86
Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli Table of content of printouts: Introduction Materials and Properties of Polymer Matrix Composites Mechanics of a Lamina Laminate Theory Ply by Ply Failure Analysis Externally Bonded FRP Reinforcement for RC Structures: Post Strengthening Flexural Strengthening Strengthening in Shear Column Confinement FRP Strengthening of Masonry CFRP Strengthening of Aluminum Profiles FRP Strengthening of Wooden Structures Design of Flexural Post-Strengthening of RC: Swiss Code 166 and Other Codes/Guidelines Design of FRP Profiles and all FRP Structures An Introduction to FRP Reinforced Concrete Monitoring and Testing of Civil Engineering Structures Composite Manufacturing Testing Methods

53856

Embed Size (px)

Citation preview

Page 1: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Table of content of printouts:

Introduction Materials and Properties of Polymer Matrix Composites Mechanics of a Lamina Laminate Theory Ply by Ply Failure Analysis Externally Bonded FRP Reinforcement for RC Structures: Post Strengthening Flexural Strengthening Strengthening in Shear Column Confinement FRP Strengthening of Masonry CFRP Strengthening of Aluminum Profiles FRP Strengthening of Wooden Structures Design of Flexural Post-Strengthening of RC: Swiss Code 166 and Other Codes/Guidelines Design of FRP Profiles and all FRP Structures An Introduction to FRP Reinforced Concrete Monitoring and Testing of Civil Engineering Structures Composite Manufacturing Testing Methods

Page 2: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Mechanics of a Lamina

Book Geoff Eckold, Chapter 3, pp 49-65

Page 3: 53856

Ma ter ia ls Sci ence & Technolog y

A Laminate is consisting of several Laminas or Plies or Layers.

A Lamina is consisting of Fibers and Matrix.

Micromechanics (in m-mm range) is dealing for example with the determination of Lamina constitutive properties from those of Fiber and Matrix, Fiber-Matrix interface stresses, etc.

Page 4: 53856

Ma ter ia ls Sci ence & Technolog y

Assumptions:

- Linear Elasticity: Matrix and Fiber behave as linear elastic material (viscoelasticity of Matrix: see previous chapter)

- Perfect bond, no strain discontinuity across interface

- Fibers are arranged in a regular or repeating array

Page 5: 53856

Ma ter ia ls Sci ence & Technolog y

Functional requirements for Fibers:

- High E-Modulus

- High ultimate strength

- Low variation between individual fibers

- Retain the strength during handling and fabrication

- Uniform diameter and surface

Page 6: 53856

Ma ter ia ls Sci ence & Technolog y

Functional requirements for Matrix:

- Bind together the fibers and protect their surfaces

- Transfer stresses to the fibers efficiently

- Chemically compatible with fibers over a long period

- Thermally compatible with fibers

Page 7: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Modell of a Laminate

Laminate

A Unidirectionally Reinforced Lamina(UD)

Page 8: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 9: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

A Laminate

UD-Laminas

Page 10: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

A Laminate

Page 11: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

UD-Lamina (or UD-Ply or UD-Layer)

Page 12: 53856

Ma ter ia ls Sci ence & Technolog y

Definitions:

- Homogeneous: Properties are not function of the position of the material points

- Isotropy: Properties are not function of the orientation. 2 independent material constants: E and

- Anisotropy: Properties are function of the orientation with no planes of symmetry.

21 independent material constants

Page 13: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Micromechanics

Fiber

1

Page 14: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Macromechanics

Nx

Page 15: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 16: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Unidirectional Lamina(UD-Lamina)

Stiffness of a UD-Lamina

Page 17: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 18: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 19: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 20: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 21: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

C

Page 22: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Symmetrical planes of a transverse isotrop UD-Lamina

1

2 E2 and 2

E1 and 1

Page 23: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 24: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Why ??

Page 25: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Strain-Stress relation of a UD-Lamina, Plane stress

22

211

11

1 EE

22

11

122

1 EE

12 1212

1 G

Page 26: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Engineering Constants of a UD-Lamina

1 2 12

1 1

1E

2

21

E

2 1

12

E

2

1E

12

12

1G

Page 27: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Compliances Sij of a UD-Lamina :

12

662

221

111;1;1

GS

ES

ES

2

2112

1

1221 ;

ES

ES

Page 28: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Compliance Matrix S of a UD-Lamina

1 2 12

1 11S 12S

2 21S 22S

12 66S

Page 29: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

21221

2121

1221

11 11

EE

21221

21

1221

1212 11

EE

12 1212G

Inversion of the Compliance Matrix

Stress-Strain relation of a UD-Lamina, Plane stress

Page 30: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Stiffness Matrix Qof a UD-Lamina

1 2 12

1 11Q 12Q

2 21Q 22Q

12 66Q

Page 31: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Stiffnesses Qij of a UD-Lamina

12661221

222

1221

111 ;

1;

1GQEQEQ

1221

21212

1221

12121 1

;1

EQEQ

Page 32: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Symmetry ?

Stiffness matrix Q:Das Bild kann zurzeit nicht angezeigt werden.

2mmN

Q =

Q11

Q21 Q22

Q66

Q12 0

0

0 0

Page 33: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Symmetry ?Compliance matrix S:

N

mm2

S =

S11

S21 S22

S66

S12 0

0

0 0

Page 34: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Symmetry ??

2112 QQ 2112 SS and

Coupling Terms

???

Page 35: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Elastic Energy

The stored elastic energy in the UD-Lamina is:

12122221 11W

Page 36: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Replace the strains with stresses using the compliance matrix as follow:

We obtain :

21212

222222112

2

21 SSSSSW 1111

1 2 12

1 11S 12S

2 21S 22S

12 66S

Page 37: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Partial differentiation provides the following strain-stress relation:

12211221

SSSW

1111

21211221

2222

SSSW

Page 38: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Compare the equations with the strain-stress relation through compliance matrix

we obtain:

2112 SS

1 2 12

1 11S 12S

2 21S 22S

12 66S

Page 39: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

2112 QQ

If we use the stiffness matrix

and replace stresses with strains, we obtain in a similar way the following equation:

1 2 12

1 11Q 12Q

2 21Q 22Q

12 66Q

Page 40: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

or following equation is obtained for engineering constants:

2EE 12121

112

21

EE2

or:

Page 41: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Independent Elasticity Constants

With the existing symmetry, the number of independent elasticity constants of a UD-Lamina is reduced from 5 to 4.

Page 42: 53856

Ma ter ia ls Sci ence & Technolog y

Definitions:

- Orthotropy: Anisotropy with 3 orthogonal planes of symmetry. 9 independent constants

- Transverse Isotropy: Orthotropy with a plane at which there is Isotropy 5 independent constants

- Transverse Isotropy and Plane Stress: 4 independent constants

Page 43: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Stress State of a Unidirectional (UD) Lamina: Transverse Isotropy, Homogeneous

Plane Stress:

2

3

1

3

1

2

1 2 2

2

Page 44: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Independent Elasticity Constants

If there are more symmetry conditions, there will be further reductions in the number of constants. For a cross-ply laminate with E1=E2, there are 3and for an isotropic material (for example mat-laminate with randomly distributed fibers) 2independent constants.

Page 45: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Mechanics of materialsSemi empirical equations

Page 46: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Elasticity constants of a UD-Lamina are dependent on the following parameters:

EF = Fiber E-Modulus

F = Fiber Poisson‘s Ratio

EM = Matrix E-Modulus

M = Matrix Poisson‘s Ratio

= Fiber Volume Fraction

Page 47: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 48: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 49: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Page 50: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

The longitudinal E-Modulus (parallel to the fiber direction) can be derived from the following so called rule of mixture:

where F = fiber volume content of the UD-Lamina

MFFF EEE 11

Page 51: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

The major poisson‘s ratio 12 caused by longitudinal stresses following the rule of mixture is:

MFFF 112

And the minor poisson‘s ratio is:

1EE2

1221

Page 52: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Semi Empirical Equations Based on Experiments

Page 53: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

The transverse E-modulus for isotropic fibers according to ‚Puck‘ can be obtained:

25.1

2

2 1/85.01

FFo

MF

FoM EE

EE

21 M

MoM

EE

Page 54: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

According to ‚Puck‘ for isotropic fibers:

25.1

5.0

12 1/60.01

FFMF

FM GG

GG

Page 55: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

According to ‚Förster‘ and ‚Schneider‘ for isotropic fibers:

21 M

MoM

EE

45.12 1/1

FFo

MF

oM EE

EE

Page 56: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

According to ‚Förster‘ and ‚Schneider‘ for isotropic fibers:

45.1

5.0

12 1/4.01

FFMF

FM GG

GG

Page 57: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Following ‚Tsai‘ for isotropic fibers:

whereEEF

FM

11

2

2/

1/

andEEEE

MF

MF

Page 58: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Following ‚Tsai‘ for isotropic fibers:

whereGGF

FM

11

12

1/

1/

andGGGG

MF

MF

Page 59: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Comparisons for E2

25.1

2

1/85.01

FFo

MF

FoM EE

EE

45.11/1

FFo

MF

oM EE

EE

F

FMEE

11

E2

E2

E2Fiber Volume Fraction

E 2 k

N/m

m2

Page 60: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Comparisons for G12

25.1

5.0

# 1/60.01

FFMF

FM GG

GG

F

FMGG

11

#

45.1

5.0

# 1/4.01

FFMF

FM GG

GG

G12

G12

G12

G12

kN

/mm

2

Fiber Volume Fraction

Page 61: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Anisotropic fibers

Fiber axis

Page 62: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

For anisotropic fibers like C-fibers following equations can be applied:

F

oMFF

Fo

M

EEEE

/611

75.0

3

2

21 M

MoM

EE

Page 63: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

and

FGMGFF

FMGG

/25.125.11

5.025.01

12

Page 64: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

and

MFFF 112

Page 65: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Following equations are still valid:

2112 SS

2112 QQ

1EE 21212

221

12

EE1

Page 66: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Glass-Mat Lamina

Page 67: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Following equations can be applied to E-Glass Mat Lamina according to Puck :

920'3710'4630'29 2 FFE

F 075.034.0

370'1970'10 FG

Page 68: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Elasticity constants of some UD-Laminas

Lamina type T 300/5208

B (4)/5505 AS/3501 Scotchply 1002

Kevlar 49 / Epoxy

Fiber C-Fibers from Toray

Boron C –Fibers from Hercules

E-Glass Aramid from E.I. Dupont de Nemours

Matrix EP from Narmco

EP-Prepreg from Avco

EP-Prepreg from Hercules

EP-Prepreg from 3M EP

Fiber volume fraction (%) 70 50 66 45 60

Density (g/cm3) 1.6 2.0 1.6 1.8 1.46

E1 (N/mm2) E (N/mm2)

12 G12 (N/mm2)

181'000 10'300 0.28 7'170

204'000 18'500 0.23 5'590

138'000 8'960 0.30 7'100

38'600 8'270 0.26 4'140

76'000 5'500 0.34 2'300

Page 69: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

…Elasticity constants of some UD-Laminas

Lamina type T 300/5208 B (4)/5505 AS/3501 Scotchply 1002 Kevlar 49 / Epoxy

E1 (N/mm2)

E2 (N/mm2)

12

G12 (N/mm2)

181'000

10'300

0.28

7'170

204'000

18'500

0.23

5'590

138'000

8'960

0.30

7'100

38'600

8'270

0.26

4'140

76'000

5'500

0.34

2'300

S11 (mm2/N)

S22 (mm2/N)

S12 (mm2/N)

S33 (mm2/N)

5.52510-6

97.0910-6

-1.54710-6

139.510-6

4.90210-6

54.0510-6

-1.12810-6

172.710-6

7.24610-6

111.610-6

-2.17410-6

140.810-6

25.9110-6

120.910-6

-6.74410-6

241.510-6

13.1610-6

181.810-6

-4.47410-6

434.810-6

Q11 (N/mm2)

Q22 (N/mm2)

Q12 (N/mm2)

Q33 (N/mm2)

181'800

10'340

2'897

7'170

205'000

18'580

4'275

5'790

138'000

9'013

2'704

7'100

39'160

8'392

2'182

4'140

76'640

5'546

1'886

2'300

Page 70: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Thermal properties of a UD-Lamina:Expansion cofficients

11

MF

FF

FMF

EE 1

111

Page 71: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

and

22 FMM

MM

2M

M2

M3

M

ν11νν2Φ1.1Φ1.11ννν2

F

F

FFMF

MFM

EE

EE

1.1/1.11/

/

2

2

Page 72: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

where: 1F = Thermal expansion coefficient of fibers in fiber longitudinal direction

2F = Thermal expansion coefficient of fibers perpendicular to fiber

longitudinal direction M = Thermal expansion coefficient of matrix M = Poisson’s ratio of matrix 1FE = Elasticity modulus of fibers in fiber longitudinal direction

2FE = Elasticity modulus of fibers perpendicular to fiber longitudinal direction

EM = Elasticity modulus of matrix F = Fiber volume content

Page 73: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Failure Theories for a UD-Lamina

Page 74: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Failure Theories for a UD-Lamina

Following simple criteria can be applied to examine the fiber failure:

1max = Failure stress of a UD-Lamina in fiber direction

1max1

1

maxmaxmax1 )1( MF

Page 75: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Matrix failure:

max12

max2

max2

max1max1

2

max122

max2max2

max2max2

max2max2

22

2

max1

1

T

C

MFM

TC

TC

TCM

Ewhere

121

Compression strength perpendicular to fiber direction

Tensile strength perpendicular to fiber direction

Shear strength

Page 76: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Fiber failure due to tensile stress

Page 77: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Fiber failuredue tocompression-stresses

Page 78: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Fiber failuredue tocompression-stresses

Page 79: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Matrix failure

Page 80: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Experimental determination of the UD-Lamina properties:

12

1

1

1

E

12

12

2

2

2

E

12

12

G

12

1 2

Page 81: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Torsion and Tensile Samples

Page 82: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

A torsion sample after the test

Page 83: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Transverse Tension

2

GFRP

CFRP (P55S)

2Strain

Tran

sver

se T

ensi

on

z2

Page 84: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Shear

GFRP

CFRP (P55S)

12

12

Page 85: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Combined shear and transverse stresses

12E-Glas

T 300 Aramid

2max12 mmN

2max2 mmN

T

2max2 mmN

C

Page 86: 53856

Mechanics of a Lamina Fibre Composites, FS12 Masoud Motavalli

Strength of some UD-Laminas

Lamina type T 300/5208 B (4)/5505 AS/3501 Scotchply 1002 Kevlar 49 / Epoxy

1Tmax(N/mm2)

1Cmax(N/mm2)

1500

1500

1260

2500

1447

1447

1062

610

1400

235

2Tmax(N/mm2)

2Cmax(N/mm2)

40

246

61

202

51.7

206

31

118

12

53

12max(N/mm2)

68 67 93 72 34