1
(2) Inspiraon: Slim Fly (1) Key movaon S l i m N o C : A L o w - D i a m e t e r O n - C h i p N e t w o r k T o p o l o g y f o r H i g h - E n e r g y E c i e n c y a n d S c a l a b i l i t y Maciej Besta, Syen Minhaj Hassan, Sudhakar Yalamanchili, Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler Massively parallel chips require energy-efficient, cost-effective, and high-performance topologies (3) Slim Fly on a chip? Problem with large buers: (4) Slim NoC: Extending Slim Fly to the on-chip seng (5) Key Slim NoC results (4.1) Generic layout models: (4.2) E cient layouts: (4.3) Layout advantages: (4.5) Slim NoC Router microarchitecture: (4.4) NoC conguraons with non-prime nite elds: Lower diameter and thus average path length: fewer routers and wires required, resulting in lower cost and power consumption. Key idea: Optimize towards the Moore Bound: the upper bound on the number of vertices in a graph with given diameter D and radix k. MB(D,k) = 1 + k + k(k - 1) + k(k - 1) 2 + ... Key method: Another problem: a lack of conguraons sasfying various NoC technological constraints The subgroup layout (sn_subgr) is best for 200 nodes. The group layout reduces wiring complexity for 1296 nodes

(4.3) Layout SlimNoC: A Low-Diameter On-Chip Network

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: (4.3) Layout SlimNoC: A Low-Diameter On-Chip Network

(2) Inspira�on: Slim Fly

(1) Key mo�va�on

SlimNoC: A Low-Diameter On-Chip Network Topologyfor High-Energy Efficiency and ScalabilityMaciej Besta, Syen Minhaj Hassan, Sudhakar Yalamanchili, Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler

Massively parallel chips require energy-efficient,cost-effective, and high-performance topologies

(3) Slim Fly on a chip?

Problem withlarge buffers:

(4) Slim NoC: Extending Slim Fly to the on-chip se�ng

(5) Key Slim NoC results

(4.1) Generic layout models: (4.2) Efficient layouts:(4.3) Layoutadvantages:

(4.5) Slim NoC Routermicroarchitecture:(4.4) NoC configura�ons with non-prime finite fields:

Lower diameter and thus average path length: fewer routers andwires required, resulting in lower cost and power consumption.

Key idea:

Optimize towardsthe Moore Bound:the upper boundon the number ofvertices in a graphwith given diameter Dand radix k. MB(D,k) = 1 + k + k(k - 1) + k(k - 1)2 + ...

Key method:

Another problem: a lack of configura�onssa�sfying various NoC technological constraints

The subgroup layout (sn_subgr) is best for200 nodes. The grouplayout reduces wiringcomplexity for 1296 nodes