization, is given bykdp

    ][

    1

    ]][[

    ][ 1

    MMM

    M

    k

    kK

    n

    n

    dp

    p

    2013/9/20 5

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    6/66

    Ceiling temperaturestemperatures above which themonomer cannot be polymerized,but the polymer willspontaneously depolymerize back to the monomer.

    Commercially this fact leads to an important method

    of polymer recycling whereby scrapped polymer isheated under anaerobicconditions to allow distillingoff the resultant monomers.

    2013/9/20 6

    )()( mpmp SSTHHSTHG

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    7/66

    3.7.2.2 Kinetics of Chain Polymerization

    RMMR

    RI

    k

    ki

    2

    2Initiation

    Propagation:

    1nn

    2

    RMMRM

    RMMRM

    p

    p

    k

    k

    Termination bycombination RRMRMRMk

    mnmntc

    Termination bydisproportionation mnmn

    td RMRMRMRMk

    2013/9/20 7

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    8/66

    Rp represents the rate of polymerization

    2/1

    2/1

    ]][[ IMk

    kkR

    t

    ipp

    2013/9/20 8

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    9/66

    Kinetic chain length: Radical chain polymerization is the average

    number of monomer molecules consumed for

    each radical initiating a chain.Thus, at steadystate:

    2/1])[(2

    ][

    Ikfk

    Mk

    R

    R

    R

    R

    vti

    p

    t

    p

    i

    p

    2013/9/20 9

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    10/66

    3.7.2.3 Thermodynamics of Step Polymerization

    Polyesterification where carboxyl groups andhydroxyl groups react to form a polyester and water;

    The equilibrium constant, K:

    OHCOOOHCOOH K 2

    ]][[

    ]][[ 2

    OHCOOH

    OHCOOK

    2013/9/20 10

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    11/66

    p:fractional conversion

    number-average degreeof polymerization

    weight-average degreeof polymerization

    Polydipersity Index

    pDPn

    1

    1

    p

    pDPw

    1

    1

    pDP

    DPPDI

    n

    w 1

    2013/9/20 11

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    12/66

    3.7.2.4 Kinetics of Step

    Polymerizations

    Step

    polymerizations

    Self-catalyzed

    External-catalyzed

    Catalyzed bysome externallyadded chemical

    such as an acid

    StepPolymerizations

    2013/9/20 12

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    13/66

    Self-catalyzed polymerization

    ][][][ 2 OHCOOHk

    dt

    COOHd

    OHCOOOHCOOH COOH 2

    ])[][(3

    OHCOOHckc

    dt

    dc

    pDPpcc n

    11),1(0

    12

    )1(

    1 202

    2

    ktc

    p

    DPn

    tc

    ckdt

    c

    dc

    030

    ktcc

    211

    22

    0

    2013/9/20 13

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    14/66

    3.7.3 Molecular Weight Distributions

    Chain polymerization Termination by disproportionation:PDI=2

    Termination by combination:PDI=1.5

    Stepwise polymerizations, such as polyesterformation,PDI=1+p=2

    Anionic polymerizations :narrow distribution, sometimesPDI

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    15/66

    The various molecular weight distributions have beenmodeled. Two of the most important are the Schultzdistribution and the Poisson distribution.

    2013/9/20 15

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    16/66

    3.7.4 Gelation and Network

    Formation

    Linear:

    functionality of the

    monomer is 2

    Branched or cross-linked:

    trifunctional, tetrafunctional,or higher

    2013/9/20 16

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    17/66

    3.7.4 Gelation and Network

    Formation gelation point:

    2/1)1(

    1

    fPc

    f :the functionality of the branch

    units

    2013/9/20 17

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    18/66

    3.8 INTRINSIC VISCOSITY Both the colligative and the scattering methods result

    in absolute molecular weights; that is, the molecularweight can be calculated directly from first principlesbased on theory.

    Defects : SlowExpensive;

    In order to handle large numbers of samples,

    especially on a routine basis, rapid, inexpensivemethods are required. This need is fulfilled byintrinsic viscosity and by gel permeationchromatography.

    2013/9/20 18

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    19/66

    Flow rate & Shear rate

    Frictional drag androtational forces

    Viscosity increase bythe polymer in the

    solution.

    2013/9/20 19

    Mechanism ofviscosityincrease:

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    20/66

    3.8.1 Definition of Terms Solvent viscosity:

    Polymer solution viscosity:

    Relative viscosity:

    Specific viscosity:

    0

    0

    rel

    1

    -

    rel0

    0

    sp

    2013/9/20 20

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    21/66

    Intrinsic viscosity:0

    ][

    c

    sp

    c

    ][ln

    2

    ln

    2)1ln(ln

    0

    2

    2

    2

    c

    rel

    spsprel

    sp

    spsprel

    c

    c

    c

    cc

    For dilute solutions:

    Inherent viscosity:

    c

    relln

    2013/9/20 21

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    22/66

    Two sets of units are in use for [].

    The American units are 100 cm3/g,

    The European units are cm3/g.

    Of course, this results in a factor of 100 difference inthe numerical result. Lately, the European units arebecoming preferred.

    2013/9/20 22

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    23/66

    3.8.2 The Equivalent Sphere

    Model In assuming a dilute dispersion of uniform, rigid,

    noninteracting spheres,

    Einstein derived an

    equation expressing

    the increase in viscosity

    of the dispersion

    the quantityv2 represents

    the volume fraction of spheres

    20

    v5.21

    2013/9/20 23

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    24/66

    In shear flow, it exhibits a frictional

    coefficient off0. Then according to Stokeslaw

    Re:a hydrodynamic sphere of equivalent radius

    The Einstein viscosity relationship for

    spheres may be written:

    eRf 010 6

    esp VV

    n

    20 5.2

    2013/9/20 24

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    25/66

    M

    cN

    V

    n A2

    13

    1

    31

    e

    0

    5.2 gcmmolg

    cmmol

    M

    VN

    c

    A

    c

    sp

    2/1

    2/32

    e1

    3

    e1e

    3

    4

    3

    4 MM

    R

    M

    R

    M

    V

    Note

    that:

    32/12/3

    0A

    1

    3

    45.2 M

    M

    RN e

    2013/9/20 25

    is the expansion of the coil in a good

    solvent over that of a Flory -solvent

    0ee

    RR

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    26/66

    3.8.3 The MarkHouwink

    Sakurada Relationship In the late 1930s and 1940s Mark, Houwink, and

    Sakurada arrived at an empirical relationship betweenthe molecular weight and the intrinsic viscosity:

    a

    vKM][

    K and a are constants for a particular polymersolvent pair at a particular temperature.

    2013/9/20 26

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    27/66

    2013/9/20 27

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    28/66

    More generally, it should be pointed out that avaries from0 to 2; see Table 3.11.

    0.5(Flory -solvent )

    0.8(thermodynamicall

    y good solvent)

    a

    2013/9/20 28

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    29/66

    3.8.4 Intrinsic Viscosity

    Experiments In most experiments, dilute solutions of about 1%

    polymer are made up.

    The quantityrel should be about 1.6 for the highestconcentration used.

    The most frequently used instrument is theUbbelhode viscometer, which equalizes the pressure

    above and below the capillary.

    2013/9/20 29

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    30/66

    Huggins equation

    Kraemer equation

    Algebraically:

    If either of these requirements is not met, molecularaggregation, ionic effects,or other problems may beindicated.

    ckc

    sp 2]['][

    ckcrel 2][''][

    ln

    5.0''' kk

    2013/9/20 30

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    31/66

    While use of the viscosity-average molecular weight ofa polymer in calibrating K and a in equation,MVvalues usually are not initially known.

    The calibration problem may be alleviated by one or

    more of the following methods: 1. Use of fractionated polymers.

    2. Use of polymers prepared with narrow molecularweight distributions,such as via anionic polymerization.

    3. Use of weight-average molecular weight of thepolymer, since it is closer than the number-averagemolecular weight.

    2013/9/20 31

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    32/66

    3.8.5 Example Calculation

    Involving Intrinsic ViscosityWe dissolve 0.10 g of the polymer in 100 ml of

    butanone and measure the flow times at 25in anUbbelhode capillary viscometer. The results are

    sample time

    Pure butanone 110 s

    0.10% Polystyrene solution 140 s

    2013/9/20 32

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    33/66

    2013/9/20 33

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    34/66

    3.9 GEL PERMEATION

    CHROMATOGRAPHY Gel permeation chromatography(GPC), sometimes

    called size exclusion chromatography(SEC), makesuse of the size exclusion principle.

    The size of the molecule, defined by its hydrodynamicradius, can or cannot enter small pores in a bed ofcross-linked polymer particles, the most commonform of the stationary phase.

    The smaller molecules diffuse in and out of the poresvia Brownian motion (see Figure 3.16) and are delayed.

    The larger molecules pass by and continue in themobile phase.

    2013/9/20 34

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    35/66

    2013/9/20 35

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    36/66

    The stationary phase consists of small, porous particles.While the mobilephase f lows at a specified rate controlled by the solvent delivery system, thesample is injected into the mobile phase and enters the columns.

    The length of time that a particular fraction remains in the columns is calledthe retention time .

    2013/9/20 36

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    37/66

    As the mobile phasepasses the porousparticles, theseparation betweenthe smaller and thelarger moleculesbecomes greater(see Figure 3.18) .

    2013/9/20 37

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    38/66

    3.9.1 Theory of Gel Permeation

    Chromatography

    molecularweight

    distribution(MWD)

    Mw/Mnchemical

    composition

    Statistical

    Alternating

    Block Graft

    functionality End groupsshape ofthe chain

    Random coils

    Rod shaped Rings

    Most polymersexhibit some

    form(s) ofheterogeneity

    2013/9/20 38

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    39/66

    3.9.2 Utilization of Distribution

    Coefficients in GPC and HPLC

    phasestationarytheofvolume

    columntheofvolumeialinterestitsolutetheofvolumeretention

    dK

    V

    VVK iRd

    phasemobilein theionconcentratanalyte

    phasestationarythetoattachedorinionconcentratanalytedK

    Kd : the distribution coefficient

    2013/9/20 39

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    40/66

    the quantityKd is related to the Gibbs free energy, G,

    After rearranging, we have

    S: The limited dimensions of the pores relative to the sizeof the polymer chains causes S of the polymer chains to

    decrease. Interactions between the pore walls and the polymer

    chains are expressed in changes in H, and are negative ifthe polymer and the wall are attracted to each other.

    GSTHKRT d ln

    RT

    H

    R

    S

    Kd exp

    2013/9/20 40

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    41/66

    In the general case, Kdmay be expressed

    the subscripts GPC and HPLC indicate quantities

    involving only entropic or enthalpic interactions,respectively.

    In the ideal GPC case, KHPLC equals unity, and Kd=KGPC.

    HPLCGPCd KKK

    2013/9/20 41

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    42/66

    3.9.3 Types of Chromatography

    GPC, which uses porous particles toseparate molecules of different sizes.

    HPLC, by contrast, utilizes interactionsbetween the polymers and the surfaceof the particles composing thestationary phase.

    2013/9/20 42

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    43/66

    Instruments today are sometimes called universalHPLCs, containing both GPC and HPLC columns and

    measurement capability; see Table 3.12 forspecifications.

    2013/9/20 43

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    44/66

    3.9.4 GPC Instrumentation The most important parts of the instruments are :

    the columntypes for themolecular

    weight rangeof analysis

    the detectorsystem

    the pumps formaintainingconstant,

    pulseless ratesof flow

    2013/9/20 44

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    45/66

    3.9.5 Calibration

    Noting GPC is a relative molecular weight method,such instrumentation needs to be calibrated. Narrowmolecular weight distribution, anionically synthesized

    polystyrenes are used most often for the purpose.

    2013/9/20 45

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    46/66

    Figure 3.20 The molecular weight and molecular weightdistribution are determined with standards precalibrated

    via an absolute method such as light-scattering.2013/9/20 46

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    47/66

    3.9.6 Selected Current Research

    Problems In the case of copolymers, any single detection method

    will have variable sensitivity for each type of mer.

    If the copolymer composition is itself a variable, thenthe use of dual or even multiple detectors will berequired for accurate results.

    2013/9/20 47

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    48/66

    The molecular weight of each component in a polymerblend may also be determined.

    In a model experiment, poly(methyl methacrylate),PMMA, molecular weights were estimated in the

    presence of polystyrene, PS.

    Anionically polymerized polystyrene and free radicallypolymerized poly(methyl methacrylate) weredissolved in tetrahydrofuran in a 50/50 w/w mix.

    A dual detector GPC was used, equipped withrefractive index (RI) and ultraviolet (UV) detectors.

    2013/9/20 48

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    49/66

    Figure 3.22 Analysis of the molecular weights of the polymers in apolymer blend of polystyrene and poly(methyl methacrylate).This method requires a dual detector GPC system.

    2013/9/20 49

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    50/66

    Current research problems include chain geometryand solution aggregation , ABC triblock copolymers astopological isomers , and hyperbranched polymers

    (85); see Section 14.5.

    2013/9/20 50

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    51/66

    3.9.7 The Universal Calibration

    32/320][ rM

    Figure 3.23 The universal calibration curves for polystyrene and poly(vinylacetate) (94). The number 5 in thex-axis units means that the scale is insiphon counts of 5 cm3, so that the x-ordinate 30 corresponds to anelution volume of 150 cm3. (R. Dietz, private communication,November1984.)Mr is the peak GPC molecular weight, usually the unknown, Mrvalues are close to the geometric mean ofMn and Mw.2013/9/20 51

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    52/66

    The right-hand side is proportional to the polymershydrodynamic volume.

    This is the universal calibration, which calls for a plotof []M versus elutionvolume.

    It cannot be used for highly branchedmaterials or

    polyelectrolytes, which have different or varyinghydrodynamic volume relationships.

    3

    2/3

    20][ rM

    2013/9/20 52

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    53/66

    3.9.8 Properties of Cyclic Polymers

    The properties of the linear and cyclic polymers arecompared in Figure 3.24 .

    1. The more compact cyclic polymers possessed smaller

    hydrodynamic volumes (i.e., they eluted later via GPCin Figure3.24A).

    2. They had lower intrinsic viscosities than their linearanalogs, with []cyclic/[]linear = 0.4 (Figure 3.24B).

    3. The root-mean-square radius of gyration, Rg, wasmeasured using GPCcoupled to a multiangle light-scattering detector. Figure 3.24C.

    2013/9/20 53

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    54/66

    2013/9/20 54

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    55/66

    3.10 MASS SPECTROMETRY

    Mass spectrometry is the study of the mass, ormolecular weight, of ions created via ionization orfragmentation and determined electrically in the gas

    phase.

    2013/9/20 55

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    56/66

    In the study of polymers, mass spectrometry has twobroad applications:

    1. To characterize functionality. Unknownpolymers, residual volatile chemicals, andadditives can be identified.

    2. To provide a new basis for the determination

    of absolute molecular weights.

    2013/9/20 56

    3 10 1 High Molecular Weight

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    57/66

    3.10.1 High Molecular Weight

    Studies

    The spectrum shows three different charge statescentered at about m/z of 17,000, 32,000, and 65,000g/mol.

    2013/9/20 57

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    58/66

    3.10.2 Advances Using MALDI

    Techniques

    Matrix-assisted laser desorption ionization (MALDI)

    Typical MALDI matrices are aromatic organic acids. Asmall aliquot of the mixture is applied to the MALDItarget and solidifies as the solvent evaporates.

    2013/9/20 58

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    59/66

    3.10.2.1 Small Sample Size

    Very tiny amounts of polymer are utilized.

    For example, an analyte solution contains 5 mg/ml.Approximately 0.30.5 mLof this solution are placed on

    the target.With these very small samples,an electrospray

    technique was found to give more reproducible results

    2013/9/20 59

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    60/66

    3.10.2.2 Oligomer and Telomer-

    Type Studies

    2013/9/20 60

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    61/66

    3.10.2.3 Calibration of Results The molecular weights reported by the laboratories gave

    values slightly lower than the measurements made bythe classical methods.

    However, there was evidence that the MALDI methodwas probably the more accurate.

    For example, traces of dust raise the apparent molecularweight obtained via lightscattering.

    Overall, however, good agreement was obtained.

    2013/9/20 61

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    62/66

    3.11 INSTRUMENTATION FOR MOLECULAR

    WEIGHT DETERMINATION

    2013/9/20 62

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    63/66

    3.12 SOLUTION THERMODYNAMICS

    AND MOLECULAR WEIGHTS

    Below the Flory -temperature, polymer solutions mayphase-separate.The higher the molecular weight is, thehigher the upper critical solution temperature.

    At infinite molecular weight, the Flory -temperatureis reached. Thus the Flory -temperature is defined by

    several different criteria:

    2013/9/20 63

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    64/66

    1. It is the temperature whereA2 is zero for dilutesolutions, and 1 = 1/2.

    2. It is the temperature where the radius of gyration

    approximates that of the bulk polymer (see Chapter 5).

    3. It is the temperature at which an infinite molecularweight fraction would just precipitate (see Chapter 4).

    2013/9/20 64

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    65/66

    The methods are divided into absolute methods, whichdetermine the molecular weight from first principles,and

    relative methods, which depend on prior calibration.The latterare usually selected because they are fast and inexpensive.Values obtained from the several methods are summarized inTable 3.15.

    2013/9/20 65

  • 7/29/2019 5e77e257-75e2-4499-b0e1-9070dce22e1a

    66/66